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Radiation From a ResistiveT’ublilar.4r,tenna ~xL:~Led

by a Step Voltage

Lennart Marin
Northrop Corporate Laboracuries

Pasadena, California

Abstract

The time dependence is calculatedof the radiated field from a resistive

tubular antenna excited by a step-functionvoltage across a circumferential

delta gap. The resistive loading along che antenna is taken to be uniform

and independent of frequency. Analytical expressions for the early-timeand

late-time behavior of the far field are derived. For intermediatetime

intervals the field is evaluated numerically. The radiation field of the

tubular antenna differs from that of the previously treated resistive-loade(l

antenna mostly for small times and large resistance values.
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I. Introduction

●

This note is a continuationof previous works
1,2,3

in which the radiated

field is calculatedof an infinitelylong antenna of circular cross section,

either uniformly resistive-loadedor perfect conducting,excited by a step-

functionvoltage across a delta gap.

The antenna now consideredis tubular, i.e. it consists of an infinitely

thin, circular cylindrical,resistive sheath. The resistanceis independent

of frequencyand uniform along the antenna. From the mathematicalviewpoint

this means that the tangentialelectric field is continuousacross the sheath

whereas the tangentialmagnetic field is discontinuous.

The reason for studying this problem is that this model resemblesmore

closely the actual antenna than does the previously treated antenna model,

which is characterizedby the boundary condition that the ratio of the

tangentialelectric field to the tangentialmagnetic field at the surface

of the antenna is constant. In the present model we assume a delta-generator

feeding. Because of the assumed infinitesimalsize of the excitationgap

the radiation field has singularities. The periodic appearanceof these ,

singularitiesarises from the fact that the wave front is reflected at and

transmittedthrough the resistive sheath.

In comparison to the previously treated resistive antenna2 the tubular

antenna shows little difference in the late-timebehavior of’the radiated

field except for the singularitiesthat appear in the radiation field of

the tubular antenna. However, the differencein the radiated field between

the two antenna models is significantfor early

times the relative difference is small when the

small but more pronouncedas the resistanceper

If the resistive loading is allowed to be

as nonuniform one will have more flexibilityin

radiation field. Of course this is a much more

and might be studied later.

times. For intermediate

resistanceof the sheath is

unit length is increased.

frequencydependent as well

shaping the waveform of the

difficult problem to analyze

In section II we formulate the problem and by making use of the saddle-

point method we get an expressionfor the time-harmonicfar field. Assuming

that the generatorvoltage is a step-functionin time we calculate in section
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111 the time dependenceof the radiation field by performingan inverse

Laplace transformof the expressiondeduced in section II. The time behavior

of the radiated field is calculatednumericallyfor a wide range of resistance

values and is tabulatedas well as graphed. Some limitingvalues of the

solution for early time and late time are also given. Finally, in section IV

some expressionsfor the near field are derived.
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11. The Problem

Consider a conductingcircular cylindricalbody consistingof a thin-

walled tube with radius a. The cylinder is fed by an infinitesimalgap at

z = O in an $-independentway. We divide space into two regions: an internal

region (I) where p < a and an external region (11) where p > a. (See figure

1.)

Assuming harmonic-timedependence (e
-iut

) and suppressingthe time factor

Ez shall satisfy

AE + kjEz = O
z

where

k. = Q1/C

In order to solve Maxwell’s equations in (I) and (II)we will make use

of the Fourier transformof the field components involved. Define

m
.
f(p,c%)=

~
f(p,z)e‘iuz dz

-m

with the inverse transform

f(p,z) =+
\

A
f(p,a)e‘az da

c

where the path of integrationC is shown in figure 2. Here f(p,z) denotes

an arbitrary field component.

Using the Fourier transformwe get the following solution of Maxwell’s

equations

10(PY) .
i:(p,a) = ——

Io(ay)
Ez(a-,ci), p<a

KO(PY) A
i:%a) =——E(a+,a), p~ a

Ka(ay) z

(1)

(2)
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where 10(X} and Ko(x) are modified

functionsis motivated by the fact

the radiation conditionfor P + CO.

Bessel functions. This choice of the Bessel

that Ez must be finite for p = O and fulfill

Furthermore

,=V’K7 -
0’

and a+ denotes the outside of the wall, and a- the inside of the wall.

For the other non-vanishingfield componentswe have from Maxwellrs

equations

-ici I1(PY) .

i;(wd ‘— “ —E (a-,a)
Y Io(ay) z

,p<a

Kl(py) .
$I(p,a) s;

● —Ez(a+,a)
K.(ay) Yp>a

-ik I1(PY) Aoi:(p,a)=+” —-. — Ez(a_,a) , P < a
o Y 10(ay)

ii:%,cd=

where 20 is the wave impedance

A. — ● -Ez(a+,a) , p > a20 y“ K.(ay)

of free space: 20 a 377 ohms.

Suppose the wall

Ez(a,z) =

can be characterized

El(z) = ZIH~l(a,z)-

For a conductingwall with finite thickness

where a is the conductivityof the material

by an impedanceZ so

H~(a,z)] , 2+0

(3)

(4)

(5)

(6)

that we have

(7)

A(A << a), Z is gtven by Z = a
-lA-l

of the wall.

We now go on to treat one case characterizedby a slice generatorat

z = O having the out-put voltage V (whichcan be a functionof frequency).

Another case also characterizedby a slice generatorat z = O is treated in

appendixI.

Suppose
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Ez(a+,z) = Ez(a-,z) = - V6(Z) -I-El(z)

the Fourier transformof which is

A ,.
Ez(a+,a) = Ez(a-,a)= - v+ ii(a)

(8)

(9)

Equations (5), (6), (7), and (9) give

where

ik KI(ay) Il(ay) iko
A(y) = ~ ‘Ko(ay) —1=+ Io(ay) ay2Ko(ay)Io(ay)

and t3= Zlzo. Thus for the Ho-componentof the electromagneticfield around

the antenna we have

-iko 11,(13Y)
i$p,d =——— 1

Zoy Io(ay) BA(Y) - 1 v
,p<a

iko Kl(py)
i:%,c%) =—-

1
Zoy Ko(ay) 6A(Y) - 1 v ‘ P ‘ a

(lo)

(11)

Introducingthe current I(z) on the antenna we have

I(z) = 2na[H~1(a,z)- H~(a,z)]

and

El(z)
—. =
I(z)

z’=~ 2ra

Here Z’ can be interpretedas the impedanceper unit length of the antenna.

Especiallywhen Z is real we can f.ntroducethe resistanceper unit length R.

For example the time averaged ohmic loss

given by R\112/2. Moreover in this case

per unit length of the antenna is

we can introduce the real quantity 6:
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Thus, from (10) - (12)we have

In the far zone where 6 ~ O, (r,6,$)

1

Bko + iy2aKo(ay)Io(ay)
e‘azda

being the sphericalcoordinates

(12)

with origin at the center of the antenna and 6 = O being along the positive

z-axis,we can use the saddle-poinemethod when calculatingthe field and get

pa sin 0 Io(pa sin 6)e-pr
H~1(r,9)- (13)

2ZOEB + pa sin2 8 Ko(pa sin O)Io(pa sin O)]r

where p = -iko.
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0
111. The Far Field for a

Let the voltage of the slice generator

Step Voltage

at z = O be a step-func~ionin

time, i.e. vgen(t)
= VoH(t), where H(c) is Heaviside’sunit step-function.

From (13) th~ far zone radiation field is

C+i=
a sin2 f3Io(pa sin 8)e

(et-r)ppZoH (r,e,t) ~

V. ‘—4Tri /
dp

~-i~ @ i-pa sin2 0 Io(pa sin e)Ko(pa sin 6)

qec

1

J

Io(c)e
=——
4Tri

(14)
Be +CIO(L)KO(C) ‘C

‘1

where qe = a‘l(ct-r)csc e, @@ = 6 csc 0, and the path of integration,Ll, is

shown in figure 3. But, when Re{Be} > 0, g(<,~e) = fle+ ;IO(C)KO(C)has no

zeros for larg{~}ls Tr/2(see appendix A). Thus, Ll={~=&+i~:o
co = const. > 0, - m < n < ~}. Here we are only interestedin the case when

66 is real and positive. Then, if z satisfiesg(z,~~) = O so does also Z*

where Iz*I = \zl, arg{z*} = - arg{z}.

By making use of Cauchy’s integrationformula and introducingthe

normalized time Te

Ct= qe -t-1,= - r +a sin f3
‘8 a sin 6

we can see from (14)

(15)

[

o
pZoHd(r,El,t)

=v (16)
‘o

where

1

~

Io(c)e “
R(T@8) =— —

4ni Be + CKO(L)IO(L)
*

co

I

-Tex
d< = f(x,co)e dx

o



xI~(x)ex
f(x,se) =*

[60 - XIO(X)KO(X)]2+ 7T2X2~jX)

(Te-l}zj
~ Io(z )e

P(T6,B6) = Re{ ~ }
j=l

~’(zj’~e)

W@) +(c,f$)

and Zj are the zeros of g(q,~a) fulfillingT/2 < arg{zj} < T. The path of

integration,Lz, iS shown in figure 3.

R(T6,BQ) was evaluatednumericallyfor a wide range of 66 and T6. The

zeros, Zj, were calculatednumerically for differentvalues of 86. For large

~z.lwecan find anasymptotic esttiteof zj (see appendix B). This asymptotic
3

expressionfor Zj was used when j > 21.

p(T8,B@)was evaluatedin the followingway. Put

W$#3e) =A(T8,i38)+ S(T@J (17)

where

(T6-l)zj
Io(z.)e

S(TG,66)= Re{ ~
g’(zj,sd) }

j=21

Here A(T@,be)was calculatednumericallyand S(T6,136)was evaluatedby making

use of the asymptoticexpressionfor z~ (see appendix C). S(T0,B8) is dis-

continuousat T
e
= 2n where n is a nonnegativeinteger. An investigationof

the behavior of S(T~,P6)around T8 = 2n is given in appendix E. The singularities

are due to the infinitesimalsize of the excitationgap and their periodic

appearancecan be understoodas the wave fronts being reflectedat and trans-

mitted through the resistivewall. The time at which the differentwave fronts

arrive at a distant observationpoint can easily be determinedfrom figure 4.
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The results of the numerical computationare presented in tables 1 and 2

and in figures 5-7.

The early time in the far zone is defined by To << 1. Then we put

NT@3J = R‘l)(T@J + R‘2)(T@8)

where

o

m

~

-T6X
R(2)(T8,@e)= .f(x,@@)e dx

A

We choose A such that we can use asymptotic expansion of f(x,13@)when evaluating

R(1)(T8,68)remainsR(2)(T@36). Then R(2)(T@,f16)- (?’r~)-~ when To + O.

finite when T6 + O. Thus, R(Te,f36)- l/ITfi● l/~when T@ + O.

For p(To,68) we have:A(T@,6e)remains finite when T8 + O, and from

appendix E it follows that

Thus,

Late-time behavior of PZoHb/Vo

(18)

●

The late time in the far zone is

In order to estimate R(T@,BO)we

defined by To >> 1.

make the following consideration. Put



where

h(x,Q = $[x-$xzln~

e
e

Then

e(O,Be) = e’(O,@6) =

The primes denote partial differentiation

m m

I

-Tax
e(x,e~)e dx=~

~T; ~o

But

+X2] , r = 1.7810...

e“(0,f3e}= O

with respect to x. Thus,

-Tex
e“’(x,B8)e dx

e“’(x,@e)e-axcLL((l,m) for a > 0,

from which it follows

m

I

-Tex
e(x,~e)e dx = 0(T;3) when TG + ~

o

Thus

m

I

-Tex 2T6
R(T@6) - h(x,f3e)e dx = ~[l+~+~ln~-~l

2@2T2
(19)

o 68
‘6 $0T8 08

where

m

n =
/
U2 in u e-u du=3- 2y = 1.8456...

0

.

y = in r = 0.5772...
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From the analysis given in appendix F it follows that P(T8,@8) is

negligiblecompared to R(T6,60) for T6 >> 1, T8S0 > 10 and Te # 2n, n being

a nonnegative integer. Thus asymptoticallywe have

pZOH6
—-- R(T8,QV.

where R(T8,66) is given by (19).

Iarge 60

For Se >> 1 we approximate (19) by

PZOH (r,O,t)
1

~

qec

V. - 4-riS6 Io(C’)e dg

‘1
We can here choose the imaginary axis as the path of integrationand get

m
pZoH4(r,0,t) 1

V. ‘~ ~
Jo(y)cos(qoy)dy=

{
~& ‘ 0< ‘e <2 (20)

o 0 , Te > 2, Te <o

Some Remarks on the Results

The results of the numerical computationsare presented in tables 1 and 2

and in figures 5-7. In figure 5 the radiation field of the resistive tubular

antenna is graphed for 12 < Te < 120 and ~~ = O, 0.04, 0.1, 0.4, 1, 4, 10.

For comparisonpurpose the correspondingcurves for the previously treated

resistive antenna are also shown in figure 5. For @e s 1 the curves for the

two cases are indistinguishable

6e increases.

Because of the unphysical

square-rootsingularitiesat Te

but the differenceamong them increasesas

assumptionof the delta-gap the far field has

= 2n, n being a nonnegative integer. As

mentioned before, these singularitiescan be understoodas being due to the

wave front being reflected at and transmittedthrough the resistivewall. The

appearanceof these singularitiesis most pronounced for early times (see

figure 6). However, the strength of these singularitiesis exponentially

11
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attenuatedwith To, and for To > 12 they are very weak. In figure 5 we have

made the graph of the far field a smooth curve, thereby omitting the singular-

ities for To = 2n. In the curves depicted in figure 6 we have omitted the

time intervals4n s T8 < 4n + 0.01 and 4n + 2 - 0.01 < T6 < 4n + 2 thereby

making the quantity,PZ H /Vo, finite.04
If we replaced the delta-gapby a

feeding gap of finite width (d) the radiation field would be finite for all

times. However, if d/a << 1 maxima and minima would occur in the radiation

field around T* = 2n. These extremevalues will be more pronouncedthe

smaller d/a is and the smaller n is.”

For T6 < 0.2 the radiationfield can be calculatedfrom the asymptotic

expression (18). For To > 1000 and fleT6> 1O(Ithe asymptoticexpression (19)

is valid.

12
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Iv. Some Remarks Concerning the Near Field

As in section III we here assume that the driving function is a step-

function in time, i.e. v~en(t) = VoH(t). By taking an inverse Laplace

form of the time-harmonicexpression (11)we get

u
t Ca

r= P

where y = + p , and the paths of integration,

figures 2 and 8. From this expression it follows

ayx-(ay)% (py)elaz

BP + ayzIo(ay)Ko(ay)

Cp and Co, are shown

trans-

da (21)

in

that f(p,z,t) is an even

function of z. Thus there is no loss in generality to consider only the case

220.

Introducenow the transformationy = ~ora=~. The

Ffunction y - p is multivalued and can be made single-valuedby introducing

branch cuts at y = t p,

The path of integrationin the y-plane, Cy, which is the image of Ca

under the given transformation,must be such that when ysC , i.e. y belongs to
Y

Cy, we have

1. a= ~ is real

2. Re{y\ z O

3. Im{y} 2 0

Introducingthe notations: yr = Re{y} and yi = Im{y}, and similarly for

p we arrive at the following conditionsthat determine Cy(p)

YrY~ = PrPi

Y; - y: -P:+p:>o

Yr~o

(22)

(23)

(24)



This

(23)

means that Cy(p) must coincidewith the part of the hyperbola (22)where

and (24) are satisfied. (See figure 9). But a is positive and real on

one part of Cy(p) and negative and real on the other part. This can be taken

into account in the followingway: introducea branch-cutfor a = ~

starting from the branch-pointy = p to infinityalong the part of the hyperbola

(22)where (23) and (24)are satisfied. Then a differs only in sign on the two

different sides of the cut. Let one part of Cy(p) be above the branch-cut

and the other part below it. (See figure 9). Moreover introducea branch-cut

fromy = -p to infinityalong the part of the hyperbola (22) fulfilling (23)

and y_ < 0. (See figure 9). We then define our Riemann-sheatfor y as the

y-pla;e with the two branch-cutsdescribed

that (42
- P2)Y=0 = ip as Re{p} = O when

Here we want to point out that y = O

and Im{~} z 0. This means

p&c and in general ~ = i-.
P

is a branch-pointfor the Bessel-

functions involved. The correspondingbranch-cut

to infinityalong the negative real axis.

From the above considerationswe change the

and obtain from (21)

m

can be drawn from the origin

integrationvariable a to y

-z#’p’- ~’

I I

ay’Io(ay)KI(py)e1f(p, Z,t) =— epctdp~
2Ti

c vCY(P) [8P +ay210(ey)Ko(ey)] P -Y
P

Let p. be such that all singularitiesof

_z42 -,2

~

ay210(ay)Kl(py)e

~ ‘yCY(P) @P + ay210(ay)Ko(ay)]P

dy

are to the left of po. Then pr’Po when prcC . From appendixG it then
P

follows that for 13real and positive and by choosingpr arbitrarilylarge

13p+ ay210(ay)Ko(ay)has no zeros for Re{y} > 0. This means that we can

deform Cy(p) into ~y parallel to the imaginaryaxis with O < Re{y} < Re{p}

when YET and pcCp (see figure 9).
Y

But ry is contrary to Cy(p) independent

14



of p. Interchangingthe order of integrationwe have

1

~ ~

,pctLzm
f(p,z,t) =—

2ni
aY210(ay)Kl(py)dy~

~ ‘p

(25)

r
Y

Cp [6P +h(y)] P

where h(y) = ay210(ay)Ko(ay). From the well known results8

/ .-1-

1

~

epcte-z4p~-yL

E
Cp ~+#h(y)]~

[

o ?

dp= ~

c
I

e-#h(y)c(t-~) I (y~)d~ , ct > z
o

Zjc

(25) reduces for ct > z to

t

~ \

+-lh(y)c(t-T)l (yjc~-)d~
f(p,z,t) =—

2rci$
ay210(ay)Kl(py)dy e

0
r
Y

z/c

Interchangingthe order of integrationwe get

t

f(p,z,t) =—
1~

-B-lh(y)c(t-~)
ay210(ay)Kl(py)e I(y~)dy (26)

2:iB
d~ o

Zlc r
Y

The integrandhas no singularitiesin the y-plane except for the branch-cut

from the origin to infinity along the real negative axis. T%US we can choose

ry as the imaginaryaxis.

For Iyl + m and Re{y} > 0 we have

.~-lh(y)c(t-~)~ (yjc-)-
ay210(ay)Kl(py)e 0

/ix3-y(p-a+0”5F’c(t-’)-‘

Thus f(p,z,t) = O for ct < ~(p-a) + z when Re{f3}> 0.

15



Partial integrationof (26) gives

.

L

o

J

Kl(oy)
f(p,z,t)=+ 7~Io(Y c t -z )dy +

r“
Y

2 YKI(PY)
t

c
m ~ ~

e-#h(y)c(t-~) ~
Ko(ay) ‘y

II(ym)d. (2,)

r
-1-

m
Y c

The first integral,fo, representsthe field from a perfect conductingcylinder
3

and has been evaluatedearlier . The second integral,k, can be transformed

into

k(p,z,t)

*

‘imYK1(PY)
t

1

I ~

P-6-lh(y)(ct-ll+Z )du=—
2ri Ko(ay) ‘y

Il(uy)e

-i- p-a

1 m a[J1(ap/a)tiY1(dp/a)]
=!—

2Tria2 J Jo(d+iYo(o)
o

1
m +_J1(ap/a)-iY1(up/a)]

-—
~2via2 o

Jo(a)-iYo(a)

*
t

da
J

J1(au/a)e!&ll)du

p-a

t*

da
[

Jl(au/a)el*@,”)du

p-a

*

1
m &Jo(o)Y1(op/a)-Yo(a)J1kw/a)q t

I \

L1(CI,U)
=—

2
da JL(cru/a)e cos[k2(cr,u)]du

ra
0

Jj(a)+Yj(a) p-a

*

++
Q a[Jo(a)J1(crp/a)+Yo(a)yl(cp/a)] t

/ J

il(a,u)
dc J1(au/a)e sin[k2(uyu)]duj (28)

ma
o

J:(a)+Y:(a) p-a

where

Am



!2(U,U) = L1(U,U) + ik2(a,u)

2
LI(o,u) = - ~ Jo(u)Yo(o)(ct - m)

2
k2(u,u) = ~

and the star denotes the complex

conjugate

For

f(p,z,t)

1=—
2TriI

r
Y

1
-m ~

r
Y

$
-m I

r
Y

of k.

@ small we have

J~(u)(ct - m)

*
conjugatevalue, that is, L is the complex

J
~pct;zm

ay210(ay)Kl(py)dy~

Cp [Bp+h(y)]m

K1(PY) 1

J

epct=zm
—dy~K.(ay)

— dp

c r-
P

P2-Y2

K,(py)

ay’Io(ay)Ko(ay)

1
0 $

= fo(p,z,t) -

7ct < (p-a)+2

/-7]f ‘4(PY)I,(Y c t

dy

dp

7dy , ct > (p-a)-1-z

Thus,

17
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B Ct

\

K1(PY)I1(~Y)
k(p,z,t) skl(p, z,t) = -—— —

2TriA
~, ayIo(ay)K~(ay)

@ Ct I K1(TY)I1(N)
_——
Z’rriA

~,,ayIo(ay)K~(ay)

dy

dy (29)

where L = lc~t~-z~ for ~ > p-a. The path of integrationr’ is the part of TV

where Im{y} < 0 and J?”is the part of

r’ and r“ can be arbitrarilyclose to

Using the relationshipsimI,(w)

Kl(w) + Kl(we-in)we gec
A

kl(p,z,t)

ayIa(ay)K~(ay)

KI(PY)K@Y)

ayIo(ay)K~(ay)

I’ywhere Im{y} > 0. We also note that’

the imaginaryaxis.
.

= - K1(w) - Kl(wezr), imIl(w) =

~

im
K1(ru)K1(kye )

dy + dy}
rt aY1o(aY)K~(aY)
E

~

-in
Kl(py)Kl(~ye )

dy + dy}
~,t ayIo(ay)K~(ay)
E

The paths of integration,I’!and r“, are shown in figure 10. Next we use
L L

Cauchy’s integral theorem on the contours: r: + f! + Rx + R4, ~~ + 1: + R: + R3,
1 n

r: + RI + (-R;)+ t;, r; + R2 + R; + l; (see figure 10). From the asymptotic

expressionsof l., Ko, KI it is easy to show that the integralsover the infinite

quarter circles ~ (k = 1,2,3,4)vanish for c2t2 > (p-a)
2 + 22.

Using Kp(weti”)= e-imVTKp(w) -
imn

insin(mpn)csc(um)IB(w)and Iy(we ) =

elmp~ID(w)we get

kl(p,z,t)= k;(p,z,t)+k~(p,z,t) (30)

Here k; is given by

18



~ = [Kl(op/a)-i~Il(up/a)]Kl(aA/a)
-—
2 J

— do

E
aIo(a)[Ko(u)+iTIo(u)]2

do

~ ‘[Kl(op/a)+inIl(op/a)]Kl(uA/a)
--
2 \

do

c
UIo(u)[Ko(u)-fnIo(J)]2

‘T

~

ln2[2T-lce
-i$7ei(2$ti/2)+1n2E2r-leei$le-i(2@~/2)

‘+
d$} (31)

&pAo \ln[2r-l~e-i-$]14

and it is easy to show that the integrals together gives a finite contribution

when c tends to zero. This is obvious because the magnitude of the integrand

of equation (29) is asymptoticallygiven by ly\-lln-2\ylfor IYI << 1.

We now examine k; in (30).

Kl(~ p/a e
-ill/2

=~?{

)Kl(& ~/a eiT’2)
k;(p,z,t)

j=l
~jIl~$je

‘in’2)K~(&je-im’2)

‘m’2)Kl(g.~/ae
-ilT/2

+ ‘l(g~p’a ‘iT,2)K2(;#2 ‘}
GjIl(5je

Oj)

m J (g p/a)Y (5 ~/a)-Jl(& a/a)yl(EP/a)
._~ 1 j ~ (32)

j=l ejJl(~j)yj(~j)

An evaluationof the sum is given in appendix H. From this analysis it follows

that ki~p,z,t)has singularitiesat c2t2 = [p+(2n-l)a]2+z2,n nonnegative integer.

These singularitiesare due to partial transmissionsand reflexionsof the wave

front at the resistivewall. In general one can show from (25)thatf(p,z,t) has

singularitiesat c2t2 = [p+(2n-l)a12+z2c
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Figure 1. The geometry of the problem.
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Figure 4. Reflection and transmissionof the wave fronts.
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AppendixA

In this appendixwe are going to show that for Re{B} ~ 0,

g(z) = 6 + ZIO(Z)KO(Z),has no zeros for larg{z}ls -ir/2.

The function g(z) is analytic in the z-plane except for the branch-

cut from the origin to infinityalong the real negative axis. We will

calculate the number of zeros (N) of g in the right half plane by calculating

the change of the argument of g along the contour L:

L=L-+L+ (Al)

where L- and L+ are respectively

are pointed out in figure 11 and

“L tend to infinity!.

At P we have: arg{g(P)}=

a curve with equation: Iz/ = 6,

the unions of L; and L;, j = 1,2,3,4. L;

will be describedbelow. Then we will let

arg{~) = O., -T/2 < 60 < r/2. Let L; be

-n/2 < arg{z} s 0. When d + O we have:

g(z) - 6, z&L~ and thus arg{g(R-)~= 6..

Let L; be a line with equation: z = yexp(-i~/2),O < y ~ y . Then ono

‘2:
g(z) = @ + 0.5nyJ~(y)+ 0.5ivyJo(y)Yo(y). With S- the point yoexp(-i~/2)

and as Re{13}> 0 we have: arg{g(S-)}= el(Yo), -/2 < el(Yo) < T/2.

Let Q- be the point X. + yoexp(-im/2)and L; the line z = x + yoexp(-ir/2)

O<xsxo. Suppose also that y. is such that on L; we can use asymptotic

expressionsfor the Bessel functionsinvolved. Then on L;:

g(z)- B + 0.5 + 0.5exp(-2x+i2yo),and thus arg{g(Q-))= 92 + 63(xo,Yo). Here

02
= arg{8 + 0.5}, -IT/2~ 82 ~ T/2 and

lim e3(xo,Yo)= o .
(xo,yo)+(%~)
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d

Let L; be the line z = X. + yexp(-inh),O s y S yo, and let X. be such

that on L~ we have g(z) - @ + 0.5exp(-2xo+2iy). Thus with T the point Xo:

arg{g(T)} = 92 + 64(xO) and lim e4(xo) = o.
X**

Thus

lim A- arg{g(z)}= 82 - 90 .
(Xo,yo)+(%m) L

A arg{g(z)} =-82+80 .
(xo,Yo;~%@ L+

Finally

In the same way we have

v= (2Tr)-l~A+arg{g(z)}+ A- arg{g(z)}]= O
L L

whichmeans that g(z) has no zeros in the right half plane.

(A2)

(A3)

(A4)
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Appendix B

We will here deduce an asymptoticexpressionfor the zeros, Zj, of

g(z) = f3+ ZIO(Z)KO(Z)valid when IZjl >> 1.

Using the asymptoticexpressionfor Io(z), Ko(z) valid when IzI >> 1,

2g(z) -2f3+l+ ~+i(l-++L- ~)e-2z .
8Z 32z2 128z

(Bl)

As a first approximationof the zeros, z ,
j

fulfilling IZjl >> 1, 0 s arg{zj}s ~

we use z! where z! satisfies
J J

2@+l+ie -2’4 =(J

and

‘; = ‘r +iT
~

(B2)

where z = - 0.5 ln(l + 26) and -r.= jm - m/4, j integer~ 1. We assume that
r J

>> lZrl,T >> 1. Next we make the expansion
‘j j

(B3)

-1

JIand we assume laT. << 1, lb~~21<< 1, ICT;31<< 1. Expanding (Bl) in a
J J

power series with respect to T~l and putting the coefficientsfor T;U (P = 1,2,3)
J

equal to zero we get
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a = 0.125

1 ‘r 1
b=16(l +2$)---~

31
8zr + 2B

c s-—
384 ‘32(1 + 28) -

For B << 1 we have z== - S - 132,b- 0.12582,

3zr z:

-l x---r

cat- 31/384 - 62/8.

For the zeros, z:, Iz,l >> 1, -T < arg{z~} < 0 we use the asymptotic
J

expression for g(z) valid

2g(z)-2$+

J J

when -n s arg{z} < 0

1++ i(l-*+Jy- -+)e-2z
8Z

In this case we have the following asymptotic

32z’ 128zJ

expression for ZA:
J

ir + Zr - ia~
-1 + bT

-2 - ic’r-3zm-
j j j j j

where Tj, z=, a, b, c are given by (B2) and (B4). Note that

1° Re{zj} < 0 , Re{B} > 0

2° linlz
1

=ti(T+—-
31

-)
@+o j 8-c

jj 384T.
J

(B4)

(B5)

(B6)

and this expressioncoincideswith the asymptotic expressionfor the zeros of

Io(z) (c*f.6 p. 505).
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Appendix C

In this appendixwe will derive a method for numerical calculationof

S(T6,66)defined by (17) in section 111.

o<Te<20

Introduce

(T,#)zj
co Io(z )e

S’(Ta,86,~)= I
j=m g’(zj,+)

and

s{%,%) = Re{S’(T6,66,21)}

But for Izjl large we have

and

i~.+zr (Te-l)zj-
eJe

(cl)

(C2)

i(Te-l) b(T6-1) (T6-1)2 ic(T6-1) i(T6-1)3
eJee““T ‘ezr{l + 8T + z - ~32T2 + - 3072.3 }

j ‘j j ‘; j

Thus ,
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i(4zr+Te-1) (T8-1)2
+

8
SI(T6,N) + [(b -~)(T#) - 132 ]S2(Te,N)

2
Z=(TB-l) (T#)3

+ i[(C + 0.5zrb)(To-1)- 264 - 3072 ]S3(Te,N)}

where

.
Sm(To,N) = ~ ~ , m = 0,1,2,3

j=N Tj “

But

m

im iTu

~

m-O.5 ‘TX
~20.5 = (m~O.5)! x e ‘x

o

and from the proof given in appendix D it follows

‘TNT8
Sm(Te,N)= ——(:-0.5):

Note that SO(T8,N) has singularitiesat

m ‘T X

J

m-0.5e N
x

iITTe-XX dx
l-e e

o

T8 = 2n, n nonnegativeinteger. An

(C3)

investigationof the behavior of So(T~,N) around the singularitiesis given

in appendix E.

Finally we get for S(T6,f38)
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me
s(Te,6J = l+o.5Te {sin(T~oT8

+;) Lo(T22,T8)-sin(T21T6+$)LO(T21,T6)

Tr(l+zee)

(T6-1)2
+[(b ..-~x~sin(.20Te +;)L2(T22,T6)- ~) (TB-I) 132

Z~b zr(T@-1)2 (T#)3
- sin(’c~lT6 +;)L2(T21,TG)~~(C +~)(Te-1) - 264 - 3072 1

X [sin(~21T8- ~)L3(~21,T8)-sin(~20T6‘fi)L3(T221T*)l}

where

I
m-o.5 -Sx

Lm(s,T6) = ~m
x e

~ ~ + e-2nx - 2e-rxcos(RTe)

and

We estimate the error of S(T8,~6)by estimatingthe

term in S’(T8,B6,21). Introduce

(C4)

dx

magnitude of the last

@
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I

zr(T#)2 (TO-1)3AN = [(c+0.5zrb)(T@) -z
264 -~1 S3(T6,N)

.
!Zrl(%-l)z /Te-l 3

~C+o.5zrbllT6-11+—— m
IANI < 264 ‘%FZ-

~

~2.5e-x
0.5T6 1 L dx

=(2.5 ):(TN)3*5(1+268)
0 J1-e‘TTeTi ~-’f%

/

a

\

2.5e-xx
-1 dx< (N -$(1.5)!

0 J1-ei~Te’;le-mxTN/

/zr-(T6-~)2
and

0.5T@ < 0.3 and

264(1+280)

Te-l
max {—

0.5T9}
‘e (1+266)

‘- < 2.2 for T6 s 20. Moreover
3072(1+2Q “ e

2
for Te=l+ 2

e- h(l+26e)

and thus,

12c+zrb/lTe-11 12c+zb/
r——

0.5Te ‘—
2(l+213e) e-

From this we get~A211 < 10-5.



Put
o

and

Where /j
3

z..

zb
+ f(c +. Zr(Te-Q2

~)(T# -
264 -

~l@@J

(%-1)3
3)72 ~S3(Te,N6)}
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where

●

From this we get:

/2 @*
u

1+O.5T~
?T(l+2se)

[T.]

I
j=21

Sin((T++A~)Ta+rr/‘4]ebT8T;2

[Te]

o.5T;3/2z
bT T~2

+2 r si~(rj+Aj)Te-/4]e 0 J

j=21

+ sin(~M T ti/4)Lo(Tp ,Te)-sin(~NT +m/4)Lo(TN8,T@)
Be

e 0’

4zr+T8-1
+8 [sin(~N T@-Tr/4)L1(TN,T6)-sin(~MTo-7T/4)Ll(TpeST~)l

e e e

(TO-1)2
~@in(TM T@/4)L2(Tp6 ,Te)+ [(b-zr/16)(T8-1)- ——

132
e

zr(T#)2 (T6-1)3
- sin(~N Te+T/4)L2(TN ,T )]~(c+zrb/2) (Te-l)-

e’
264 1

e
-m75-

x [sin(~N Te-rT/4)L3(rN ,T )-sin(~M T61T/4)L3(Tp ,T )]
e ~e

0 ~e
(C6)
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.

= 0.125T~1
-3

where A. + CT
j

,M~=N~-l, P6=N6+l=
J 3

In order to get an estimate of the error, As, of s(T ,66) we use:
e

Iq = IAQI+ IAJ ‘here QA is an estimate of the error of Q’(TB,k38,21)

and Au an estimate of the error of u’(T~,@8). Let 6’ be the maximum error

of dj. Then

As an estimate of 6 we use 6 = ~~~~cl and One can show that

IL+I ‘ 0.9T;; c 4 X 10-6.

Proceeding ason page39 we have for AU

Izrl(T8-~)2+ IT6-113)
68(12c+zrblIT6-11+

IAUI <
132 1536

1+0.5T6
3501Te-112=5(l+2se)

-6 -5
and \Aul z 5 x 10 . Thus, lA~l < 10 .

Before concludingthis”appendixwe wish to estimate the error AA of

A (Te,68). Let 6’ be the error of z , then
~

406’T#e
IAAI- 1+0.5Te

m(l+26e)

and IAAI c 66’. When d’ = 10‘6, IAA[ <6 X 10-6.
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Appendix D

In this appendix we will prove that

iT u
j

iTNu @ ~ ~*5

sm(u,N) = ~ * .—
1-

x e-TNx

j=NTj “ (:-0.5)! — dx~-eil’rue-lTx
o

where Sm has appeared in

Consider

(C3) of appendix C and Tj = jiT-IT/4.

MN iyl --c‘v
ej

l.f+l$‘Tju ‘TjV ~
sm(u,v,N,M)= ~ ~..

I

-’rx
~ ‘(m-o~~) ! Xm-o”5e j dx

j=N Tfl”s j=N
o

eiTNue-TNv m
I,(1-eiMmue-Mwe-Mnx)xm-O.5e-T@=

(m-O.5)! ~-ei?rue-rve-nx dx

o

Introduce

i~u
Ne ‘TNVeiMnUe-MTV

Rm(u,v,M,N)= e
(m-O.5)!

For m a 1 we have

m-o,5 -(TN+MIT)X
x e
~-ei7rue-Tve-lrxdx

‘TNV -Mm “

IlRm(U,V,M,N)I . ~m * ~,,7 xm-105e-(TN+Mn)xdx~ ~-rNve-MTv
. .

0 ~(m-0.5)(TN+MIT)m-0*5

Thus,

(Dl)

Iim lim Rm(u,v,M,N) = lim lim Rm(u,v,M,N) = O
V+o ~ M- v~
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a
For m = O and when u # 2n (n irxteger),there exists a 6 independentof

X,V(X > 0, v > O) such that ll-e-inue-mve-Txl> 6. Thus,

and

lim lim Ra(u,v,M,N)= lim lim Ro(u,v,M,N)= O , u # 2n
v+O M* * V*

From this it follows

Sm(u,N) = Iim Im(u,v,N)
V*

where

Introduce

But

Im(u,v,N)

-Tv~
eiTNue N

(UI-O.5):Jo
--r x

m-o .5e N
x
~-eilTue-?Tve-Tx

i-cu
N m Xm-o.5

\

e-’$ “

lm(”’N) = (:-0.5)! ilrue-?rx
dx

o L-e

dx

(D2)

m e-w
lIm(u,v,N)-Im(u,N)I . (m ~ 5),

/

1
-’rx

m-O.5
ii’rue-llvewx- ~-eimle-mx “Xe

N dx
. . ~ l-e
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Proceeding as before one can show that

lim Im(u,v,N)-Im(u,N) = O if (m,u) # (0,2n) , n integer
V*

Thus,

Sm(u,N) = linl{~(u,v,N)}= ~(u,N)
V+o

which proves the statement (Dl).

(D3)
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Appendix E

In this appendix we will investigateS(T6,66),defined by (17) in

section III, in the neighborhoodof its singularities.

Consider

iTNu -TNV m

1

n-o.5e-’?
Im(u,v,N)= e x

(m-o:5)!
o l-e

i7ttle-Trve-Txdx

where u > 0, v > 0

negative integer.

and T
N
= NTr-m/4,N being a positive integer and m a non-

Introducingcomplex notation we have

‘rZ
In-o.s N

h(z) = z e
~-ei7rue-Tve7rz

and h(z) is multi-valued,but can be made single-valuedby introducinga

branch-cut from the origin.to infinity. Here we choose the cut along the

negative real axis (see figure 12). We can then represent Zm(U,V,N)by the

following complex integral

where

and ~0

Im(u,v,N) =

iTNLl_TNV
(-l)me

I

m-o.5 N
z

2i(m-O.5~! il’iu::VZ.Z ‘z
.l-eee
‘1

the path of integration,rl, is around the cut (see figure 12).

By contour deformationwe have

iTNU ‘TNV
(-L)ne

I

Ill-o● 5eTNz
Im(u,v,N)= z

2i.(m-O.5~! ~-eillue-mlerzdz

‘2

is parallel to the imaginaryaxis and Re{z} < vL , ZEr2 (see figure 12).

!
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But

Im(u,v,N) = lm(u,v,l) - Bm(u,N)

where

N-1 eiTju
Bn(u,N) = ~

xj=l Tj

and Bm(u,N) is finite for all u. In(u,v,l) can also be evaluated by the

method of residues. Thus,

a
where

Im(u,v,l) = i ay(u,v)
k=O

(-l)mc
#)(u,v) = *(m-o 5;! [(v-iu+Zik)m-0S5e-ik”/2 + (v-iu-~ik)m-0*5eik~/2-j.0

and

In the Riemann sheet under considerationwe have
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w’~
~v-iu+2ik= lv-iu+2ik1°’5e , -T/4 <41< T/4

]v-2u-2ik= ~v-iu-2ik~0*5ei42 , -T/4 <$2<0

Introduce

(El)

Where

(m)
(-l)mEk rr-0.5e-ikm/2~ e-

% (u) = 2(m-o,5):[lu-2k\
i(m-O.5)(m/2)sgn(u-2k)

+ ~u+2kl
m-0.5eikm/2e-i(m-0.5)r/21

From the mean value Cheorem it follows that there exists an Vk such that

~a(m)

l~m(u,v,~)-Am(U)\ ~ f 1$) (u,v)-f’) (u)\ = v ; [+ ‘u@ ~ ; ‘k’(o’v)
k=O k=O

But

(m)
a%

limvk~o IT (U,vk)]= o
V+() -

except when m = O and u = 2n. Thus,

Sm(U,l) = Ii.m Im(u,v,l) = Am(u)
V+o

(E2)
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whenm#Ooru#2n. We notice here that Sm(u,l) is finite for all u if

msl.

In order to investigate So(u,l) in the neighborhoodof 2n we will

use Ao(u). For Iu-2nl < 1 we have

(o)(u)+$)(u)Ao(u) = a

where

and A~n)(u) is finite for Iu-2nI < 1. Thus,

I
o 3 n= o

-inn/2ei(~/4.)sgn(u-2n)
So(u,l) = e + A(n)(2n)+

m
o (E3)

1~ eirn/2 , n Z 1

where

1
1, X>o

sgn (x) =

-1 , X<o

Thus for lTe-2nl< 1 we have
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and

I
-COS n-ir/2, u-2n > 0

%
Re{~@e@@)} = ~(1+2B ~lfi[~%-znl ●

0 sin rim/2 , u-2n < 0.

(n)+ Re{Ba(2n,N)-Ao (2n)}+Im{Bo(2n,N)-A$) (2n)}

-{

o * n= o

1
1

(2n)-%cosrim/2 , n> 1 “

Thus,

lim ‘(Te?Be)andT JH2+0 ‘(Te’6e)
Te+4n-Cl e

exist but

do not. Moreover, for lTe-4nl<< 1, T6-4n > 0

.

●

(E4)

●
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and for tT6-4n-21<< 1, TO-4n-2 > 0

(-mme
S(TB,FJ8)- —— 1

7T(l+2B6)2+2n // To-4n-2~ (ES)
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Appendix F

In this appendixwe will make an asymptoticestimate for large T6 of

P(T6,@6) = A(Te,f3~)+S(T6,~6)defined by (17) in section 111.

First, we notice that as long as Re{z ] c O and A(T6,f3e)is a finite
j

sums A(T8~68) is exponentiallyattenuatedand hence negligiblecompared to

R(T~,@6) for T6 >> 1, where R(T @ ) is defined in (16) of section 111.
e’ 8

To get an asymptoticestimate of S(T6,136)for T@ >> 1 and T6@6 > 10

we consider

S(T6J36) = ; Gk(Te,f3J
k=1

where

(~djTe-l)e‘Tj‘6
~

-iK7m3ezr m ‘jTe
G4(T@J = 1+2/38 1+

j=21 Tj

Here, as before, [T6] E N6-1, No being an integer.

(Fl)

●
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But

(F2)

where SO(T N) has been defined in appendix C.*, The propertiesof SO(T8,N)

have been investigatedin appendicesC and E, and SO(T6,21) is bounded except

at Te = 2n, n being a nonnegative integer. Thus, for Te >> 1, TeSe > 10

and Te # 2n~ G1(TeY66) is exponentiallydecreasingand negligible compared

to R(T0,66).

Moreover,

From appendix A it follows that Zr < 0, zr+6 < 0; hence, for Te >> 1 and

TeBe > 10, G2(Te,fle)is small compared to R(Te,Be).

-1
When estimatingG3(Te,@o)we use dj = i(8Tj) and

zrT9 ZT
-~flee eiTjTe -w@ee r e

G3(T@e) - 8(1+28.) f 7= 8(1+28.)
S1(Te,[Te]+l) (F4)

[Te]+l Tj

where Sl(Te,N) has been introducedin appendix C. We recall that Sl(Te,[Te%l)

is bounded for all Te > 0, and thus when Te >> 1 and Te6e > 10, G3(Te,Be)
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h

is small compared to R(T8~6@).

Finally, we go on to estimate G4:

where z = max[Re{zj)l< 0. ~us, for T* >> 1 and T6~8 > 10, G4 is small
o

j

compared to R(T6~f36).

From the above considerationit follows that P(T6,66) is negligible

compared to R(T6S66) for T@>> 1$ T6@e > ~ and Te ~ 2n0

(F5)

●
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Appendix G

Here we will show that there exists a pr = Re{p} > 0 such that k(z),

where k(z) = p i-Z210(Z)KO(Z),has no zeros for Iarg{z]l< IT/2.

Ie is easy to show that for any given Pr > 0 there exists a R such

that k(z) has no zeros for Izl < R, Iarg{z}l~ T/2,

Now choose pr such that we can write with

k(z)
-22

= p+O.5z+0.5ize , 12

andR+masp+m.
r

arbitrary accuracy

>R,

Moreover, for R >> 1 there exists an c(R) such that

k(z) = p+z/2 , z = Re‘$, @sI(c) = (-T/2+ E, m/2 -s)

andc+OasR+@, From ~hese expressionsit follows that k(z) has no

zeros for arg{z}eI(s);thus, by choosing Pr arbitrarilylarge k(z) has no

zeros for Iarg{z}l< m/2.
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Appendix H

The sum defined by (32)of section IV will be studied in the following.

Consider the function

F(X$Y)= j f(&j,x,y} , X>o , y>o.
j=l

(HI)

where

and gj’s are the positive zeros of Jo(g). Let F(x,y) be split into two parts

N-1
F(x,y) = 2 f(Ej,%Y)+ i f(gj,x,y)

j=l j=N

= F1(X,Y,I?)+ F2(X,Y,ri)

We now choose N so that we can use asymptoticexpressionsfor the Bessel

functionswhen calculatingF2(x,y,N). Also note that F1(x,y,N)is fini~e

for all x,y considered. For ~ > ~N we have

~f(g,x,y) “ ~
[1+1/(16E2)]sin~g-=/4+3/(8#)1

~ sin[(x-y)E-3(x-y)/(8xyC)] ~ 0(5-7/2
)sin2[~-~/4-l/(8~)_j

(H2)
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With 5. = Tj+l/(8Tj)+O(T~3)and T, = jTr-IT/4we have
3 J

= (-l)j+l ~in(x-y)T

F2(x,y,N)- m ~
j=N ~ j

+ #K/(2xy) ~ -~ {sin(x-y)~.~2-6 (x-Y)/(XY)ICOS(x-Y)Tj}
j=N 16Tj~ J

= - ~ mRe{So(x-y+l,N)}+Im{So(x-y+l,N)}]

G(6x-6y-xy) 3G(xy-2x+2y)
+ Re{S1(x-Y+l,N)}+

32(xy)3/2
3/2

Im{S1(x-y+l,N)} (H3)
32(xy)

where

ir.u

Sm(u,N) = Y&
j=N T.

J

which has been introducedin appendix C. From the analysis given there it

follows that F2(X,Y,N) has singularitiesat x-Y+l = 2n, n being a nonnegative

integer.

●
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Appendix I

In the text we have calculated the radiation field of a resistive

tubular antenna excited by a slice generatorat both inside and outside

wall of the antenna. In this appendixwe shall consider the same problem

except that the slice generator is located only at the antenna’soutside

wall, this case being referred to as the nonsymmetricexcitation. Different

excitationsgiving rise to the same radiationfield as this nonsymmetric

case are discussed in Reference5.

Suppose

Ez(a+,z)= - Vd(z) + El(z)

Ez(a-,z)= El(z)

Following the same procedure as in section 11 we have

ii(a) = ~;::l v

where

iko Kl(ay)
B(Y) = ~Ko(ay)

and

iko I1(Pyj @B(Y)
i;(P,a) = -—Zoy Io(ay) @A(y)-1v ‘ p < a

58
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(12) ●

(13)



iko K1((V)I-@C(y)
iy(p,a) =—

Zoy KQ(ay) BA(Y)-1 v ‘ p ‘ a

where

iko Il(ay)
c(y) = A(y) - B(y) =—

y Io(ay)

Moreover

I(z) =%
J
~ eiazda . koa2VZ.

‘c

By the saddle-pointmethod the far field

J

M1(ay)Io(ay)

~ 6ko+iy2aKo(ay)Io(ay)

can easily be shown to

(14)

eiazda

be

pa[sin e Io(pa sin 8)+@11(pa sin f3)]e-pr
H~l(r,e)-- (15)

2Zo[6+pa sin2 0 Ko(pa sin O)Io(pa sin O)]r

Proceeding in the same way as in section III where the voltage of the

slice generator is assumed to be a step-functionin time, we get the following

expression for the far field

ZOH (r,e,t)

I

o

=
v
o

‘R(T@@) + p(T@6) , T6>0

where

(16)
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Here R(T6,66) was evaluatednumericallyfor a wide range of 13eand T6.

Similarly,as in section III, we put

P(T6,Q =A(T@6) + S(T@6) (17)

where

(Te-l)zj
20 [Io(z.)+13611(z)]e

1A(T@8) = Re{ ~
j=l “(zj’Be)

and

(T6-l)zj
w ~Io(z.)+f3e11(zj)]e

}S(Te,fj) ‘Re{j~21
g’(zj,q+

A(T6,B8) was evaluated numerically. To obtain S(T@,f36)we follow the procedure

described in appendix C to get
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- sin(7M T6%/4)Lo(Tp ,T6)+Sin(TNT8+T/4)Lo(7N >T6)
8 e 8 e

T -/4) L1(Tp6,T6)]- 8-1(4zr+T8-5)[sin(~NT~m/4)L1(~N6~T6)-sin(~M@~
8

- [{b-(zr-1)/16}(T@-~)-(Te-1)2/1321[Sin@ M6Te~/4)LZ(’P6 ‘Te)

T +T/4)L2(TN ,Te)]-[{c+b(zr-1)/2}(T6-1)-(zr-l)(TB-1)2/264sin(’rN *
e e

- (T6-1)3/3072][sin(TNT8-T/4)L3(TNe~Te)-sin(T%TGW /4)L3(TPe’Te)]~
6

(19)

for Te > 20.

●
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The quantities appearing in (18)

B and C.

Following the procedure as

n being a nonnegative integer,

and (19) have been defined in appendices

described in appendix E we see that for

Iim s(Tg$~e) and ~ ;:2+0 S%’%)
T8+4n-0

8
exist but lim ‘(TO’~~) and ~ ~~~2 o S(TeS86) do not- Moreover, for

T6+4n+0
8-

lTe-4nl<< 1, T@-4n >0

(-l)na@: ~
S(T@e) ‘-

7T(l+26e)1+2n _

and for ]Te-4n-21c< 1, T6-4n-2 < 0

-(.-l)%:
S(T@3@) ‘—

1

‘rr(l+2Be)2+2n l’1T@-4n-2I

For Te << 1 we have [see (18)] R(T6,f3@)- (1-@~)(2T~IT2)45.Thus,

1+68
y.—.— 1 when Te + O

0 Trm(l+26e) ~

Using the method described on page 10 when estimatingR(T6,f3~)for

To@e >> 1 we get

Moreover, for T@ >> 1, @6T6 > 10 and T@

R(T@,6e)(see appendix F for the proof).

~ 2n, P(T8,f3e)is small compared to

Thus, asymptoticallywe have

(110)

(111)

(112)

(113)
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n

●

where R(T6,B6) is given by (113).

For 68 >> 1 we have asymptotically

pzo’il(p,z,t)

V. ‘hl(T@) + Sj1[h2(T6)+h3(T8)~+O(6~2) (114)

t

where

f
m [(1-T*)/(2TJ2T6-T:), ()< T6 < 2

* r
a-—

2: J
Jl(y)sin(q6y)dy=

o /o T8>2

f n

I
l/(2m$2T*-T;), 0< TG c 2

h2(T6) “A4Ti J
Io(z)eq8CdC=

‘1
o Y T8>2

and

1
m

1

~
=O(X)K1(X)KO (x)costi(T6-l)xldx

O <Te e 2
~

9

o~ m

J

-(T#)xdx+~

J

‘(%-l)xdx, 2 < TB < 41=— Ko(x)e xI1(x)lo(x)Ko(x)e
2T2 o 271 0

m

‘J

1 -(T@)xdx-— XI~(x)I1(x)e s T6>4
2
0 ●
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P:

Equation (18) is graphed in figure 13 for T6 < 12. Comparing this

figure with figure 6 we see that, for Te < 10, there is a significant

difference in the radiation field between the symmetric and the nonsymmetric

case. However, for T8 > 15 and be < 1 the radiation

is largely the same except near the singularitiesat

field of the two cases

‘e = 2n; for To > 15

and ,08> 1 the radiation field of the nonsymmetric case is slightlyweaker
.

than that of the symmetric case.

Following the procedure in section IV we obtain for the near field

Z.

% ‘+(”’z’t)=‘l(p’z’t)

F
1 J ~

[yIo(ay)+@pIl(ay)]epcte-zp v
=—
2Ti ayK1(Py)~~~ dp

r
Y

cp [Bp+ay210(ay)Ko(ay)] R

= f(p,z,t) +*
J

a6yK1(py)11(ay)dy

‘Y

1 J
epc.czm

‘m
F ‘pCp [Bp+ay210(ay)Ko(ay)] p -y

For @ small we expand this expression in power series of 6 and keep

terms up to order 6. Thus,

(115)

fl(p,z,t)s fo(p,z,t)+kl(p,z,t)+k2(p,z,t)

65



where f. and kl have beed defined in section IV, and

I

o ~ < p-a9

k2(p,z,t) =

Bet 1

I

K1(py)I1(ay)I1(~y)dy
——
1 2ri Io(ay)Ko(ay) 9 A > p-a

r
Y

For A > p-a the integral can be deformed as follows:

K1(py)I1(ay)K1(~y) K1(PY)ll(aY)Kl(~Y)8ct
k2(PJz,t) =— {J dy -

I
dy

2721 ~f
Io(ay)Ko(ay) Io(ay)Ko(ay)

r“

iTr -iTT
K1(m)~l(w)K1(~ye ) K1(oyl~l(ay)K1(~ye )

+
J Io(ay)Ko(ay)

dy -
~ Io(ay)Ko(ay)

dy}
r! rt!

(117)

k1+k2 is finite for A > p-a.

/’-, It is not

From the above expressions it is easy to show that

Thus, up to order of B fl is finite excepe at ct =

suprising that fl is finite in this approximation because the singularities

in the exact form of fl appear only in terms of order 62 and higher in the

power series expansion (116).
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Figure 13. Radiation field for a step-function voltage from the nonsYmmetricallY
excited antenna in appendix I.
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