Sensor and Simulation Notes

Note 110
UR OD

July 1970
FRDGGMELEE
97

Pulse Radiation by an Infinitely Long, Perfectly Conducting, Cylindrical Antenna in Free Space Excited by a Finite Cylindrical Distributed Source Specified by the Tangential Electric Field Associated with a Biconical Antenna
by
1st Lt. Paul R. Barnes
Air Force Weapons Laboratory/Air Force Special Weapons Center

Abstract

An antenna for the radiation of a fast rising electromagnetic pulse with large peak fields implies a source voltage with high alectric fields in the source region. In order to reduce the peak electric fields at the source, the source region can be made larger. In this note, the pulse radiation by an infinite cylindrical antenna excited by a distributed source region is considered. To achieve a fast rising radiated pulse, a distributed source for launching spherical waves is used. The exact expressions for the far zone radiated fields are developed and the time history of the radiation is obtained. Also, the small and large time asymptotic forms of the radiation fields are obtained.

NOTE 110

PULSE RADIATION BY AN INFINITELY LONG, PERFECTLY CONDUCTING, CYLINDRICAL ANTENNA IN FREE SPACE EXCITED BY A FINITE CYLINDRICAL DISTRIBUTED SOURCE SPECIFIED BY THE TANGENTIAL ELECTRIC FIELD ASSOCIATED WITH A BICONICAL ANTENNA

by

Paul R. Barnes
Air Force Weapons Laboratory

July 1970

PULSE RADIATION BY AN INFINITELY LONG, PERFECTLY CONDUCTING CYLINDRICAL ANTENNA IN FREE SPACE EXCITED BY A FINITE CYLINDRICAL DISTRIBUTED SOURCE SPECIFIED BY THE TANGENTIAL ELECTRIC FIELD ASSOCIATED WITH A BICONICAL ANTENNA

Abstract

An antenna for the radiation of a fast rising electromagnetic pulse with large peak fields implies a source voltage with high electric fields in the source region. In order to reduce the peak electric fields at the source, the source region can be made larger. In this note, the pulse radiation by an infinite cylindrical antenna excited by a distributed source region is considered. To achieve a fast rising radiated pulse, a distributed source for launching spherical waves is used. The exact expressions for the far zone radiated fields are developed and the time history of the radiation is obtained. Also, the small and large time asymptotic forms of the radiation fields are obtained.

Acknowledgement

I wish to thank Mr. Joe P. Martinez of the Dikewood Corporation for computer programming and his interest in this work. I also would like to thank Dr. Carl E. Baum for his interest in this note and Marilyn Baker for typing the manuscript.

CONTENTS

SECTION I-INTRODUCTION
SECTION II-PULSE RADIATION BY AN INFINITE CYLINDRICAL ANTENNA 6
SECTION III-DISTRIBUTED SOURCE FOR LAUNCHING SPHERICAL WAVES 10
SECTION IV-INFINITE CYLINDRICAL ANTENNA WITH A DISTRIBUTED SOURCE 17
SECTION V-ANALYSIS OF THE RADIATION FIELDS 25
SECTION VI-ANALYTIC SOLUTION OF THE ELECTRIC FIELD 30
SECTION VII-ASYMPTOTIC FORMS OF THE RADIATION FIELDS 38
SECTION VIII-NUMERICAL SOLUTION OF Gb 50
SECTION IX-RESULTS 55
SECTION X-SUMMARY 57
Tables 58
Figures of Results 82
APPENDIX A-ASYMPTOTIC EXPANSION OF G(η) for $\eta \rightarrow \infty$ 95
APPENDIX B-ASYMPTOTIC EXPANSION OF $F(\zeta)$ for $\zeta \rightarrow 0$ 99
APPENDIX C-SERIES APPROXIMATION FOR F(ζ) 103
REFERENCES 109

I. Introduction

One approach to the radiation of pulsed electromagnetic energy is to employ a pulse-radiating electric dipole antenna. Good antenna characteristics for high frequency radiation can be achieved if the central portion of the antenna is a biconical wave launcher as shown in Figure 1. The biconical antenna is driven by a fast rising applied voltage at or near the common apex of the two cones. The initial part of the radiating pulse has the form of a spherical wave with the characteristics appropriate for the radiation of a biconical antenna while the latter part of the pulse has the form of a decaying wave with characteristics appropriate for the radiation by a dipole antenna. To achieve a certain amplitude for the radiated electric or magnetic fields at a particular distance from the antenna, the magnitude of the applied voltage can be adjusted. However, if the applied voltage is made very large, high voltage insulation problems result. The purpose of this paper is to advance a technique to achieve, at least conceptually, a very large amplitude for the radiation fields without high voltage problems. To accomplish this, the source region is made large to reduce the peak electric field there. In order to obtain an exact solution for the radiation fields, the infinite cylindrical antenna with a finite cylindrical source region is used.

Figure 1. CYLINDRICAL ANTENNA CENTRALLY FED BY A BICONICAL WAVE LAUNCHER.

II. Pulse Radiation by an Infinite Cylindrical Antenna

Consider an infinitely long cylindrical antenna excited by a source voltage across a circumferential gap of infinitesimal width as shown in Figure 2. The frequency domain expression for the radiated far zone electric field is given, for $0<\theta<\pi$ with $\mathrm{e}^{-\mathrm{i} \omega t}$ suppressed, by ${ }^{1}$

$$
\begin{equation*}
\overrightarrow{\mathrm{E}}_{\theta}(\mathrm{r}, \theta, \omega)=\frac{\mathrm{V}(\omega)}{\mathrm{i} \pi r} \frac{\mathrm{e}^{\mathrm{ikr}}}{\sin \theta \mathrm{H}_{0}^{(1)}(\mathrm{ka} \mathrm{\sin } \mathrm{\theta)}} \overrightarrow{\mathrm{a}}_{\theta} \tag{1}
\end{equation*}
$$

where $H_{0}{ }^{(1)}$ is a Hankel function of the first kind of order zero; $V(\omega)$ is the source voltage with dimensions of volts per unit radian frequency; $\overrightarrow{\mathrm{E}}_{\theta}$ is the electric field vector in the theta (θ) direction with dimensions of volts per meter per unit radian frequency; and k is the radian wave number with dimension of per meter. The meaning of a, r, and θ is given in Figure 2.

The magnetic field is given by

$$
\begin{equation*}
\overrightarrow{\mathrm{H}}_{\phi}(\mathrm{r}, \phi, \omega)=\frac{\mathrm{E}_{\theta}(\mathrm{r}, \theta, \omega)}{\mathrm{Z}_{\mathrm{o}}} \overrightarrow{\mathrm{a}}_{\phi} \tag{2}
\end{equation*}
$$

where Z_{o} is the free space radiation impedance approximately equal to 120π ohms and $\overrightarrow{\mathrm{H}}_{\phi}$ is the magnetic field vector in the phi (ϕ) direction with dimensions of ampere per meter per unit radian frequency.

The components of the electric and magnetic fields are related to the electric and magnetic field vectors by

$$
\overrightarrow{\mathrm{E}}_{\theta}=\mathrm{E}_{\theta} \overrightarrow{\mathrm{a}}_{\theta} \quad \text { and } \quad \overrightarrow{\mathrm{E}}_{\phi}=\mathrm{E}_{\phi} \overrightarrow{\mathrm{a}}_{\phi}
$$

where \vec{a}_{θ} and \vec{a}_{ϕ} are unit vectors in spherical coordinates.

Figure 2. INFINITE CYLINDRICAL ANTENNA EXCITED BY AN INFINITESIMAL gap voltage source.

In terms of the Laplace transform variable p, the magnitude of the electric field becomes ${ }^{2}$

$$
\begin{equation*}
\mathrm{E}_{\theta}=\mathrm{V}(\mathrm{p}) \frac{\mathrm{e}^{-\mathrm{pr} / \mathrm{c}}}{2 \sin \theta \mathrm{~K}_{\mathrm{o}}((\mathrm{pa} / \mathrm{c}) \sin \theta)} \tag{3}
\end{equation*}
$$

where the relations $k=\omega / c, p=-i \omega^{*}$, and $H_{o}{ }^{(1)}(i x)=-(2 i / \pi) K_{o}(x)$ have been used. $K_{o}(x)$ is a modified Bessel function of the second kind of order zero and c is the speed of light.

Let $y=(p a / c) \sin \theta$ for convenience. The time domain electric field is given by the inverse Laplace transform of Eqn. (3) as

$$
\begin{equation*}
E_{\theta}(r, \theta, t)=\cdot \frac{1}{2 \sin \theta r} \frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} \frac{e^{p(t-r / c)} V(p)}{K_{o}(y)} d p \tag{4}
\end{equation*}
$$

where γ is chosen to the right of any singularity in the integrand of the integral in Eqn. (4).

Define a retarded time as

$$
t^{*}=t-r / c
$$

and a normalized radiation field as

$$
\begin{equation*}
\xi\left(\theta, t^{*}\right)=\frac{r E_{\theta}\left(r, \theta, t^{*}\right)}{V_{o}} \tag{5}
\end{equation*}
$$

For the case $V(p)=V_{o} / p$, a step-function voltage source, the normalized electric field can be written as

[^0]\[

$$
\begin{equation*}
\xi=\frac{1}{2 \sin \theta} \frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} \frac{e^{p t^{*}}}{p K_{o}(y)} \cdot d p \tag{6}
\end{equation*}
$$

\]

Now, make a change of variable from p to y and let $\gamma^{\prime}=(\gamma a / c) \sin \theta$. The expression becomes

$$
\begin{equation*}
\xi=\frac{1}{2 \sin \theta} \frac{1}{2 \pi i} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y q \csc \theta}}{\mathrm{yK}_{o}(y)} d y \tag{7}
\end{equation*}
$$

where q is a normalized time given by

$$
\mathrm{q}=\frac{\mathrm{ct}}{\mathrm{a}}
$$

Equation (7) may be rewritten for $q \csc \theta>-1$ in the form ${ }^{2}$

$$
\begin{equation*}
\xi=\frac{1}{2 \sin \theta} \int_{0}^{\infty} \frac{e^{-y q \csc \theta} I_{o}(y)}{y\left[K_{o}^{2}(y)+\pi^{2} I_{o}^{2}(y)\right]} d y \tag{8}
\end{equation*}
$$

where $I_{o}(y)$ is a modified Bessel function of the first kind of order zero.

III. Distributed Source for Launching Spherical Waves

To minimize high voltage problems, the source region where the pulse radiating antenna is excited can be made arbitrarily large. Consider an arbitrary distributed source surface designated S_{S} as shown in Figure 3. Quantities on the surface S_{S} are designated by adding the subscript s, and the normal vector \vec{n} is a unit vector normal to S_{S}. The position vector $\overrightarrow{\mathbf{r}}$ is referenced from the origin of a convenient coordinate system. For simplicity, the coordinate origin is chosen to be within the source surface.

Let $\vec{E}\left(\vec{r}, t^{*}\right)$ be the electric field radiated by S_{S} for $\vec{r} \geq \vec{r}_{S}$ such that $\overrightarrow{\mathrm{E}}\left(\vec{r}, t^{*}\right)$ satisfies Maxwell's equations and is initially zero at $t^{*}=0$. This electric field has a tangential component on S_{s} designated by $\vec{E}_{S}\left(\vec{r}_{s}, t^{*}\right)$, where

$$
\begin{equation*}
\overrightarrow{\mathrm{E}}_{\mathrm{S}}\left(\vec{r}_{S}, t^{*}\right)=-\left[\overrightarrow{\mathrm{E}}\left(\vec{r}_{S}, t^{*}\right) \times \vec{n}\right] \times \vec{n} \tag{9}
\end{equation*}
$$

as given by Eqn. (1), Reference 3.
If \vec{E}_{S} is first specified by Eqn. (9) as a function of r_{S} and t^{*}, then the desired radiated electric field $\overrightarrow{\mathrm{E}}$ is uniquely determined. ${ }^{4}$ Also, $\overrightarrow{\mathrm{E}}$ satisfies both Maxwell's equations and the initial and boundary conditions by hypothesis. Thus, the distributed source can be specified by first specifying \vec{E}, as the radiated field from a particular antenna, and then calculating \vec{E}_{S}.

Launching Spherical Waves
A distributed source for launching spherical electromagnetic waves can be specified by the tangential component of a spherical TEM wave associated with a biconical antenna. For the purpose of connecting a distributed source to a cylindrical antenna, a cylindrical source surface with the same radius as the antenna is convenient. Consider now the

Figure 3. ARBITRARY SOURCE REGION.
problem of specifying the electric field on a cylindrical source surface for launching spherical waves. The cylindrical coordinate system is used to specify the source. However, all radiated fields discussed in this paper are in the more convenient spherical coordinate system. The coordinate origin of the cylindrical (Ψ, ϕ, z) coordinate system is located within the cylindrical source surface which has axial and lengthwise symmetry about the coordinate origin. Now consider the field $\overrightarrow{\mathrm{E}}_{\mathrm{b}}$ radiated by a biconical antenna of infinite length with the bicone apex located at the coordinate origin. The bicone angle θ_{0} is such that the biconical antenna intersects with the ends of the cylindrical source surface at $z=h_{s}$ and $z=-h_{S}$ as shown in Figure 4, which depicts the geometry of the problem under consideration. For these conditions the surface electric field is given by

$$
\begin{equation*}
\overrightarrow{\mathrm{E}}_{\mathrm{s}}\left(\vec{r}_{\mathrm{s}}, \mathrm{t}^{*}\right)=-\left[\overrightarrow{\mathrm{E}}_{\mathrm{b}}\left(\vec{r}_{\mathrm{s}}, \mathrm{t}^{*}\right) \times \overrightarrow{\mathrm{n}}\right] \times \overrightarrow{\mathrm{n}} \tag{10}
\end{equation*}
$$

where \vec{E}_{b} is the electric field associated with the biconical antenna. $\overrightarrow{\mathrm{E}}_{\mathrm{b}}$ is given by ${ }^{5}$

$$
\begin{equation*}
\vec{E}_{b}\left(r_{s}, t^{*}\right)=\frac{V_{b}\left(t^{*}\right) f_{o}}{r_{s} \sin \theta_{s}} \vec{a}_{\theta} \quad \text { for } \quad \theta_{0}<\theta<\pi-\theta_{0} \tag{11}
\end{equation*}
$$

where $\mathrm{f}_{\mathrm{o}}=\left\{2 \ln \left[\cot \left(\theta_{\mathrm{o}} / 2\right)\right]\right\}^{-1}$.
The normal vector for the circular cylindrical source surface is $\overrightarrow{\mathrm{n}}=\overrightarrow{\mathrm{a}} \boldsymbol{\Psi}$. The surface field can now be written as

$$
\begin{align*}
\overrightarrow{\mathrm{E}}_{S} & =-\left[\mathrm{E}_{\mathrm{b}} \vec{a}_{\theta} \times \vec{a}_{\Psi}\right] \times \overrightarrow{\mathrm{a}} \Psi \\
& =-\mathrm{E}_{\mathrm{b}} \sin \theta_{\mathrm{S}} \vec{a}_{\mathrm{z}} \tag{12}
\end{align*}
$$

Figure 4. CYLINDRICAL DISTRIBUTED SOURCE SPECIFIED BY AN INFINITELY LONG BICONICAL ANTENNA.
and substituting for E_{b} gives

$$
\begin{align*}
\vec{E}_{S} & =-\frac{V_{b}\left(t^{*}\right) f_{o}}{r_{s}} \vec{a}_{z} \\
& =-\frac{V_{b}\left(t^{*}\right) f_{o}}{\sqrt{z_{s}^{2}+a^{2}}} \vec{a}_{z} \tag{13}
\end{align*}
$$

where r_{S} has been replaced by a function of z_{S}.
Thus far, the magnitude of the tangential electric field on the cylindrical source surface as a function of z_{s} has been specified. To obtain a spherically expanding wave, the wave front must expand radially about the source origin by definition. Radial expansion of the radiated wave can be achieved if the distributed source elements are turned on at absolute time equal to r_{s} / c. Thus, both the magnitude and time of the \vec{E}_{S} associated with a biconical antenna can be specified as

$$
\begin{equation*}
\vec{E}_{s}=-\frac{V_{b}\left(t^{*}\right) f_{o}}{r_{s}} U\left(t^{*}-r_{s} / c\right) \vec{a}_{z} \tag{14}
\end{equation*}
$$

where $U(x)$ is a unit step function equal to one for $x>0$.
If the bicone voltage is a unit-step function $V_{b o} U\left(t^{*}\right)$, then in terms of z_{S}

$$
\begin{equation*}
\overrightarrow{\mathrm{E}}_{\mathrm{S}}=-\frac{\mathrm{V}_{\mathrm{bo}} \mathrm{f}_{\mathrm{o}}}{\sqrt{\mathrm{z}_{\mathrm{S}}{ }^{2}+\mathrm{a}^{2}}} \mathrm{U}\left(\mathrm{t}^{*}-\frac{1}{\mathrm{c}} \quad \sqrt{\mathrm{z}_{\mathrm{S}}{ }^{2}+\mathrm{a}^{2}}\right) \vec{a}_{\mathrm{z}} \tag{15}
\end{equation*}
$$

In terms of the Laplace transform variable p, Eqn. (15) becomes

$$
\begin{equation*}
\vec{E}_{s}\left(\vec{r}_{s^{\prime}}, p\right)=-\frac{V_{b o} f_{o}}{\sqrt{z_{s}{ }^{2}+a^{2}}} \frac{e^{-p / c \sqrt{z_{s}^{2}+a^{2}}}}{p} \vec{a}_{z} \tag{16}
\end{equation*}
$$

The maximum surface field is at $z_{s}=0$. The magnitude of the surface field at $z_{s}=0$ can be calculated by Eqn. (15) as

$$
\begin{equation*}
E_{s m}=\frac{V_{b o} f_{o}}{a}, \quad t^{*} \geq a / c \tag{17}
\end{equation*}
$$

If the surface field is considered as a voltage across a peripheral band of small width $\Delta \mathrm{z}$, then the equivalent bicone voltage is

$$
\begin{equation*}
V_{b o}=\frac{a V_{s m}}{f_{0} \Delta z} \tag{18}
\end{equation*}
$$

where $V_{s m}$ is the voltage across Δz at $z=0$. And

$$
\begin{equation*}
V_{s m}=\frac{V_{b o} f_{o} \Delta z}{a} \tag{19}
\end{equation*}
$$

Since the surface field is continuous after the source elements are turned on, the total voltage across the distributed source can be calculated by integrating the surface field from $z_{S}=h_{S}$ to $z_{S}=-h_{S}^{*}$. Therefore, after all the source elements are turned on, the total voltage is given by

$$
\begin{align*}
V_{s t} & =\int_{-h_{s}}^{h_{s}} \frac{v_{b o} f_{o}}{\sqrt{z_{s}^{2}+a^{2}}} d z_{s} \\
& =\int_{-h_{s / a}}^{h_{s / a}} \frac{V_{b o} f_{o}}{\sqrt{z_{a}^{2}+1}} d z_{a} \tag{20}
\end{align*}
$$

[^1]where a change of variable of integration $z_{s}=a z_{a}$ has been made. Now make another change of variable from z_{a} to u where $u=\sinh ^{-1} z_{a}$. Then,
\[

$$
\begin{equation*}
v_{s t}=\int_{-u_{o}}^{u_{o}} v_{b o} f_{o} d u \tag{21}
\end{equation*}
$$

\]

where $u_{o}=\sinh ^{-1}\left(h_{s / a}\right)=\sinh ^{-1}\left(\cot \theta_{o}\right)$. Evaluating the above integral gives

$$
\begin{align*}
V_{s t} & =2 V_{b o} f_{o} \sinh ^{-1}\left(\cot \theta_{o}\right) \\
& =V_{b o} \tag{22}
\end{align*}
$$

where $2 \sinh ^{-1}\left(\cot \theta_{0}\right)=1 / f_{o}$.
Thus, the total voltage across the distributed source is the same as the equivalent bicone voltage used to specify the source.
IV. Infinite Cylindrical Antenna with a Distributed Source

The far zone electric field expression for the infinite cylindrical antenna, Eqn. (3), can be modified for the source voltage located at an arbitrary position along z_{S}. Let R be the distance from the arbitrary source to the observer as shown in Figure 5. For the source located at z_{s}, Eqn (3) can be written as

$$
\begin{equation*}
E_{\theta}=\frac{V(p) e^{-p R / c}}{2 \sin \theta R K_{o}(y)} \tag{23}
\end{equation*}
$$

where R is given by

$$
\begin{equation*}
R=r-\delta=r-z_{s} \cos \theta \tag{24}
\end{equation*}
$$

Since the observer is in the far zone the inverse distance term R in the denominator of Eqn. (23) can be replaced by r; i.e., $R^{-1}=r^{-1}+O\left(r^{-2}\right)$ where O is the order symbol. However, for the phase factor term in the numerator it is the difference between R and r that is important and the exact value of R must be retained. Thus, the radiated electric field can be written as

$$
\begin{equation*}
E_{\theta}=\frac{V(p) e^{-p R / c}}{2 \sin \theta r K_{o}(y)} \tag{25}
\end{equation*}
$$

Consider now an infinite cylindrical antenna excited by several ideal source voltages located at arbitrary positions on z_{s} within the finite limits $z_{s}=h_{s}$ and $z_{s}=-h_{s}$. The source voltages are impressed across peripheral bands of infinitesimal width connected by perfectly conducting cylindrical sections. Since the voltage sources are independent and are perfectly conducting, the fields radiated by each voltage source can be added vectorially by superposition to give the total radiated

Figure 5. INFINITE CYLINDRICAL ANTENNA WITH THE SOURCE VOLTAGE LOCATED AT AN ARBITRARY POSITION Z_{s}.
field. Hence, the field radiated by an infinite cylindrical antenna with n number of voltage sources as shown in Figure 6 is

$$
\begin{equation*}
\vec{E}_{i}=\sum_{i=0}^{n} \frac{V_{s i}\left(\vec{r}_{s i}, p\right) e^{-p R_{i} / c}}{2 \sin \theta r K_{0}(y)} \quad \vec{a}_{i} \tag{26}
\end{equation*}
$$

where \vec{a}_{i} is a unit vector perpendicular to \vec{R}_{i} and the source voltages are a function of the position vector $\vec{r}_{s i}$. For R_{i} large, \vec{a}_{i} approaches \vec{a}_{θ} and Eqn. (26) becomes

$$
\begin{equation*}
\vec{E}_{\theta}=\sum_{i=0}^{n} \frac{V_{s i}\left(\vec{r}_{s i}, p\right) e^{-p / c\left(r-z_{s i} \cos \theta\right)}}{2 \sin \theta r K_{o}(y)} \vec{a}_{\theta} \tag{27}
\end{equation*}
$$

Now allow the number of peripheral bands to increase and completely fill the region from $z_{s}=h_{S}$ to $z_{S}=-h_{S}$ as shown in Figure 7 .

Since the source voltages are impressed across peripheral bands of width $\mathrm{dz}{ }_{s}$, the surface field is related to the source voltage by

$$
E_{S}\left(\vec{r}_{s}, p\right) d z_{s}=\cdot V_{s}\left(\vec{r}_{s}, p\right)
$$

and the differential source fields on S_{S} can be summed by an integral. The theta component of the electric field becomes

$$
\begin{equation*}
E_{\theta}=\int_{-h_{S}}^{h_{S}} \frac{E_{s}\left(\vec{r}_{s}, p\right) e^{-p / c\left(r-z_{s} \cos \theta\right)}}{2 \sin \theta r K_{0}(y)} d z_{s} \tag{28}
\end{equation*}
$$

Surface Field for Radiating Spherical Waves

In Eqn. (28) the source surface electric field is a somewhat general function of \vec{r}_{s}. Now allow the source field to be the surface field developed in section III for launching spherical waves. The substitution of Eqn. (16)

Figure 6. INFINITE CYLINDRICAL ANTENNA WITH n NUMBER OF ARBITRARY VOLTAGE SOURCES.

Figure 7. INFINITE CYLINDRICAL ANTENNA WITH A CONTINUOUS DISTRIBUTED SOURCE E_{S}.
into Eqn. (28) gives

$$
\begin{equation*}
E_{\theta}=\int_{-h_{S}}^{h} \frac{V_{b o}{ }_{o} e^{-p / c}\left(r+\sqrt{z_{s}^{2}+a^{2}}-z_{s} \cos \theta\right)}{2 \sin \theta r p \sqrt{z_{s}^{2}+a^{2}} K_{o}(y)} d z_{s} \tag{29}
\end{equation*}
$$

Now make a change of variable of integration from z_{s} to $z_{a}=z_{s / a}$, then

$$
\begin{equation*}
E_{\theta}=\int_{-h_{s / a}}^{h_{s} / a} \frac{V_{b o} f_{o} e^{-p r / c} e^{-p a / c}\left(\sqrt{z_{a}^{2}+1}-z_{a} \cos \theta\right)}{2 \sin \theta r p K_{o}(y) \sqrt{z_{a}^{2}+1}} d z_{a} \tag{30}
\end{equation*}
$$

Now make another change of variable $z_{a}=\sinh u$, Eqn. (30) becomes

$$
\begin{equation*}
E_{\theta}=\int_{-u_{0}}^{u_{o}} \frac{V_{b o} f_{o} e^{-p r / c} e^{p a / c(-\cosh u+\sinh u \cos \theta)}}{2 \sin \theta r p K_{o}(y)} d u \tag{31}
\end{equation*}
$$

where the relation $\sinh ^{2} u+1=\cosh ^{2} u$ has been used and $u_{0}=\sinh ^{-1}\left(\cot \theta_{0}\right)$.
For convenience, the electric field can be normalized as in section II. Thus,

$$
\begin{equation*}
\xi_{\mathrm{b}}=\frac{\mathrm{r} \mathrm{E}_{\theta}}{\mathrm{V}_{\mathrm{bo}}} \tag{32}
\end{equation*}
$$

The time domain expression for ξ_{b} can now be written as

$$
\begin{equation*}
\xi_{b}=\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{-u_{0}}^{u_{o}} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{p a / c\left(\frac{c t^{*}}{a}-\cosh u+\sinh u \cos \theta\right)}}{p K_{o}(y)} d p d u \tag{33}
\end{equation*}
$$

As in section II, a change of variable $y=(\mathrm{pa} / \mathrm{c}) \sin \theta$ yields

$$
\begin{equation*}
\xi_{b}=\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{-u_{o}}^{u_{o}} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y \csc \theta(q-\cosh u+\sinh u \cos \theta)}}{y K_{o}(y)} d y d u \tag{34}
\end{equation*}
$$

where $q=c t * / a$.
Consider now the integral expression in Eqn. (7) as a function of η given by

$$
\begin{equation*}
\mathrm{f}(\eta)=\frac{1}{2 \pi i} \int_{\gamma^{\prime}-\mathrm{i} \infty}^{\boldsymbol{\gamma}^{\prime}+\mathrm{i} \infty} \frac{\mathrm{e}^{\mathrm{y} \eta}}{\mathrm{yK} \mathrm{~K}_{\mathrm{o}}(\mathrm{y})} \mathrm{dy} \tag{35}
\end{equation*}
$$

whereqcsc θ has been replaced by η. This function can also be written for $\eta>-1$ in the form

$$
\begin{equation*}
f(\eta)=\int_{0}^{\infty} \frac{e^{-y \eta} I_{0}(y)}{y\left[K_{0}^{2}(y)+\pi^{2} I_{0}^{2}(y)\right]} d y \tag{36}
\end{equation*}
$$

as developed in Reference 2.
In terms of Laplace transformations, $f(\eta)$ can be written as

$$
\begin{equation*}
\mathrm{f}(\eta)=\mathrm{L}_{\mathrm{y} \rightarrow \eta}^{-1}\left[\frac{1}{\mathrm{yK}_{\mathrm{o}}(\mathrm{y})}\right] \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\mathrm{yK}_{\mathrm{o}}(\mathrm{y})}=\underset{\eta \rightarrow \mathrm{y}}{\mathrm{~L}}[\mathrm{f}(\eta)] \tag{38}
\end{equation*}
$$

where L symbolizes the Laplace transform.

Now let $\eta=\csc \theta(q-\cosh u+\sinh u \cos \theta)$. The substitution of the above η into Eqns. (35) and (36) and the substitution of Eqn. (35) into Eqn. (34) gives

$$
\xi_{b}=\frac{f_{o}}{2 \sin \theta} \int_{-u_{o}}^{u} \int_{0}^{\infty} \frac{e^{-y \csc \theta(q-\cosh u+\sinh u \cos \theta)}}{y\left[K_{o}^{2}(y)+\pi^{2} I_{o}^{2}(y)\right]} I_{o}(y) d y d u
$$

V. Analysis of the Radiation Fields

The electric field expression, Eqn. (39), developed in section IV, is valid for angles of observation in the range $0<\theta<\pi$. However, it is unnecessary to analyze the electric field over the complete range of θ since the field is symmetrical for the angles θ and the supplement of θ due to the lengthwise symmetry of the distributed source and the cylindrical antenna. Therefore, an analysis of the field for angles between 0° and $90^{\circ}(0<\theta \leq \pi / 2)$ suffices as an analysis for the complete range of $0<\theta<\pi$.

Recall from section III Eqn. (11) that the expression for the electric field radiated by a biconical antenna is valid only for angles of observation $\theta_{0}<\theta<\pi-\theta_{0}$. Since the distributed source in this problem is specified by the electric field as radiated by a biconical antenna, one feels intuitively that the analysis of the electric field for angles $0<\theta<\theta_{0}$ will require special attention and that the angle $\theta=\theta_{0}$ is a special case.

In order to determine how the field behaves for angles in the two ranges, $0<\theta \leq \theta_{0}$ and $\theta_{0}<\theta \leq \pi / 2$, rewrite Eqn. (34) as follows

$$
\begin{align*}
\xi_{b}= & \frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{-\infty}^{\infty} G(\theta, q \csc \theta) d u \\
& -\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{u_{o}}^{\infty} G(\theta, q \csc \theta) d u \\
& -\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{-\infty}^{-u_{o}} G(\theta, q \csc \theta) d u \tag{40}
\end{align*}
$$

where $G(\theta, q \csc \theta)$ is the integrand of Eqn. (34).

Define the three integral expressions above as ξ_{1}, ξ_{2}, and ξ_{3} respectively. By exchanging the limits of integration and replacing the variable of integration u by $-u$, the third integral expression becomes

$$
\begin{equation*}
\xi_{3}=\frac{f_{0}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{u_{0}}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y \csc \theta(q-\cosh u-\sinh u \cos \theta)}}{y K_{o}(y)} d y d u \tag{41}
\end{equation*}
$$

Since $\cos (\pi-\theta)=-\cos \theta$, it follows that

$$
\begin{equation*}
\xi_{3}(\theta)=\xi_{2}(\pi-\theta) \quad, \quad 0<\theta \leq \pi / 2 \tag{42}
\end{equation*}
$$

Therefore, an analysis of ξ_{2} at the angle θ is also an analysis for ξ_{3} at the angle $\pi-\theta$.

Now make a change of variable $\nu=u-u_{o}$, then $\mathrm{d} \nu=\mathrm{du}$ and $u=\nu+u_{0}$. The value of u_{0} is given by

$$
\begin{equation*}
u_{0}=\sinh ^{-1}\left(\cot \theta_{0}\right)=\cosh ^{-1}\left(\csc \theta_{0}\right) \tag{43}
\end{equation*}
$$

and

$$
\begin{align*}
\cosh u & =\cosh \left(\nu+u_{0}\right)=\cosh \nu \cosh u_{0}+\sinh \nu \sinh u_{0} \\
& =\cosh \nu \csc \theta_{0}+\sinh \nu \cot \theta_{0} \tag{44}
\end{align*}
$$

also

$$
\begin{align*}
\sinh u & =\sinh \left(v+u_{0}\right)=\sinh v \cosh u_{0}+\cosh v \sinh u_{0} \\
& =\sinh v \csc \theta_{0}+\cosh v \cot \theta_{0} \tag{45}
\end{align*}
$$

After replacing u with ν, the integral expression for ξ_{2} becomes :

$$
\begin{equation*}
\xi_{2}=\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{0}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{+y \csc \theta \tau_{o}}}{y K_{o}(y)} d y d \nu \tag{46}
\end{equation*}
$$

where $\tau_{\mathrm{o}}=\mathrm{q}-\cosh \nu \csc \theta_{\mathrm{O}}-\sinh \nu \cot \theta_{\mathrm{O}}+\sinh \nu \csc \theta_{\mathrm{O}} \cos \theta$ $+\cosh \nu \cot \theta_{\mathrm{O}} \cos \theta$.

With ξ_{2} expressed as an inverse Laplace transform, it is clear that τ_{0} represents a delay. To determine the minimum delay, let $y \rightarrow \infty$. For large $y, K_{o}(y)$ has the form

$$
\begin{equation*}
K_{o}(y) \sim \sqrt{\frac{\pi}{2 y}} e^{-y}\left[1-\frac{1}{8 y}+O\left(y^{-2}\right)\right] \tag{48}
\end{equation*}
$$

as given by Eqn. (9.7.2) in Reference 6. The substitution of Eqn. (48) in Eqn. (46) gives,

$$
\begin{equation*}
\xi_{2}=\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{0}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{\mathrm{ycsc} \theta}\left(\tau_{o}+\sin \theta\right)}{\sqrt{\pi / 2} \sqrt{\mathrm{y}}\left[1-\frac{1}{8 y}+\cdots\right]} \mathrm{dy} \mathrm{~d} \nu \tag{49}
\end{equation*}
$$

The minimum delay q_{o} occurs when $\tau_{o}+\sin \theta=0$. Thus, q_{o} can be written as

$$
q_{0}=-\sin \theta+\cosh \nu_{\mathrm{m}} \csc \theta_{\mathrm{o}}+\sinh \nu_{\mathrm{m}} \cot \theta_{\mathrm{o}}
$$

$$
\begin{equation*}
-\sinh \nu_{m} \csc \theta_{o} \cos \theta-\cosh \nu_{m} \cot \theta_{o} \cos \theta \tag{50}
\end{equation*}
$$

where ν_{m} is the value of v at $\mathrm{q}=\mathrm{q}_{\mathrm{o}}$. To determine ν_{m}, set $\mathrm{d} \tau_{0} / \mathrm{d} \nu=0$. This gives ν_{m} as

$$
\begin{equation*}
\nu_{m}=\tanh ^{-1}\left[\frac{\cos \theta-\cos \theta_{o}}{1-\cos \theta \cos \theta_{o}}\right] \tag{51}
\end{equation*}
$$

Note that if $\theta \geq \theta_{0}$ then $\nu_{\mathrm{m}} \leq 0$ and if $\theta \leq \theta_{\mathrm{o}}$ then $\nu_{\mathrm{m}} \geq 0$. If $\theta>\theta_{0}$ and ν is always positive, then the minimum delay time occurs at $\nu=0$. However, if $\theta<\theta_{0}$ and ν is always positive then the minimum delay time occurs at ν_{m} and the values of $0 \leq \nu \leq \nu_{\mathrm{m}}$ corresponds to a delay time larger than the minimum value. To avoid the problem of having the minimum delay occur within the range of integration, express the electric field for $\theta<\theta_{0}$ such that ν is always negative. The minimum delay time will now occur at $\nu=0$. Thus, for $\theta<\theta_{0}$, define the electric field as

$$
\begin{align*}
\xi_{b}= & \frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{-\infty}^{u_{o}} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y \csc \theta(q-\cosh u+\sinh u \cos \theta)}}{y K_{o}(y)} d y d u \\
& -\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{-\infty}^{-u_{o}} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y \csc \theta(q-\cosh u+\sinh u \cos \theta)}}{y K_{o}(y)} d y d u \tag{52}
\end{align*}
$$

where $\nu=u-u_{o}$ is never positive. The second integral expression has been defined as $\boldsymbol{\xi}_{3}$. Define the first integral expression as $\boldsymbol{\xi}_{4}$. After a change of variable of integration from u to $\nu, \boldsymbol{\xi}_{4}$ becomes

$$
\begin{align*}
\xi_{4} & =\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{-\infty}^{0} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y \csc \theta \tau_{o}}}{y K_{o}(y)} d y d \nu \\
& =\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{0}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y \csc \theta \tau_{4}}}{y K_{o}(y)} d y d \nu \tag{53}
\end{align*}
$$

where $\tau_{4}=\mathrm{q}-\cosh \nu \csc \theta_{\mathrm{o}}+\sinh \nu \cot \theta_{\mathrm{o}}-\sinh \nu \csc \theta_{\mathrm{o}} \cos \theta+\cosh \nu$ $\cot \theta_{0} \cos \theta$.

Note that $\tau_{4}\left(\theta, \theta_{0}\right)=\tau_{0}\left(\pi-\theta, \pi-\theta_{0}\right)$. Thus, it follows that

$$
\begin{equation*}
\xi_{4}\left(\theta, \theta_{0}\right)=\xi_{2}\left(\pi-\theta, \pi-\theta_{0}\right) \tag{54}
\end{equation*}
$$

The analysis of the radiation fields has shown that the angle θ is an important parameter. If $\theta=\theta_{0}$ is given special attention, there are three cases to consider:

CASE I $\quad \xi_{\mathrm{b}}=\xi_{1}-\xi_{2}-\xi_{3} \quad \theta_{0}<\theta \leq \pi / 2$
CASE II $\quad \xi_{b}=\xi_{4}-\xi_{3}$
$\theta=\theta_{0}$
CASE III
$\xi_{b}=\xi_{4}-\xi_{3}$
$0<\theta<\theta_{0}$.

VI. Analytic Solution of the Electric Field

It was shown in Section V that the electric field can be expressed in terms of $\xi_{1}, \xi_{2}, \xi_{3}$, and ξ_{4} by the appropriate Equation (55), (56), or (57). An analytic solution of the electric field can be obtained by finding the analytic solution of $\xi_{1}, \xi_{2}, \xi_{3}$, and ξ_{4} if an analytic solution exists.

Analytic Solution of ξ_{1}
The inverse Laplace transform representation of ξ_{1} is given by

$$
\xi_{1}=\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{-\infty}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y \csc \theta(q-\cosh u+\sinh u \cos \theta)}}{y K_{o}(y)} d y d u
$$

The quantity ξ_{1} represents a distributed source of infinite length along z_{s}. An observer at point P whose coordinates are given by ϕ, r, and θ first sees the radiated wave generated by the gap located at $z_{s} \cot \theta$ since the wave front must expand radially about the source origin. Since the spherical wave is symmetrical with time, a break in the above integral at $u_{1}=\sinh ^{-1}(\cot \theta)$ may result in two symmetrical expressions. If the integral is broken at u_{1}, ξ_{1} becomes

$$
\begin{equation*}
\xi_{1}=\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{u_{1}}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty}(\ldots .) d y d u+\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{-\infty}^{u_{1}} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty}(\ldots .) d y d u \tag{59}
\end{equation*}
$$

By exchanging the limits of integration and replacing u by $-u$, the second integral expression becomes

$$
\begin{equation*}
\frac{\mathrm{f}_{\mathrm{o}}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{-u_{1}}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+\mathrm{i} \infty} \frac{\mathrm{e}^{\mathrm{ycsc} \theta(\mathrm{q}-\cosh u-\sinh u \cos \theta)}}{y K_{o}(\mathrm{y})} d y d u \tag{60}
\end{equation*}
$$

Now make a change of variable $\nu=u-u_{1}$ and $v=u+u_{1}$ for the first and second integrals of ξ_{1} respectively. The quantity ξ_{1} now becomes

$$
\begin{align*}
\xi_{1}= & \frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{0}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y \csc \theta\left(q+\tau_{a}\right)}}{y K_{o}(y)} d y d \nu \\
& +\frac{f_{o}}{2 \sin \theta} \tag{61}
\end{align*}
$$

where

$$
\begin{align*}
\tau_{\mathrm{a}} & =-\cosh \nu \csc \theta-\sinh \nu \cot \theta+\sinh \nu \cot \theta+\cosh \nu \csc \theta \cos ^{2} \theta \\
& =-\cosh \nu \sin \theta \\
\tau_{\mathrm{b}} & =-\cosh v \csc \theta+\sinh v \cot \theta-\sinh v \cot \theta+\cosh v \csc \theta \cos ^{2} \theta \\
& =-\cosh v \sin \theta \tag{62}
\end{align*}
$$

The integrals over the variable ν and v can be expressed as

$$
\begin{equation*}
\mathrm{K}_{0}(\mathrm{y})=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{y} \cosh \nu} \mathrm{~d} \nu=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{ycosh} v} d v \tag{63}
\end{equation*}
$$

as given by Eqn. 9.6.24 in Reference 6.
Substituting $K_{o}(y)$ into Eqn. (61) gives

$$
\begin{align*}
\xi_{1} & =\frac{f_{o}}{\sin \theta} \frac{1}{2 \pi i} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i_{\infty}} \frac{e^{y \csc \theta q}}{y} d y \\
& =\frac{f_{o}}{\sin \theta} U(q \csc \theta)=\frac{f_{o}}{\sin \theta} U\left(t^{*}\right) \tag{64}
\end{align*}
$$

where t^{*} is retarded time.

The analytic solution of ξ_{1} renders precisely the expression for the electric field radiated by a biconical antenna. This is a reasonable result since ξ_{1} represents a distributed source of infinite length specified by the electric field as radiated by a biconical antenna.

Analytic Solution of ξ_{4} for $\theta=\theta_{0}$
Now consider the special case $\theta=\theta_{0}$. The quantity ξ_{4} becomes

$$
\begin{align*}
& \xi_{4}=\frac{\mathrm{f}_{0}}{2 \sin \theta} \int_{0}^{\infty} \int_{\gamma_{-i \infty}^{\prime}}^{\gamma^{\prime}+\mathrm{i} \infty} \frac{\mathrm{e}^{-\mathrm{ycsc} \theta_{o} q} \mathrm{e}^{-\mathrm{y} \cosh \nu}}{\mathrm{yK} \mathrm{~K}_{0}(\mathrm{y})} \mathrm{dy} \mathrm{~d} \nu \tag{65}\\
& \xi_{4}=\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{-y \csc \theta_{o} q}}{y} d y \\
& =\frac{f_{0}}{2 \sin \theta} U\left(q \csc \theta_{0}\right)=\frac{f_{0}}{2 \sin \theta} U\left(t^{*}\right) \\
& =\xi_{1} / 2 \quad \text {. } \tag{66}
\end{align*}
$$

This interesting result reveals that ξ_{4} for $\theta=\theta_{0}$ is one-half the value of ξ_{1} where $\theta>\theta_{0}$. Since ξ_{2} and ξ_{3} both have delays at all angles of θ, it can be concluded that the initial value of the electric field as a function of θ is discontinuous at $\theta=\theta_{0}$, i.e., there is a discontinuous jump from ξ_{1} to $\xi_{1} / 2$. This result is shown in Figure 8.

The other electric field components $\xi_{2}, \quad \xi_{3}$, and ξ_{4} have no easy analytic solution.* At this point, for convenience, define a function that

[^2]$\frac{\sin \theta}{f_{0}} \xi_{b}$ vs. θ

Figure 8. INITIAL VALUE OF THE ELECTRIC FIELD.
renders a solution for ξ_{2}, ξ_{3}, and ξ_{4} for parameters θ, θ_{0}, and q such that

$$
\begin{align*}
& \xi_{2}=\frac{f_{o}}{2 \sin \theta} G_{b}\left(\theta, \theta_{o}, q\right) \\
& \xi_{3}=\frac{f_{o}}{2 \sin \theta} G_{b}\left(\pi-\theta_{0} \theta_{0}, q\right) \\
& \xi_{4}=\frac{f_{o}}{2 \sin \theta} G_{b}\left(\pi-\theta, \pi-\theta_{0}, q\right) \tag{67}
\end{align*}
$$

The function G_{b} is given by

$$
\begin{equation*}
\mathrm{G}_{\mathrm{b}}\left(\theta, \theta_{o}, \mathrm{q}\right)=\frac{1}{2 \pi i} \int_{0}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime+i \infty}} \frac{\mathrm{e}^{\mathrm{ycsc} \theta \tau_{o}}}{\mathrm{yK} \mathrm{~K}_{\mathrm{o}}(\mathrm{y})} \mathrm{dy} \mathrm{~d} \nu \tag{68}
\end{equation*}
$$

where

$$
\begin{aligned}
\tau_{\mathrm{o}}= & \mathrm{q}-\cosh \nu \csc \theta_{\mathrm{o}}-\sinh \nu \cot \theta_{\mathrm{o}}+\sinh \nu \csc \theta_{\mathrm{o}} \cos \theta \\
& +\cosh \nu \cot \theta_{\mathrm{o}} \cos \theta
\end{aligned}
$$

For the general case the solution of the fields radiated by an infinite cylindrical antenna excited by a distributed source can be represented by G functions. A subscript can be used to denote the source distribution. Thus, the fields radiated by an infinite cylindrical antenna excited by a distributed source with a bicone wave distribution can be written in terms of G_{b}.

Equation (68) can be written as

$$
\begin{equation*}
G_{b}=\frac{1}{2 \pi i} \int_{u_{0}}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y \csc \theta(q-\cosh u+\sinh u \cos \theta)}}{y K_{o}(y)} d y d u \tag{69}
\end{equation*}
$$

where a change of variable $u=\nu+u_{0}$ has been used and $u_{0}=\sinh ^{-1}\left(\cot \theta_{0}\right)$. Now make another change of variable $v=u-u_{1}$ where $u_{1}=\sinh ^{-1}(\cot \theta)$. G_{b} becomes

$$
\begin{equation*}
G_{b}=\frac{1}{2 \pi i} \int_{v_{0}}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y(q \csc \theta-\cosh v)}}{y K_{o}(y)} d y d v \tag{70}
\end{equation*}
$$

where $v_{0}=u_{0}-u_{1}$.
Now let $x=\cosh v$, then $x_{0}=\cosh \left(v_{o}\right)=\csc \theta_{0} \csc \theta-\cot \theta_{0} \cot \theta$. The expression for G_{b} becomes.

$$
\begin{equation*}
G_{b}=\frac{1}{2 \pi i} \int_{x_{0}}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y(q \csc \theta-x)}}{y K_{o}(y) \sqrt{x^{2}-1}} d y d x \tag{71}
\end{equation*}
$$

If another change of variable $\tau=\mathrm{q} \csc \theta+\mathrm{x}$ is made, G_{b} can be written as

$$
\begin{equation*}
\mathrm{G}_{\mathrm{b}}=\frac{1}{2 \pi i} \int_{-\infty}^{\mathrm{b}} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+\mathrm{i} \infty} \frac{\mathrm{e}^{\mathrm{y} \tau}}{\mathrm{y} \mathrm{~K}_{0}(\mathrm{y}) \sqrt{(\tau-\mathrm{qcsc} \theta)^{2}-1}} d y \mathrm{~d} \tau \tag{72}
\end{equation*}
$$

From the discussion of the pulse radiation by an infinite cylindrical antenna driven by a Dirac delta function gap voltage in Reference 2, Latham and Lee deduced that

$$
\begin{equation*}
\int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{\mathrm{y} \tau}}{\mathrm{yK} \mathrm{~K}_{0}(y)} \mathrm{dy}=0 \quad \text { if } \quad \tau<-1 \tag{73}
\end{equation*}
$$

Thus, Eqn. (72) can be expressed as

$$
\begin{equation*}
G_{b}=\frac{1}{2 \pi i} \int_{-1}^{b} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y \tau}}{y K_{o}(y) \sqrt{(\tau-q \csc \theta)^{2}-1}} d y d \tau \tag{74}
\end{equation*}
$$

By the use of Eqns. (35) and (36) where $\eta=\tau$, Eqn. (74) can be written as

$$
\begin{equation*}
G_{b}=\int_{-1}^{b} \int_{0}^{\infty} \frac{e^{-y \tau} I_{o}(y)}{y\left[K_{0}^{2}(y)+\pi^{2} I_{o}^{2}(y)\right] \sqrt{(\tau-q \csc \theta)^{2}-1}} d y d \tau \tag{75}
\end{equation*}
$$

Now let $\zeta=\tau+1$, Eqn. (75) becomes.

$$
\begin{equation*}
G_{b}\left(\theta, \theta_{0}, q\right)=\int_{0}^{\zeta_{0}} \int_{0}^{\infty} \frac{e^{-y(\zeta-1)} I_{0}(y)}{y\left[K_{0}^{2}(y)+\pi^{2} I_{o}^{2}(y)\right] \sqrt{(\zeta-1-q \csc \theta)^{2}-1}} d y d \zeta \tag{76}
\end{equation*}
$$

where $\zeta_{0}=\mathrm{qcsc} \theta-\csc \theta_{\mathrm{o}} \csc \theta+\cot \theta_{\mathrm{o}} \cot \theta+1$.
Note that $\csc \theta=\csc (\pi-\theta)$ and that $\zeta_{0}\left(\theta, \theta_{0}\right)=\zeta_{0}\left(\pi-\theta, \pi-\theta_{0}\right)$. Thus from Eqn. (76) it may be concluded that

$$
\begin{equation*}
\mathrm{G}_{\mathrm{b}}\left(\theta, \theta_{\mathrm{o}}, \mathrm{q}\right)=\mathrm{G}_{\mathrm{b}}\left(\pi-\theta, \pi-\theta_{\mathrm{o}}, \mathrm{q}\right) \tag{77}
\end{equation*}
$$

With this result, the analytic solution of the electric field can be summarized in terms of G_{b} as follows:

CASE I: $\quad \xi_{\mathrm{b}}=\frac{\mathrm{f}_{\mathrm{o}}}{2 \sin \theta}\left[2-\mathrm{G}_{\mathrm{b}}\left(\theta, \theta_{\mathrm{o}}, \mathrm{q}\right)-\mathrm{G}_{\mathrm{b}}\left(\pi-\theta, \theta_{\mathrm{o}}, \mathrm{q}\right)\right] \quad \theta_{\mathrm{o}}<\theta \leq \pi / 2$

CASE II: $\quad \xi_{b}=\frac{\mathrm{f}_{\mathrm{o}}}{2 \sin \theta_{\mathrm{o}}}\left[1-\mathrm{G}_{\mathrm{b}}\left(\pi-\theta_{\mathrm{o}}, \theta_{\mathrm{o}}, \mathrm{q}\right)\right] \quad \theta=\theta_{\mathrm{o}}$

CASE III: $\quad \xi_{b}=\frac{f_{o}}{2 \sin \theta}\left[G_{b}\left(\theta, \theta_{o}, q\right)-G_{b}\left(\pi-\theta, \theta_{o}, q\right)\right] \quad 0<\theta<\theta_{o}$
VII. Asymptotic Forms of the Radiation Fields

The asymptotic forms of the radiation fields will give an insight into the behavior of the fields at early and late times. These expressions also will be helpful with the numerical calculations of the radiated fields.

Large Time Behavior
To find the asymptotic form of ξ_{b} for $\mathrm{q} \csc \theta \rightarrow \infty$ write Eqn. (34) as

$$
\begin{equation*}
\xi_{b}=\frac{f_{o}}{2 \sin \theta} \frac{1}{2 \pi i} \int_{-u_{0}}^{u_{o}} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{\mathrm{y} \eta}}{\mathrm{yK} \mathrm{~K}_{o}(\mathrm{y})} \mathrm{dy} d u \tag{81}
\end{equation*}
$$

where $\eta=\csc \theta(q-\cosh u+\sinh u \cos \theta)$. By virtue of Eqns. (35) and (36), Eqn. (81) can be written as

$$
\begin{align*}
\xi_{b} & =\frac{f_{o}}{2 \sin \theta} \int_{-u_{o}}^{u_{o}} \int_{0}^{\infty} \frac{e^{-y \eta} I_{o}(y)}{y\left[K_{o}^{2}(y)+\pi^{2} I_{o}^{2}(y)\right]} d y d u \\
& =\frac{f_{o}}{2 \sin \theta} \int_{-u_{o}}^{u_{o}} G(\eta) d u \quad . \tag{82}
\end{align*}
$$

The function $G(\eta)$ for $\eta \rightarrow \infty$ has the form

$$
\begin{equation*}
\mathrm{G}(\eta)=\frac{1}{\ln (2 \eta / \Gamma)}+\mathrm{O}\left(\ln ^{-2}(2 \eta / \Gamma)\right) \tag{83}
\end{equation*}
$$

where O is the order symbol, and Γ is the exponential of Euler's constant,
and

$$
\begin{equation*}
\mathrm{G}(\eta) \sim \frac{1}{\ln (2 \eta / \Gamma)} \quad \text { for } \eta \rightarrow \infty \tag{84}
\end{equation*}
$$

This result is developed in detail in Appendix A. The substitution of Eqn. (83) into Eqn. (82) gives

$$
\begin{align*}
\xi_{b} & =\frac{f_{o}}{2 \sin \theta} \int_{-u_{o}}^{u_{o}}\left\{\frac{1}{\ln (2 \eta / \Gamma)}+O\left(\ln ^{-2}(2 \eta / \Gamma)\right)\right\} d u \\
& =\frac{f_{o}}{2 \sin \theta} \int_{-u_{o}}^{u_{o}}\left\{\frac{1+O\left(\ln ^{-1}(2 \eta / \Gamma)\right)}{\ln [2 \csc \theta(q-\cosh u+\sinh u \cos \theta) / \Gamma]}\right\} d u \\
& =\frac{f_{o}}{2 \sin \theta \ln (2 q \csc \theta / \Gamma)} \int_{-u_{o}}^{u_{o}}\left\{\left[1+O\left(\ln { }^{-2}(2 \eta / \Gamma)\right]\right.\right. \\
& {\left[1+\frac{\left.\left.\ln \left[1-\frac{1}{q}(\cosh u-\sinh u \cos \theta)\right]\right]^{-1}\right\}}{\ln (2 q \csc \theta / \Gamma)} d . d u\right.} \tag{85}
\end{align*}
$$

Thus, for $\mathrm{q} \csc \theta$ very large, ξ_{b} becomes

$$
\begin{align*}
\xi_{\mathrm{b}} & =\frac{f_{\mathrm{o}}}{2 \sin \theta \ln (2 \mathrm{q} \csc \theta / \Gamma)}\left[\int_{-u_{\mathrm{o}}}^{u_{o}} d u+O\left(\ln ^{-2}(2 \eta / \Gamma)\right)\right] d u \\
& =\frac{1}{2 \sin \theta \ln (2 \mathrm{q} \csc \theta / \Gamma)}+O\left(\ln ^{-2}(2 \mathrm{q} \csc \theta / \Gamma)\right) \tag{86}
\end{align*}
$$

and

$$
\begin{equation*}
\xi_{\mathrm{b}} \sim \frac{1}{2 \sin \theta \ln (2 \mathrm{q} \csc \theta / \Gamma)} \tag{87}
\end{equation*}
$$

Also, the asymptotic form of G_{b} for $q \csc \theta \rightarrow \infty$ can be written as

$$
\begin{equation*}
\mathrm{G}_{\mathrm{b}} \sim 1-\frac{1}{2 \mathrm{f}_{\mathrm{o}} \ln (2 \mathrm{q} \csc \theta / \Gamma)} \tag{88}
\end{equation*}
$$

Small Time Behavior

The initial radiation fields for $\theta>\theta_{0}$ are exactly the fields that would be radiated by a.biconical antenna and their small time behavior is trivial. However, the small time behavior of the radiation fields associated with the surface field discontinuities at the ends of the distributed source is worthy of special consideration.

The small time behavior of ξ_{b} can be determined by obtaining the small time behavior of G_{b}. Eqn. (80) can be written as

$$
\begin{equation*}
\mathrm{G}_{\mathrm{b}}=\int_{0}^{\zeta_{0}} \frac{F(\zeta) \mathrm{d} \zeta}{\sqrt{(\zeta-1-\mathrm{qcsc} \theta)^{2}-1}} \tag{89}
\end{equation*}
$$

where

$$
\begin{equation*}
F(\zeta)=\int_{0}^{\infty} \frac{e^{-y(\zeta-1)} I_{0}(y)}{y\left[K_{0}^{2}(y)+\pi^{2} I_{0}^{2}(y)\right]} d y \tag{90}
\end{equation*}
$$

$F(\zeta)$ exists for $\zeta>0$. To obtain the small time behavior of G_{b}, let $\zeta \rightarrow 0$ (but not equal zero). The asymptotic form of $F(\zeta)$ for $\zeta \rightarrow 0$ is given in Appendix B as

$$
\begin{equation*}
F(\zeta)=\frac{\sqrt{2}}{\pi \sqrt{\zeta}}+O\left(\zeta_{0}^{3 / 2}\right) \tag{91}
\end{equation*}
$$

Now write Eqn. (89) in the form

$$
\begin{align*}
G_{b} & =\int_{0}^{\zeta_{0}} \frac{F(\zeta)}{\sqrt{\left(\zeta-\zeta_{0}-x_{0}\right)^{2}-1}} d \zeta \\
& =\int_{0}^{\zeta_{0}} \frac{F(\zeta)}{\sqrt{x_{0}^{2}-1}}\left[1-\frac{2\left(\zeta-\zeta_{0}\right) x_{0}}{x_{0}^{2-1}}+\frac{\left(\zeta-\zeta_{0}\right)^{2}}{x_{0}^{2-1}}\right]^{-1 / 2} d \zeta \\
& =\int_{0}^{\zeta} \frac{F(\zeta)}{\sqrt{x_{0}^{2}-1}}\left[1+\left(\zeta-\zeta_{0}\right) \frac{x_{0}}{x_{0}^{2-1}}+O\left(\left(\zeta-\zeta_{0}\right)^{2}\right)\right] d \zeta \tag{92}
\end{align*}
$$

As $\zeta \rightarrow 0$, Eqn. (92) becomes

$$
\begin{align*}
G_{b} & =\frac{\sqrt{2}}{\pi} \frac{1}{\sqrt{x_{o}^{2}-1}} \int_{0}^{\zeta}\left(\frac{1}{\sqrt{\zeta}}+O(\sqrt{\zeta})\right) d \xi \\
& =\frac{2 \sqrt{2}}{\pi} \frac{1}{\sqrt{x_{o}^{2}-1}}\left[\sqrt{\zeta_{0}}+O\left(\zeta_{o}^{3 / 2}\right)\right] U\left(\zeta_{o}\right) \tag{93}
\end{align*}
$$

Now it is clear that G_{b} becomes non-zero for $\zeta_{0}>0$. This occurs at time

$$
\begin{equation*}
q_{0} \csc \theta=\csc \theta_{0} \csc \theta-\cot \theta \cot \theta_{0}-1 \tag{94}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{0}^{*}=\frac{a}{c}\left[\csc \theta_{0}-\cos \theta \cot \theta_{0}-\sin \theta\right] \tag{95}
\end{equation*}
$$

ζ_{o} can be written in the form

$$
\begin{equation*}
\zeta_{o}=\csc \theta\left(q-q_{o}\right)=\csc \theta q^{*} \tag{96}
\end{equation*}
$$

where q^{*} is a normalized retarded time, i.e., $\mathrm{q}^{*}=\mathrm{q}-\mathrm{q}_{0}$.
In terms of q^{*}, Eqn. (93) becomes

$$
\begin{equation*}
G_{b}=\frac{2 \sqrt{2}}{\pi} \frac{1}{\sqrt{x_{0}^{2}-1}}\left[\sqrt{\csc \theta q^{*}}+O\left(q^{* 3 / 2}\right)\right] U\left(q^{*}\right) \tag{97}
\end{equation*}
$$

The term x_{0} is given by $x_{0}=\cosh v_{0}$ and

$$
\begin{equation*}
\frac{1}{\sqrt{x_{0}^{2}-1}}=\frac{1}{\sinh v_{0}}=\frac{\sin \theta^{\sin \theta_{0}}}{\left(\cos \theta_{0}-\cos \theta\right)} \tag{98}
\end{equation*}
$$

The substitution of Eqn. (98) in (97) gives

$$
\begin{equation*}
\mathrm{G}_{\mathrm{b}} \sim \frac{2 \sin \theta_{\mathrm{o}} \sqrt{2 \sin \theta}}{\pi\left(\cos \theta_{\mathrm{o}}-\cos \theta\right)} \cdot \sqrt{\mathrm{q}^{*}} \mathrm{U}\left(\mathrm{q}^{*}\right) \tag{99}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{G}_{\mathrm{b}} \sim \mathrm{~A}\left(\theta, \theta_{\mathrm{o}}\right) \sqrt{\mathrm{q}^{*}} \mathrm{U}\left(\mathrm{q}^{*}\right) . \tag{100}
\end{equation*}
$$

where

$$
\begin{equation*}
A\left(\theta, \theta_{o}\right)=\frac{2 \sin \theta_{o} \sqrt{2 \sin \theta}}{\pi\left(\cos \theta_{o}-\cos \theta\right)} \tag{101}
\end{equation*}
$$

Behavior of the Radiation Fields at $\theta_{0}=\pi / 2$
The asymptotic form of the radiation fields for $\theta_{0} \rightarrow \pi / 2$ can be obtained from Eqn. (39) where ξ_{b} is given by

$$
\begin{equation*}
\xi_{b}=\frac{f_{o}}{2 \sin \theta} \int_{-u_{0}}^{u_{0}} \int_{0}^{\infty} \frac{e^{-y \eta} I_{o}(y)}{y\left[K_{o}^{2}(y)+\pi^{2} I_{o}^{2}(y)\right]} d y d u \tag{102}
\end{equation*}
$$

where $\eta=\csc \theta(q-\cosh u+\sinh u \cos \theta)$.
As $\theta_{0} \rightarrow \pi / 2, u_{0} \rightarrow 0 . \quad \eta$ can be expanded about $u=0$ as

$$
\eta=\csc \theta\left(q-1-u^{2} / 2-\cdots+u \cos \theta+u^{3} \cos \theta / 6+\cdots\right)
$$

ξ_{b} can now be written for small u as

$$
\begin{align*}
\xi_{b}= & \frac{1}{2 \sin \theta} \int_{0}^{\infty} \frac{e^{-y \csc \theta(q-1)}}{y\left[K_{0}^{2}(y)+\pi^{2} I_{o}^{2}(y)\right]} d y \\
& -f_{0} \frac{u_{0}^{3}(1-2 \cos \theta)}{6 \sin \theta} \int_{0}^{\infty} \frac{e^{-y \csc \theta(q-1)} I_{0}(y)}{y\left[K_{0}^{2}(y)+\pi^{2} I_{0}^{2}(y)\right]} d y+O\left(f_{o} u_{o}^{5}\right) \tag{103}
\end{align*}
$$

Define a G function for the delta gap source distribution given by

$$
\begin{equation*}
G_{d}(\theta, q)=\int_{0}^{\infty} \frac{e^{-y \csc \theta(q-1)} I_{o}(y)}{y\left[K_{0}^{2}(y)+\pi^{2} I_{0}^{2}(y)\right]} d y \tag{104}
\end{equation*}
$$

Eqn. (102) can now be written for $\theta_{0} \rightarrow \pi / 2$ as

$$
\begin{equation*}
\xi_{\mathrm{b}}=\frac{1}{2 \sin \theta} G_{d}(\theta, q)+O\left(u_{\mathrm{o}}^{2}\right) \tag{105}
\end{equation*}
$$

where $2 u_{o} f_{o}=1$.
The value of G_{b} at $\theta_{o}=\pi / 2$ can be determined from Eqn. (68).
At $\theta_{0}=\pi / 2, \tau_{0}$ becomès

$$
\begin{equation*}
\tau_{0}^{\prime}=q \cosh \nu+\sinh \nu \cos \theta \tag{106}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{b}(\theta, \pi / 2, q)=\frac{1}{2 \pi i} \int_{0}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+\mathrm{i} \infty} \frac{\mathrm{e}^{\mathrm{yc} \mathrm{\tilde{sc}} \mathrm{\theta} \tau_{\mathrm{o}}{ }^{\prime}}}{\mathrm{y} \mathrm{~K}_{o}(\mathrm{y})} \mathrm{dyd} \mathrm{~d} \nu \tag{107}
\end{equation*}
$$

To calculate ξ_{b} at $\theta_{\mathrm{o}}=\pi / 2$, Eqn. (78) is applicable only for $\theta=\pi / 2$. The value of G_{b} in the general case $\theta=\theta_{o}$ can be obtained from Eqn. (68) as

$$
\begin{align*}
G_{b}\left(\theta_{o}, \theta_{o}, q\right) & =\frac{1}{2 \pi i} \int_{0}^{\infty} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{\mathrm{ycsc} \theta_{o}\left(q-\sin \theta_{o} \cosh \nu\right)}}{y K_{o}(y)} d y d \nu \\
& =\frac{1}{2 \pi i} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y \csc \theta_{o} q}}{y} d y \tag{108}
\end{align*}
$$

or

$$
\begin{equation*}
\mathrm{G}_{\mathrm{b}}\left(\theta_{\mathrm{o}}, \theta_{\mathrm{o}}, \mathrm{q}\right)=\mathrm{U}\left(\mathrm{q} \csc \theta_{o}\right)=\mathrm{U}\left(\mathrm{t}^{*}\right) \tag{109}
\end{equation*}
$$

Thus, $\mathrm{G}_{\mathrm{b}}(\pi / 2, \pi / 2, \mathrm{q})=1$ for all $\mathrm{q}>0$. This is a reasonable result since $2 \xi_{b}=G_{d}(\pi / 2, q)$ at $\theta=\theta_{0}=\pi / 2$ and $G_{d}(\pi / 2, q)$ is singular only at $q=0$. But ξ_{b} as defined by Eqn. (78) is singular for all q at $\theta_{\mathrm{o}}=\pi / 2$, therefore the value of $2-2 \mathrm{G}_{\mathrm{b}}(\pi / 2, \pi / 2, \mathrm{q})$ must equal zero. For $\theta<\theta_{0}$ Eqn. (80) is applicable and it can be concluded that at $\theta_{0}=\pi / 2$

$$
\begin{equation*}
\mathrm{G}_{\mathrm{b}}(\theta, \pi / 2, \mathrm{q})=\mathrm{G}_{\mathrm{b}}(\pi-\theta, \pi / 2, \mathrm{q}) \tag{110}
\end{equation*}
$$

This result is easily verified by Eqn. (76).
Behavior of G_{b} at $\theta_{0}=0$.
The value of $G_{b}(\theta, 0, q)$ can be determined from Eqn. (76). For $\mathrm{q} \csc \theta$ finite, $\zeta_{\mathrm{o}} \rightarrow-\infty$ as $\theta_{\mathrm{o}} \rightarrow 0$. But for $\zeta_{\mathrm{o}}<0, \mathrm{G}_{\mathrm{b}}$ is identically equal to zero. Thus, for $\theta \neq 0$ the value of G_{b} is given by

$$
\begin{equation*}
G_{b}(\theta, 0, q) \equiv 0 \quad \text { for } \theta \neq 0 \tag{111}
\end{equation*}
$$

The behavior of G_{b} as both θ and θ_{0} approach zero at the same rate can be determined by setting $\theta=\theta_{0}$ and allow $\theta_{0} \rightarrow 0$. For this case Eqn. (109) applies and G_{b} can be written for $q>0$ as

$$
\begin{equation*}
G_{b}(0,0, q)=1 \quad \text { for } q>0 \tag{112}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{G}_{\mathrm{b}}(0,0,0)=0 \quad \text { for } \mathrm{q} \leq 0 \tag{113}
\end{equation*}
$$

Behavior of G_{b} for $\theta \rightarrow 0$ and $\theta \rightarrow \pi$
Equation (70) can be written as

$$
\begin{align*}
G_{b} & =2 U(q \csc \theta)-\frac{1}{2 \pi i} \int_{-\infty}^{y_{o}} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y(q \csc \theta-\cosh v)}}{y K_{o}(y)} d y d v \\
& =1+\frac{1}{2 \pi i} \int_{0}^{-v_{o}} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y(q \csc \theta-\cosh v)}}{y K_{o}(y)} d y d v \tag{114}
\end{align*}
$$

where $q>0$ and $v_{0} \rightarrow-\infty$ as $\theta \rightarrow 0$. Now make a change of variable $\eta=\mathrm{q}-\sin \theta \cosh \mathrm{v}$. Eqn. (114) becomes

$$
\begin{align*}
G_{b} & =1-\frac{1}{2 \pi i} \int_{q-\sin \theta}^{q^{*}-\sin \theta} \int_{\gamma^{\prime}-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y \csc \theta \eta}}{\mathrm{yK}_{\mathrm{o}}(\mathrm{y}) \sqrt{(\mathrm{q}-\eta)^{2}-\sin ^{2} \theta}} d y d \eta \\
& =1+I\left(\theta, \theta_{o}\right) \tag{115}
\end{align*}
$$

For $\theta \rightarrow \pi, \mathrm{v}_{\mathrm{o}} \rightarrow \infty$ and Eqn. (70) can be written a.s

$$
\begin{align*}
G_{b} & =U(q \csc \theta)-\frac{1}{2 \pi i} \int_{0}^{v} \int_{\gamma-i \infty}^{\gamma^{\prime}+i \infty} \frac{e^{y(q \csc \theta-\cosh v)}}{y K_{o}(y)} d y d v \\
& =1-I\left(\theta, \theta_{0}\right) \tag{116}
\end{align*}
$$

For $\eta>-1, I\left(\theta, \theta_{0}\right)$ can be written as

$$
\begin{equation*}
I=-\int_{q-\sin \theta}^{q} \int_{0}^{*} \frac{e^{-y \csc \theta \eta} I_{o}(y)}{y\left[K_{o}^{2}(y)+\pi^{2} I_{o}^{2}(y)\right] \sqrt{(q-\eta)^{2}-\sin ^{2} \theta}} d y d \eta \tag{117}
\end{equation*}
$$

For $\mathrm{q}>0$, the asymptotic form of $\mathrm{G}(\eta \csc \theta)$ for $\eta \csc \theta \rightarrow \infty$ as developed in Appendix A can be used. Thus, as $\theta \rightarrow 0$ or $\theta \rightarrow \pi$ Eqn. (117) becomes

$$
\begin{align*}
I= & -\int_{q-\sin \theta}^{q^{*}-\sin \theta} \frac{1}{\sqrt{(q-\eta)^{2}-\sin ^{2} \theta}} \\
& {\left[\frac{1}{\ln (2 \eta \csc \theta / \Gamma)}+O\left(\ln ^{-2}(2 \eta \csc \theta / \Gamma)\right)\right] d \eta } \tag{118}
\end{align*}
$$

Now make another change of variable $\kappa=q-\eta$, Eqn. (118) becomes

$$
\begin{align*}
I= & \int_{\sin \theta}^{q_{o}+\sin \theta} \\
& \frac{1}{\sqrt{\kappa^{2}-\sin ^{2} \theta}}\left[\frac{1}{\ln [2 \csc \theta(\mathrm{q}-\kappa) / \Gamma]}\right. \tag{119}\\
& \left.+O\left(\ln ^{-2}[2 \csc \theta(\mathrm{q}-\kappa) / \Gamma]\right)\right] \mathrm{d} \kappa
\end{align*}
$$

Eqn. (119) can be rewritten as

$$
\begin{align*}
& I= \frac{1}{\ln (2 \csc \theta / \Gamma)} \int_{\sin \theta}^{q_{o}+\sin \theta} \frac{1}{\sqrt{\kappa^{2}-\sin ^{2} \theta}} \\
& {\left[1+o\left(\frac{\ln (\mathrm{q}-\kappa)}{\ln (2 \csc \theta / \Gamma)}\right)\right] d \kappa } \\
&= \ln \left[\mathrm{q}_{\mathrm{o}} \csc \theta+1\right. \\
&\left.+\sqrt{\left(\mathrm{q}_{\mathrm{o}} \csc \theta+1\right)^{2}-1}\right]\left[\frac{1}{\ln (2 \csc \theta / \Gamma)}\right. \tag{120}\\
&\left.+\mathrm{O}\left(\ln ^{-1}(2 \csc \theta / \Gamma)\right)\right]
\end{align*}
$$

Eqn. (120) can be reduced to

$$
\begin{align*}
I & =\ln \left(x_{0}+\sqrt{x_{0}^{2}-1}\right)\left[\frac{1}{\ln (2 \csc \theta / \Gamma)}+O\left(\ln ^{-1}(2 \csc \theta / \Gamma)\right)\right] \\
& =\frac{v_{0}}{\ln (2 \csc \theta / \Gamma)}\left[1+O\left(\ln ^{-1}(2 \csc \theta / \Gamma)\right)\right] \tag{121}
\end{align*}
$$

The substitution of $v_{o}=u_{o}-u_{1}$ in Eqn. (121) gives

$$
\begin{align*}
I & =\left[\frac{u_{o}}{\ln (2 \csc \theta / \Gamma)}-\frac{u_{1}}{\ln (2 \csc \theta / \Gamma)}\right]\left[1+\mathrm{O}\left(\ln ^{-1}(2 \csc \theta / \Gamma)\right)\right] \\
& =\left[\frac{u_{o}}{\ln (2 \csc \theta / \Gamma)}-k_{1}\right]\left[1+\mathrm{O}\left(\ln ^{-1}(2 \csc \theta / \Gamma)\right)\right] \tag{122}
\end{align*}
$$

where

$$
\begin{equation*}
\kappa_{1}=\frac{u_{1}}{\ln (2 \csc \theta / \Gamma)}=\frac{\ln (\cot \theta+\csc \theta)}{\ln (2 \csc \theta / \Gamma)} \tag{123}
\end{equation*}
$$

The limit of κ_{1} as $\theta \rightarrow 0$ is

$$
\begin{equation*}
\lim _{\theta \rightarrow 0} \quad \kappa_{1}=1 \tag{124}
\end{equation*}
$$

and the limit of κ_{1} as $\theta \rightarrow \pi$ is

$$
\begin{equation*}
\lim _{\theta \rightarrow \pi} \kappa_{1}=-1 \tag{125}
\end{equation*}
$$

Eqn. (115) can now be written for $\theta \rightarrow 0$ as

$$
\begin{equation*}
G_{b}=\left[\left(1-\kappa_{1}\right)+\frac{u_{o}}{\ln (2 \csc \theta / \Gamma)}\right]\left[1+O\left(\ln ^{-1}(2 \csc \theta / \Gamma)\right)\right] \tag{126}
\end{equation*}
$$

and as $\theta \rightarrow \pi$, Eqn. (116) can be written as

$$
\begin{equation*}
G_{b}=\left[\left(1+\kappa_{1}\right)-\frac{u_{0}}{\ln (2 \csc \theta / \Gamma)}\right]\left[1+O\left(\ln ^{-1}(2 \csc \theta / \Gamma \cdot)\right)\right] \tag{127}
\end{equation*}
$$

Thus, $G_{b} \rightarrow 0$ for $\theta \rightarrow 0, \theta \rightarrow \pi$ as shown in Eqns. (126) and (127).
VIII. Numerical Solution of G_{b}

A solution of G_{b} involves numerical integration of a double integral, Eqn. (89). Since G_{b} is zero until $q=q_{o}$, the function can be defined in terms of $q^{*}=q-q_{o}$ as

$$
\begin{equation*}
\mathrm{G}_{\mathrm{b}}\left(\theta, \theta_{\mathrm{o}}, \mathrm{q}^{*}\right)=\int_{0}^{\mathrm{q}^{*} \csc \theta} \frac{F(\zeta)}{\sqrt{\left(\zeta-\mathrm{q}^{*} \csc \theta-\mathrm{x}_{\mathrm{o}}\right)^{2}-1}} \mathrm{~d} \zeta \tag{128}
\end{equation*}
$$

or

$$
\begin{equation*}
G_{b}\left(\theta, \theta_{o}, q^{*}\right)=\int_{0}^{q^{*} \csc \theta} H(\zeta) d \zeta \tag{129}
\end{equation*}
$$

where $\mathrm{H}(\zeta)$ is the integrand of Eqn. (128). $\mathrm{H}(\zeta)$ has an integrable singularity at $\zeta=0$. This singularity caused no numerical problems for numerical integration by Gaussian Quadrature techniques.

The integrand of $F(\zeta)$ has a singularity at $y=0$. To remove this singularity write

$$
\begin{align*}
F(\zeta) & =\int_{0}^{\infty} \frac{e^{-y(\zeta-1)} I_{o}^{(y)}}{y\left[K_{0}^{2}(y)+\pi^{2} I_{o}^{2}(y)\right]} d y \\
& =\int_{0}^{\epsilon}(\cdots) d y+\int_{\epsilon}^{m}(\ldots) d y+\int_{m}^{\infty}(\cdots) d y \\
& =I_{1}+I_{2}+R_{m} \tag{130}
\end{align*}
$$

where ϵ is an arbitrary number greater than zero and m is some large number to truncate the integration. Define a function $\Phi(y)$ as

$$
\begin{equation*}
\phi(\mathrm{y})=\frac{\mathrm{I}_{\mathrm{o}}(\mathrm{y})}{\mathrm{y}\left[\mathrm{~K}_{0}^{2}(\mathrm{y})+\pi^{2} I_{0}^{2}(\mathrm{y})\right]} \tag{131}
\end{equation*}
$$

For $\mathrm{y} \rightarrow 0, \boldsymbol{\Phi}(\mathrm{y})$ has an asymptotic expansion given by

$$
\begin{equation*}
\boldsymbol{\phi}(\mathrm{y})=\frac{1}{\mathrm{y}\left[\ln ^{2}(\mathrm{y} \Gamma / 2)+\pi^{2}\right]} \quad[1+\mathrm{O}(\mathrm{y})] \tag{132}
\end{equation*}
$$

Now write I_{1} in the form

$$
\begin{gather*}
I_{1}=\int_{0}^{\epsilon} \frac{1}{y\left[\ln ^{2}\left(y^{2} \Gamma / 2\right)+\pi^{2}\right]} d y \\
+\int_{0}^{\epsilon}\left\{\frac{e^{-y(\zeta-1)} I_{0}(y)}{K_{0}^{2}(y)+\pi^{2} I_{0}^{2}(y)}-\frac{1}{\ln ^{2}(y \Gamma / 2)+\pi^{2}}\right\} \frac{d y}{y} \tag{133}
\end{gather*}
$$

Choose $\epsilon=2 / \Gamma$, then

$$
\begin{align*}
\int_{0}^{2 / \Gamma} \frac{1}{y\left[\ln ^{2}(y \Gamma / 2)+\pi^{2}\right]} d y & =\int_{-\infty}^{0} \frac{1}{x^{2}+\pi^{2}} d x \\
& =1 / 2 \tag{134}
\end{align*}
$$

and I_{1} becomes

$$
\begin{equation*}
I_{1}=1 / 2+\int_{0}^{2 / \Gamma}\left\{\frac{e^{-y(\zeta-1)^{\prime}}(y)}{K_{0}^{2}(y)+\pi^{2} I_{0}^{2}(y)}-\frac{1}{\ln ^{2}(y \Gamma / 2)+\pi^{2}}\right) \frac{d y}{y} \tag{135}
\end{equation*}
$$

Clearly the singularity has been removed from I_{1}. The analytic part of $F(\zeta), I_{2}$, can be integrated numerically. The remainder, R_{m}, can be approximated for large m. For large m, R_{m} can be written as

$$
\begin{align*}
R_{m} & =\frac{\sqrt{2}}{\pi \sqrt{\pi}} \int_{m}^{\infty} \frac{e^{-y \zeta}}{\sqrt{y}}\left[1-\frac{1}{8 y}+O\left(y^{-2}\right)\right] d y \\
& =\frac{\sqrt{2}}{\pi}\left[\left(\frac{4+\zeta}{4 \sqrt{\zeta}}\right) \operatorname{erfc}(\sqrt{\mathrm{m} \zeta})-\frac{e^{-\zeta \mathrm{m}}}{4 \sqrt{\pi m}}\left(1+O\left(\mathrm{~m}^{-2}\right)\right)\right] \tag{136}
\end{align*}
$$

The results of Eqns. (130), (135), and (136) can be collected to give

$$
\begin{align*}
F(\zeta)=1 / 2 & +\int_{0}^{2 / \Gamma}\left\{\frac{e^{-y(\zeta-1)} I_{0}(y)}{K_{0}^{2}(y)+\pi^{2} I_{0}^{2}(y)}-\frac{1}{\ln ^{2}(y \Gamma / 2)+\pi^{2}}\right\} \frac{d y}{y} \\
& +\int_{2 / \Gamma}^{m} \frac{e^{-y(\zeta-1)} I_{0}(y)}{y\left[K_{0}^{2}(y)+\pi^{2} I_{0}^{2}(y)\right]} d y+R_{m} \tag{137}
\end{align*}
$$

There was no significant change in the value of $F(\zeta)$ for m greater than 5.

Approximation of G_{b}
The function G_{b} can be written exactly as

$$
\begin{equation*}
G_{b}\left(\theta, \theta_{0}, q^{*}\right)=\int_{0}^{q^{*} \csc \theta} H(\zeta) d \zeta \tag{138}
\end{equation*}
$$

To reduce the computation time required for G_{b}, the function $F(\zeta)$ can be approximated by a series given by

$$
\begin{equation*}
F(\zeta)=P(\zeta)=\sum_{m=0}^{n} a_{m} \zeta^{m+k} \tag{139}
\end{equation*}
$$

where $\mathrm{k}=0$ or $\mathrm{k}=-1 / 2$ depending on the range of ζ.
The approximation of $F(\zeta)$ is developed in detail in Appendix C. $H(\zeta)$ can be approximated by

$$
\begin{equation*}
H(\zeta)=\frac{P(\zeta)}{\sqrt{\left(\zeta-q^{*} \csc \theta-x_{0}\right)^{2}-1}} \tag{140}
\end{equation*}
$$

The substitution of Eqn. (140) into Eqn. (138) gives an approximation for G_{b} for numerical evaluation.

Accuracy of the Numerical Solution

Error can be introduced in the numerical solution of G_{b} by the numerical calculations, the truncation of $F(\zeta)$ and the approximation of $F(\zeta)$. The relative error resulting from the numerical calculations is less than 10^{-4}. If the maximum truncation error of $F(\zeta)$ is Δ_{t} and the maximum approximation error is Δ_{m}, the G_{b} function can be expressed as

$$
\begin{equation*}
\mathrm{G}_{\mathrm{b}}\left(1 \pm \Delta_{\mathrm{b}}\right)=\int_{0}^{\mathrm{q}^{*} \csc \theta} \frac{F(\zeta)\left(1 \pm \Delta_{t}\right)\left(1 \pm \Delta_{\mathrm{m}}\right)}{\sqrt{\left(\zeta-\mathrm{q}^{*} \csc \theta-\mathrm{x}_{0}\right)^{2}-1}} \mathrm{~d} \zeta \tag{141}
\end{equation*}
$$

where Δ_{b} is the maximum relative error of G_{b}. The maximum relative error of G_{b} can be estimated as

$$
\begin{equation*}
\Delta_{b}=\left(\Delta_{t}+\Delta_{m}+\Delta_{c}+\Delta_{c}\right) \tag{142}
\end{equation*}
$$

where Δ_{c} is the error due to numerical integration.
The maximum truncation error can be approximated by the next term in the series given in Eqn. (136), thus

$$
\begin{align*}
\Delta_{t} \leq & \frac{\sqrt{2}}{\pi \sqrt{\pi}} \frac{9}{128} \frac{1}{F(\zeta)} \int_{\mathrm{m}}^{\infty} \frac{\mathrm{e}^{-\mathrm{y} \zeta}}{\mathrm{y}^{2} \sqrt{y}} \mathrm{dy} \\
= & \frac{\sqrt{2}}{\pi \sqrt{\pi}} \frac{3}{(64) F(\zeta)}\left[\frac{e^{-\mathrm{m} \zeta}}{\mathrm{~m} \sqrt{\mathrm{~m}}}-\frac{\zeta}{2} \frac{\mathrm{e}^{-\mathrm{m} \zeta}}{\sqrt{m}}\right. \\
& \left.+\zeta^{2} \frac{\sqrt{\zeta \pi}}{2} \operatorname{erfc}(\sqrt{\mathrm{~m} \zeta})\right] \tag{143}
\end{align*}
$$

The truncation error function $\Delta_{t}(\zeta)$ was calculated for selected values of ζ in the range of $0 \leq \zeta \leq 10,000.0$. The maximum value of $\Delta_{t}=3.6 \times 10^{-4}$ occurred at $\zeta=0.06$. The maximum $\Delta_{\mathrm{m}}=3.5 \times 10^{-4}$ is given in Appendix C. From Eqn. (142) it is seen that Δ_{b} is in the order of 10^{-3}. This value of Δ_{b} compares favorably with the observed maximum $\Delta_{b}=1.1 \times 10^{-3}$ for $G_{b}\left(\theta_{o}, \theta_{o}, q\right)$ compared with the theoretical value of $G_{b}\left(\theta_{0}, \theta_{0}, q\right)=1.0$.
IX. Results

Equation (128) was numerically evaluated for a wide range of θ, θ_{0}, and q^{*}. The resulting values of G_{b} are tabulated in Tables 1 through 12 . Tables 1 through 9 define G_{b} for $0<\theta<\pi$ and $0<\theta_{0}<\pi / 2$. Tables 10 , 11 , and 12 define G_{b} for ratios of h_{s} / a with $\theta=\pi / 2, \pi / 3$, and $\pi / 18$, respectively.

The equivalent bicone voltage V_{bo} as given in Eqn. (17) is a function of θ_{0}. The equivalent bicone voltage normalized by the product of the maximum surface electric field and the radius is shown in Figure 9 for a wide range of θ_{0}.

Figure 10 shows the variation in q_{0}, the normalized retarded time that the radiated field is distorted by the ends of the distributed source, as a function of θ and the parameter θ_{0}.

Figure 11 shows the relative magnitude of the field deviation from the initial time-independent field at normalized retarded time just greater than q_{0}. The relative magnitude $A\left(\theta, \theta_{0}\right)$ is plotted as a function of θ and the parameter θ_{0}.

The normalized radiated field $\sin \theta \xi_{\mathrm{b}}$ is presented in Figures 12 through 20 for a wide range of θ and θ_{0}. Each figure is divided into small time and intermediate time plots for clarity. The small time asymptotes* for the first distortion in the radiated field associated with the source surface field discontinuities are indicated by broken lines except where the actual field and the asymptotes are indistinguishable. The normalized radiated field at late time is independent of θ_{0} as seen by Eqn. (87). In fact, Eqn. (87) is the same asymptotic form developed for the delta gap source distribution in Reference 2. The plots for $\sin \theta \xi_{b}$ at late time

[^3]along with the late time asymptotes indicated by broken lines are presented in Figure 21. The late time asymptotes were calculated from Eqn. (87).

For the application of ξ_{b} to the un-normalized radiated field, E_{θ}, one must keep in mind that V_{bo} is a function of θ_{0}. For $\theta \geq \theta_{o}, \mathrm{E}_{\theta}$ is independent of θ_{o} initially whereas the late time E_{θ} is dependent on θ_{o} considering the source field and the source radius held fixed. This is the opposite functional relationship of ξ_{b} and θ_{o}. In order to get a feel for the behavior of E_{θ}, an example problem is considered where E_{sm} $=$ one megavolt per meter, $\mathrm{a}=5$ meters, $\mathrm{h}_{\mathrm{s}}=10$ meters, and $\mathrm{V}_{\mathrm{bo}}=14.4$ megavolts. The values of $r E_{\theta}$ are presented in Figure 22 for both small and late time.

X. Summary

In this note, the concept of driving an infinitely long cylindrical antenna with a cylindrical distributed source region has been considered. In particular, the finite distributed source for radiating a fast rising spherical TEM wave was specified by the tangential components of a spherical wave associated with a biconical antenna with a step-function applied voltage. The exact expressions for the far zone fields radiated by an infinitely long cylindrical antenna with the above specified distributed source were developed. It was shown that the time history of the radiation fields for $\theta_{0} \leq \theta \leq \pi-\theta_{0}$ is initially the exact time history of the fields radiated by the biconical antenna used to specify the distributed source. It was found that the late time behavior of the radiation fields is inversely proportional to the logarithm of time. Also, it was found that the small time behavior of the radiation fields associated with the surface field discontinuities at the ends of the distributed source decays proportionally to the square root of time.

As an extension to this note, one could consider near zone fields, antenna current, an approximation of the radiated fields for a finite length antenna, and the effects of a distributed source consisting of an array of capacitors and switches. Also, the distributed source driving a cylindrical antenna concept could be extended to include other source field distributions in magnitude and time.

Table la. Values of G_{b} for $2 \theta_{0} / \pi=0.1$.

$\mathrm{q}^{*} \times \quad \theta / \pi$. 1	. 2	. 3	. 4	. 5
. 00010	. 0213	. 0060	. 0032	. 0020	
. 00015	. 0261	. 0074	. 0039	. 0025	. 0017
. 00020	. 0302	. 0085	. 0045	. 0029	. 0020
. 00030	. 0369	. 0105	. 0055	. 0035	. 0025
. 00050	. 0476	. 0135	. 0071	. 0045	. 0032
. 00070	. 0563	. 0160	. 0084	. 0053	. 0038
. 00100	. 0672	. 0191	. 0100	. 0064	. 0045
. 00150	. 0822	. 0234	. 0123	. 0078	. 0055
. 00200	. 0947	. 0270	. 0142	. 0090	. 0064
. 00300	. 1154	. 0330	. 0173	. 0111	. 0078
. 00500	. 1478	. 0426	. 0224	. 0143	. 0101
. 00700	. 1734	. 0503	. 0265	. 0169	. 0119
. 01000	. 2048	. 0601	. 0316	. 0202	. 0142
. 01500	. 2459	. 0734	. 0387	. 0247	. 0174
. 02000	. 2787	. 0845	. 0446	. 0286	. 0201
. 03000	. 3296	. 1030	. 0546	. 0350	. 0247
. 05000	. 3999	. 1317	. 0702	. 0451	. 0318
. 07000	. 4481	. 1544	. 0828	. 0533	. 0376
. 10000	. 4992	. 1820	. 0985	. 0635	. 0450
. 15000	. 5550	. 2180	. 1196	. 0775	. 0550
. 20000	. 5921	. 2465	. 1370	. 0892	. 0634
. 30000	. 6396	. 2905	. 1653	. 1085	. 0775
. 50000	. 6909	. 3504	. 2073	. 1383	. 0995
. 70000	. 7195	. 3913	. 2389	. 1615	. 1170
1.0000	. 7458	. 4346	. 2752	. 1894	. 1386
1.5000	. 7714	. 4821	. 3193	. 2252	. 1673
2.0000	. 7872	. 5140	. 3516	. 2530	. 1902
3.0000	. 8066	. 5558	. 3974	. 2947	. 2262
5.0000	. 8272	. 6027	. 4534	. 3498	. 2763
7.0000	. 8388	. 6300	. 4882	. 3861	. 3111
10.000	. 8496	. 6561	. 5227	. 4237	. 3486
15.000	. 8606	. 6825	. 5585	. 4644	. 3907
20.000	. 8674	. 6993	. 5818	. 4915	. 4195
30.000	. 8762	. 7206	. 6117	. 5269	. 4581
50.000	. 8858	. 7438	. 6447	. 5668	. 5025
70.000	. 8914	. 7574	. 6641	. 5904	. 5291
100.00	. 8968	. 7704	. 6827	. 6132	. 5550
150.00	. 9024	. 7837	. 7016	. 6366	. 5818
200.00	. 9060	. 7923	. 7139	. 6518	. 5992
300.00	. 9106	. 8034	. 7297	. 6713	. 6216
500.00	. 9159	. 8159	. 7475	. 6932	. 6469
700.00	. 9191	. 8233	. 7580	. 7062	. 6619
1000.0	. 9222	. 8306	. 7683	. 7189	. 6766

Table 1 b . Values of G_{b} for $2 \theta_{o} / \pi=0.1$.

$\mathrm{q}^{*}-\quad \theta / \pi$. 5	. 6	. 7	. 8	. 9
. 00010	. 0014	. 0011	. 0008	. 0006	. 0004
. 00015	. 0017	. 0013	. 0010	. 0007	. 0005
. 00020	. 0020	. 0015	. 0011	. 0008	. 0006
. 00030	. 0025	. 0018	. 0014	. 0010	. 0007
. 00050	. 0032	. 0024	. 0018	. 0013	. 0009
. 00070	. 0038	. 0028	. 0021	. 0016	. 0011
. 00100	. 0045	. 0033	. 0025	. 0019	. 0013
. 00150	. 0055	. 0041	. 0031	. 0023	. 0016
. 00200	. 0064	. 0047	. 0036	. 0027	. 0018
. 00300	. 0078	. 0058	. 0044	. 0033	. 0022
. 00500	. 0101	. 0075	. 0057	. 0042	. 0029
. 00700	. 0119	. 0089	. 0067	. 0050	. 0034
. 01000	. 0142	. 0106	. 0080	. 0060	. 0040
. 01500	. 0174	. 0130	. 0098	. 0074	. 0050
. 02000	. 0201	. 0150	. 0114	. 0085	. 0057
. 03000	. 0247	. 0183	. 0139	. 0104	. 0070
. 05000	. 0318	. 0237	. 0180	. 0135	. 0091
. 07000	. 0376	. 0280	. 0213	. 0160	. 0108
. 10000	. 0450	. 0335 ,	. 0255	. 0191	. 0130
. 15000	. 0550	. 0410	. 0313	. 0235	. 0161
. 20000	. 0634	. 0474	. 0362	. 0273	. 0187
. 30000	. 0775	. 0580	. 0444	. 0336	. 0233
. 50000	. 0995	. 0749	. 0576	. 0439	. 0308
. 70000	. 1170	. 0886	. 0684	. 0524	. 0373
1.0000	. 1386	. 1056	. 0821	. 0634	. 0457
1.5000	. 1673	. 1287	. 1009	. 0787	. 0577
2.0000	. 1902	. 1477	. 1167	. 0917	. 0681
3.0000	. 2262	. 1782	. 1425	. 1135	. 0859
5.0000	. 2763	. 2225	. 1813	. 1472	. 1142
7.0000	. 3111	. 2547	. 2104	. 1730	. 1364
10.000	. 3486	. 2903	. 2435	. 2032	. 1630
15.000	. 3907	. 3317	. 2830	. 2400	. 1961
20.000	. 4195	. 3608	. 3115	. 2672	. 2211
30.000	. 4581	. 4007	. 3512	. 3058	. 2572
50.000	. 5025	. 4476	. 3991	. 3533	. 3027
70.000	. 5291	. 4762	. 4288	. 3832	. 3317
100.00	. 5550	. 5043	. 4582	. 4131	. 3613
150.00	. 5818	. 5335	. 4891	. 4449	. 3930
200.00	. 5992	. 5526	. 5094	. 4659	. 4141
300.00	. 6216	. 5774	. 5358	. 4935	. 4420
500.00	. 6469	. 6053	. 5658	. 5249	. 4742
700.00	. 6619	. 6220	. 5838	. 5438	. 4937
1000.0	. 6766	. 6382	. 6013	. 5624	. 5129

Table 2a. Values of G_{b} for $2 \theta_{o} / \pi=0.2$.

$\mathrm{q}^{*} \theta / \pi$.1	.2	.3	.4	.5
	.000	.			
.00010	1.0000	.0150	.0069	.0042	.0029
.00015	1.0000	.0184	.0084	.0052	.0036
.00020	1.0000	.0212	.097	.0060	.0041
.00030	1.0000	.0260	.0119	.0073	.0051
.00050	1.0000	.0335	.0154	.0094	.0065
.00070	1.0000	.0396	.0182	.0112	.0077
.00100	1.0000	.0473	.0218	.0133	.0092
.00150	1.0000	.0579	.0266	.0163	.0113
.00200	1.0000	.0668	.0307	.0189	.0131
.00300	1.0000	.0816	.0376	.0231	.0160
.00500	1.0000	.1050	.0485	.0298	.0207
.00700	1.0000	.1237	.0574	.0353	.0244
.01000	1.0000	.1469	.0684	.0421	.0292
.01500	1.0000	.1780	.0836	.0515	.0357
.0200	1.0000	.2035	.0962	.0594	.0412
.03000	1.0000	.2444	.1172	.0726	.0504
.05000	1.0000	.3043	.1496	.0932	.0649
.07000	1.0000	.3482	.1752	.1097	.0766
.10000	1.0000	.3975	.2061	.1302	.0911
.15000	1.0000	.4555	.2463	.1575	.1109
.20000	1.0000	.4964	.2778	.1797	.1272
.30000	1.0000	.5521	.3259	.2152	.1537
.50000	1.0000	.6158	.3904	.2665	.1935
.70000	1.0000	.6528	.4337	.3037	.2237
1.0000	1.0000	.6875	.4786	.3452	.2588
1.5000	1.0000	.7216	.5269	.3935	.3020
2.0000	1.0000	.7425	.5589	.4277	.3340
3.0000	1.0000	.7682	.6000	.4743	.3800
5.0000	1.0000	.7952	.6453	.5288	.4371
7.0000	1.0000	.8103	.6713	.5616	.4729
10.000	1.0000	.8243	.6960	.5933	.5087
15.000	1.0000	.8383	.7205	.6256	.5461
20.000	1.0000	.8470	.7361	.6463	.5704
30.000	1.0000	.8580	.7557	.6727	.6018
50.000	1.0000	.8700	.7770	.7015	.6365
70.000	1.0000	.8769	.7894	.7182	.6567
100.00	1.0000	.8835	.8012	.7342	.6762
150.00	1.0000	.8903	.8132	.7505	.6961
200.00	1.0000	.8947	.8209	.7610	.7089
300.00	1.0000	.9004	.8308	.7745	.7254
500.00	1.0000	.9067	.8420	.7896	.7439
700.00	1.0000	.9105	.8486	.7986	.7548
1000.0	1.0000	.9141	.8551	.8073	.76555

Table 2 b . Values of G_{b} for $2 \theta_{\mathrm{o}} / \pi=0.2$.

$\mathrm{q}^{*} \quad \theta / \pi$. 5	. 6	. 7	. 8	. 9
. 00010	. 0029	. 0022	. 0016	. 0012	. 0008
. 00015	. 0036	. 0026	. 0020	. 0015	. 0010
. 00020	. 0041	. 0030	. 0023	. 0017	. 0011
. 00030	. 0051	. 0037	. 0028	. 0021	. 0014
. 00050	. 0065	. 0048	. 0036	. 0027	. 0018
. 00070	. 0077	. 0057	. 0043	. 0032	. 0021
. 00100	. 0092	. 0068	. 0051	. 0038	. 0026
. 00150	. 0113	. 0083	. 0063	. 0047	. 0031
. 00200	. 0131	. 0096	. 0073	. 0054	. 0036
. 00300	. 0160	. 0118	. 0089	. 0066	. 0045
. 00500	. 0207	. 0152	. 0115	. 0086	. 0057
. 00700	. 0244	. 0180	. 0136	. 0101	. 0068
. 01000	. 0292	. 0215	. 0162	. 0121	. 0081
. 01500	. 0357	. 0263	. 0199	. 0148	. 0100
. 02000	. 0412	. 0304	. 0230	. 0171	. 0115
. 03000	. 0504	. 0372	. 0281	. 0210	. 0141
. 05000	. 0649	. 0479	. 0363	. 0271	. 0183
. 07000	. 0766	. 0566	. 0429	. 0321	. 0217
. 10000	. 0911	. 0675	. 0512	. 0384	. 0261
. 15000	. 1109	. 0824	. 0626	. 0470	. 0321
. 20000	. 1272	. 0947	. 0722	. 0544	. 0373
. 30000	. 1537	. 1151	. 0881	. 0666	. 0462
. 50000	. 1935	. 1464	. 1129	. 0861	. 0606
. 70000	. 2237	. 1707	. 1325	. 1018	. 0725
1.0000	. 2588	. 1999	. 1565	. 1214	. 0878
1.5000	. 3020	. 2370	. 1880	. 1477	. 1088
2.0000	. 3340	. 2655	. 2129	. 1690	. 1263
3.0000	. 3800	. 3081	. 2512	. 2026	. 1546
5.0000	. 4371	. 3637	. 3032	. 2501	. 1961
7.0000	. 4729	. 4002	. 3387	. 2834	. 2261
10.000	. 5087	. 4376	. 3760	. 3194	. 2594
15.000	. 5461	. 4778	. 4172	. 3601	. 2979
20.000	. 5704	. 5045	. 4451	. 3882	. 3250
30.000	. 6018	. 5392	. 4820	. 4259	. 3622
50.000	. 6365	. 5783	. 5241	. 4697	. 4061
70.000	. 6567	. 6014	. 5491	. 4961	. 4330
100.00	. 6762	. 6236	. 5735	. 5220	. 4596
150.00	. 6961	. 6464	. 5987	. 5489	. 4876
200.00	. 7089	. 6612	. 6150	. 5665	. 5060
300.00	. 7254	. 6802	. 6361	. 5893	. 5301
500.00	. 7439	. 7015	. 6599	. 6151	. 5575
700.00	. 7548	. 7142	. 6740	. 6305	. 5741
1000.0	. 7655	. 7265	. 6879	. 6457	. 5904

Table 3a. Values of G_{b} for $2 \theta_{0} / \pi=0.3$.

$q * \quad \theta / \pi$. 1	. 2	. 3	. 4	. 5
. 00010	. 0378	. 0381	. 0121	. 0068	. 0046
. 00015	. 0462	. 0467	. 0148	. 0084	. 0056
. 00020	. 0533	. 0539	. 0171	. 0097	. 0065
. 00030	. 0652	. 0659	. 0210	. 0119	. 0079
. 00050	. 0840	. 0849	. 0271	. 0153	. 0102
. 00070	. 0992	. 1002	. 0320	. 0181	. 0121
. 00100	. 1181	. 1193	. 0383	. 0216	. 0145
. 00150	. 1438	. 1452	. 0468	. 0265	. 0177
. 00200	. 1650	. 1667	. 0540	. 0306	. 0205
. 00300	. 1998	. 2019	. 0661	. 0374	. 0251
. 00500	. 2522	. 2549	. 0850	. 0483	. 0324
. 00700	. 2922	. 2954	. 1003	. 0570	. 0383
. 01000	. 3391	. 3428	. 1194	. 0681	. 0457
. 01500	. 3969	. 4015	. 1452	. 0831	. 0559
. 02000	. 4401	. 4453	. 1666	. 0957	. 0644
. 03000	. 5019	. 5083	. 2013	. 1166	. 0787
. 05000	. 5780	. 5860	. 2533	. 1490	. 1010
. 07000	. 6248	. 6340	. 2925	. 1744	. 1189
. 10000	. 6702	. 6808	. 3380	. 2054	. 1409
. 15000	. 7155	. 7279	. 3935	. 2456	. 1702
. 20000	. 7436	. 7571	. 4342	. 2773	. 1940
. 30000	. 7776	. 7926	. 4916	. 3257	. 2317
. 50000	. 8121	. 8286	. 5606	. 3910	. 2858
. 70000	. 8306	. 8477	. 6021	. 4349	. 3245
1.0000	. 8472	. 8646	. 6420	. 4805	. 3674
1.5000	. 8632	. 8806	. 6817	. 5298	. 4166
2.0000	. 8728	. 8901	. 7064	. 5623	. 4510
3.0000	. 8846	. 9015	. 7368	. 6042	. 4975
5.0000	. 8970	. 9132	. 7687	. 6501	. 5512
7.0000	. 9040	. 9198	. 7865	. 6765	. 5831
10.000	. 9105	. 9258	. 8030	. 7012	. 6139
15.000	. 9170	. 9317	. 8193	. 7260	. 6451
20.000	. 9211	. 9354	. 8296	. 7417	. 6650
30.000	. 9263	. 9401	. 8424	. 7613	. 6902
50.000	. 9320	. 9452	. 8562	. 7826	. 7178
70.000	. 9354	. 9481	. 8642	. 7949	. 7337
100.00	. 9386	. 9509	. 8719	. 8066	. 7490
150.00	. 9419	. 9538	. 8796	. 8185	. 7645
200.00	. 9441	. 9556	. 8846	. 8262	. 7745
300.00	. 9468	. 9580	. 8910	. 8360	. 7873
500.00	. 9500	. 9607	. 8982	. 8471	. 8017
700.00	. 9519	. 9623	. 9025	. 8536	. 8101
1000.0	. 9537	. 9638	-9066	. 8599	. 8184

Table 3b. Values of G_{b} for $2 \theta_{0} / \pi=0.3$.

$\mathrm{q}^{*} \times \theta / \pi$. 5	. 6	. 7	. 8	. 9
. 00010	. 0046	. 0033	. 0025	. 0018	. 0012
. 00015	. 0056	. 0041	. 0030	. 0023	. 001.5
. 00020	. 0065	. 0047	. 0035	. 0026	. 0017
. 00030	. 0079	. 0057	. 0043	. 0032	. 0021
. 00050	. 0102	. 0074	. 0056	. 0041	. 0028
. 00070	. 0121	. 0088	. 0066	. 0049	. 0033
. 00100	. 0145	. 0105	. 0079	. 0058	. 0039
. 00150	. 0177	. 0129	. 0096	. 6071	. 0048
. 00200	. 0205	. 0148	. 0111	. 0082	. 0055
. 00300	. 0251	. 0182	. 0136	. 0101	. 0068
. 00500	. 0324	. 0234	. 0176	. 0130	. 0087
. 00700	. 0383	. 0277	. 0208	. 0154	. 0103
. 01000	. 0457	. 0331	. 0248	. 0184	. 0123
. 01500	. 0559	. 0405	. 0304	. 0225	. 0151
. 02000	. 0644	. 0468	. 0351	. 0260	. 0175
. 03000	. 0787	. 0572	. 0429	. 0319	. 0214
. 05000	. 1010	. 0736	. 0553	. 0411	. 0277
. 07000	. 1189	. 0867	. 0652	. 0486	. 0328
. 10000	. 1409	. 1031	. 0777	. 0580	. 0393
. 15000	. 1702	. 1253 ,	. 0947	. 0709	. 0484
. 20000	. 1940	. 1434	. 1088	. 0817	. 0560
. 30000	. 2317	. 1729	. 1319	. 0996	. 0690
. 50000	. 2858	. 2165	. 1670	. 1274	. 0896
. 70000	. 3245	. 2492	. 1940	. 1492	. 1064
1.0000	. 3674	. 2866	. 2258	. 1757	. 1273
1.5000	. 4166	. 3318	. 2656	. 2098	.1552
2.0000	. 4510	. 3648	. 2958	. 2365	. 1776
3.0000	. 4975	. 4113	. 3398	. 2766	. 2125
5.0000	. 5512	. 4679	. 3958	. 3298	. 2605
7.0000	. 5831	. 5028	. 4316	. 3650	. 2935
10.000	. 6139	. 5372	. 4680	. 4016	. 3286
15.000	. 6451	. 5729	. 5064	. 4412	. 3676
20.000	. 6650	. 5961	. 5317	. 4677	. 3942
30.000	. 6902	. 6256	. 5644	. 5025	. 4297
50.000	. 7178	. 6583	. 6010	. 5420	. 4707
70.000	. 7337	. 6773	. 6225	. 5654	. 4953
100.00	. 7490	. 6955	. 6433	. 5881	. 5195
150.00	. 7645	. 7141	. 6646	. 6116	. 5448
200.00	. 7745	. 7262	. 6783	. 6269	. 5613
300.00	. 7873	. 7416	. 6961	. 6467	. 5828
500.00	. 8017	. 7589	. 7160	. 6689	. 6073
700.00	. 8101	. 7691	. 7278	. 6823	. 6221
1000.0	. 8184	. 7791	. 7394	. 6953	. 6365

Table 4a. Values of G_{b} for $2 \theta_{o} / \pi=0.4$.

$q^{*} \quad \theta / \pi$. 1	. 2	. 3	. 4	. 5
. 00010	. 0207	1.0000	. 0215	. 0103	. 0065
. 00015	. 0253	1.0000	. 0263	. 0126	. 0080
. 00020	. 0292	1.0000	. 0304	. 0146	. 0092
. 00030	. 0358	1.0000	. 0372	. 0179	. 0113
. 00050	. 0462	1.0000	. 0480	. 0230	. 0146
. 00070	. 0546	1.0000	. 0567	. 0273	. 0173
. 00100	. 0652	1.0000	. 0677	. 0326	. 0207
. 00150	. 0796	1.0000	. 0828	. 0399	. 0253
. 00200	. 0918	1.0000	. 0954	. 0460	. 0292
. 00300	. 1119	1.0000	. 1163	. 0563	. 0357
. 00500	. 1434	1.0000	. 1490	. 0725	. 0461
. 00700	. 1683	1.0000	. 1750	. 0856	. 0545
. 01000	. 1988	1.0000	. 2068	. 1020	. 0650
. 01500	. 2390	1.0000	. 2487	. 1243	. 0794
. 02000	. 2711	1.0000	. 2822	. 1428	. 0915
. 03000	. 3211	1.0000	. 3346	. 1731	. 1115
. 05000	. 3905	1.0000	. 4074	. 2192	. 1426
. 07000	. 4384	1.0000	. 4580	. 2545	. 1671
. 10000	. 4893	1.0000	. 5121	. 2962	. 1969
. 15000	. 5454	1.0000	. 5719	. 3482	. 2359
. 20000	. 5827	1.0000	. 6120	. 3873	. 2667
. 30000	. 6308	1.0000	. 6638	. 4440	. 3141
. 50000	. 6829	1.0000	. 7197.	. 5147	. 3785
. 70000	. 7121	1.0000	. 7507	. 5586	. 4222
1.0000	. 7391	1.0000	. 7789	. 6017	. 4680
1.5000	. 7653	1.0000	. 8056	. 6454	. 5178
2.0000	. 7814	1.0000	. 8217	. 6729	. 5509
3.0000	. 8014	1.0000	. 8410	. 7070	. 5937
5.0000	. 8224	1.0000	. 8609	. 7430	. 6408
7.0000	. 8344	1.0000	. 8718	. 7631	. 6679
10.000	. 8455	1.0000	. 8819	. 7818	. 6934
15.000	. 8568	1.0000	. 8917	. 8002	. 7190
20.000	. 8638	1.0000	. 8980	. 8118	. 7351
30.000	. 8728	1.0000	. 9056	. 8262	. 7554
50.000	. 8826	1.0000	. 9140	. 8419	. 7774
70.000	. 8884	1.0000	. 9188	. 8509	. 7900
100.00	. 8940	1.0000	. 9234	. 8594	. 8021
150.00	. 8997	1.0000	. 9280	. 8681	. 8144
200.00	. 9034	1.0000	. 9310	. 8737	. 8223
300.00	. 9082	1.0000	. 9348	. 8808	. 8324
500.00	. 9136	1.0000	. 9391	. 8888	. 8437
700.00	. 9169	1.0000	. 9417	. 8936	. 8504
1000.0	. 9201	1.0000	. 9442	. 8982	. 8569

Table 4 b . Values of G_{b} for $2 \theta_{o} / \pi=0.4$.

$\mathrm{q}^{*} \quad \theta / \pi$. 5	. 6	. 7	. 8	. 9
. 00010	. 0065	. 0046	. 0034	. 0025	. 0017
. 00015	. 0080	. 0056	. 0042	. 0031	. 0020
. 00020	. 0092	. 0065	. 0048	. 0035	. 0024
. 00030	. 0113	. 0080	. 0059	. 0043	. 0029
. 00050	. 0146	. 0103	. 0076	. 0056	. 0037
. 00070	. 0173	. 0122	. 0090	. 0066	. 0044
. 00100	. 0207	. 0146	. 0108	. 0079	. 0053
. 00150	. 0253	. 0179	. 0132	. 0097	. 0065
. 00200	. 0292	. 0206	. 0152	. 0112	. 0075
. 00300	. 0357	. 0252	. 0186	. 0137	. 0091
. 00500	. 0461	. 0326	. 0241	. 0177	. 0118
. 00700	. 0545	. 0385	. 0284	. 0209	. 0140
. 01000	. 0650	. 0460	. 0340	. 0250	. 0167
. 01500	. 0794	. 0562	. 0416	. 0306	. 0205
. 02000	. 0915	. 0648	. 0480	. 0354	. 0236
. 03000	. 1115	. 0792	. 0586	. 0433	. 0290
. 05000	. 1426	. 1016	. 0754	. 0557	. 0374
. 07000	. 1671	. 1195	. 0889	. 0658	. 0443
. 10000	. 1969	. 1417	. 1057	. 0784	. 0530
. 15000	. 2359	. 1711 '	. 1283	. 0955	. 0650
. 20000	. 2667	. 1950	. 1468	. 1098	. 0751
. 30000	. 3141	. 2328	. 1768	. 1331	. 0920
. 50000	. 3785	. 2869	. 2210	. 1684	. 1184
. 70000	. 4222	. 3257	. 2539	. 1955	. 1395
1.0000	. 4680	. 3684	. 2916	. 2274	. 1651
1.5000	. 5178	. 4175	. 3367	. 2672	. 1982
2.0000	. 5509	. 4517	. 3695	. 2972	. 2241
3.0000	. 5937	. 4980	. 4156	. 3407	. 2630
5.0000	. 6408	. 5514	. 4713	. 3957	. 3143
7.0000	. 6679	. 5831	. 5055	. 4307	. 3483
10.000	. 6934	. 6136	. 5393	. 4660	. 3833
15.000	. 7190	. 6447	. 5743	. 5034	. 4214
20.000	. 7351	. 6645	. 5969	. 5279	. 4468
30.000	. 7554	. 6895	. 6258	. 5597	. 4803
50.000	. 7774	. 7170	. 6578	. 5953	. 5185
70.000	. 7900	. 7329	. 6764	. 6163	. 5413
100.00	. 8021	. 7480	. 6944	. 6366	. 5635
150.00	. 8144	. 7635	. 7127	. 6575	. 5866
200.00	. 8223	. 7735	. 7245	. 6710	. 6017
300.00	. 8324	. 7863	. 7398	. 6885	. 6213
500.00	. 8437	. 8006	. 7568	. 7081	. 6436
700.00	. 8504	. 8091	. 7670	. 7199	. 6570
1000.0	. 8569	. 8174	. 7769	. 7314	. 6702

Table 5a. Values of G_{b} for $2 \theta_{0} / \pi=0.5$.

q^{*}	θ / π	.1	.2	.3	.4
				.	.5
.00010	.0145	.0478	.0479	.0156	.0090
.00015	.0177	.0584	.0586	.0191	.0110
.00020	.0205	.0674	.0675	.0220	.0127
.00030	.0251	.0824	.0826	.0270	.0156
.00050	.0324	.1060	.1062	.0348	.0201
.00070	.0383	.1249	.1252	.0412	.0238
.00100	.0457	.1485	.1488	.0492	.0284
.00150	.0559	.1802	.1806	.0601	.0348
.00200	.0645	.2063	.2067	.0694	.0402
.00300	.0788	.2484	.2489	.0848	.0491
.00500	.1013	.3105	.3111	.1090	.0633
.00700	.1194	.3565	.3573	.1284	.0748
.01000	.1417	.4091	.4100	.1525	.0892
.01500	.1717	.4717	.4728	.1848	.1088
.02000	.1962	.5168	.5181	.2112	.1251
.03000	.2354	.5792	.5808	.2537	.1520
.05000	.2926	.6526	.6546	.3157	.1931
.07000	.3344	.6961	.6985	.3612	.2251
.10000	.3812	.7374	.7402	.4124	.2632
.15000	.4359	.7779	.7812	.4724	.3115
.0000	.4745	.8026	.8062	.5148	.3485
.30000	.5267	.8321	.8364	.5725	.4033
.50000	.5867	.8617	.8666	.6384	.4735
.70000	.6219	.8774	.8825	.6766	.5183
1.0000	.6553	.8911	.8965	.7122	.5632
1.5000	.6885	.9040	.9095	.7467	.6095
2.0000	.7093	.9116	.9172	.7678	.6391
3.0000	.7353	.9209	.9263	.7932	.6762
5.0000	.7630	.9303	.9357	.8194	.7157
7.0000	.7788	.9356	.9407	.8339	.7379
10.000	.7936	.9404	.9455	.8471	.7586
15.000	.8085	.9452	.9500	.8602	.7790
20.000	.8179	.9481	.9529	.8684	.7919
30.000	.8299	.9519	.9565	.8785	.8079
50.000	.8430	.9560	.9603	.8895	.8253
70.000	.8508	.9584	.9625	.8958	.8353
100.00	.8581	.9606	.9647	.9018	.8447
150.00	.8658	.9629	.9668	.9078	.8544
200.00	.8707	.9644	.9682	.9118	.8606
300.00	.8772	.9663	.9700	.9168	.8686
500.00	.8844	.9684	.9719	.9224	.8775
700.00	.8888	.9697	.9731	.9257	.8827
1000.0	.8931	.9709	.9743	.9289	.8878

Table 5 b . Values of G_{b} for $2 \theta_{o} / \pi=0.5$.

$\mathrm{q}^{*} \quad \theta / \pi$. 5	. 6	. 7	. 8	. 9
. 00010	. 0090	. 0061	. 0044	. 0032	. 0021
. 00015	. 0110	. 0075	. 0054	. 0039	. 0026
. 00020	. 0127	. 0086	. 0062	. 0045	. 0030
. 00030	. 0156	. 0106	. 0077	. 0056	. 0037
. 00050	. 0201	. 0136	. 0099	. 0072	. 0048
. 00070	. 0238	. 0161	. 0117	. 0085	. 0056
. 00100	. 0284	. 0193	. 0140	. 0102	. 0067
. 00150	. 0348	. 0236	. 0171	. 0125	. 0083
. 00200	. 0402	. 0273	. 0197	. 0144	. 0095
. 00300	. 0491	. 0334	. 0242	. 0176	. 0117
. 00500	. 0633	. 0431	. 0312	. 0227	. 0151
. 00700	. 0748	. 0509	. 0369	. 0269	. 0178
. 01000	. 0892	. 0608	. 0441	. 0321	. 0213
. 01500	. 1088	. 0743	. 0539	. 0393	. 0261
. 02000	. 1251	. 0855	. 0621	. 0453	. 0302
. 03000	. 1520	. 1043	. 0759	. 0554	. 0369
. 05000	. 1931	. 1335	. 0974	. 0713	. 0476
. 07000	. 2251	. 1565	. 1146	. 0841	. 0563
. 10000	. 2632	.1847*	. 1358	. 1000	. 0673
. 15000	. 3115	. 2217	. 1641	. 1214	. 0822
. 20000	. 3485	. 2510	. 1871	. 1390	. 0948
. 30000	. 4033	. 2964	. 2236	. 1675	. 1155
. 50000	. 4735	. 3589	. 2759	. 2098	. 1474
. 70000	. 5183	. 4017	. 3135	. 2414	. 1722
1.0000	. 5632	. 4470	. 3552	. 2776	. 2018
1.5000	. 6095	. 4968	. 4033	. 3213	. 2390
2.0000	. 6391	. 5302	. 4370	. 3532	. 2672
3.0000	. 6762	. 5737	. 4828	. 3981	. 3086
5.0000	. 7157	. 6221	. 5360	. 4527	. 3613
7.0000	. 7379	. 6501	. 5678	. 4865	. 3951
10.000	. 7586	. 6766	. 5986	. 5199	. 4294
15.000	. 7790	. 7033	. 6300	. 5547	. 4660
20.000	. 7919	. 7201	. 6501	. 5773	. 4901
30.000	. 8079	. 7413	. 6756	. 6063	. 5217
50.000	. 8253	. 7643	. 7036	. 6385	. 5573
70.000	. 8353	. 7776	. 7199	. 6574	. 5784
100.00	. 8447	. 7903	. 7355	. 6756	. 5989
150.00	. 8544	. 8032	. 7514	. 6943	. 6203
200.00	. 8606	. 8116	. 7617	. 7064	. 6342
300.00	. 8686	. 8222	. 7748	. 7221	. 6522
500.00	. 8775	. 8341	. 7896	. 7396	. 6727
700.00	. 8827	. 8412	. 7984	. 7501	. 6850
1000.0	. 8878	. 8481	. 8070	. 7604	. 6971

Table 6a. Values of G_{b} for $2 \theta_{o} / \pi=0.6$.

q^{*}	θ / π	.1	.2		.
			.3	.4	.5
.00010	.0111	.0252	1.0000	.0254	.0124
.00015	.0136	.0309	1.0000	.0312	.0152
.00020	.0157	.0356	1.0000	.0360	.0175
.00030	.0193	.0436	1.0000	.0440	.0214
.00050	.0249	.0562	1.0000	.0568	.0277
.00070	.0294	.0665	1.0000	.0671	.0327
.00100	.0352	.0793	1.0000	.0801	.0391
.00150	.0430	.0969	1.0000	.0978	.0478
.00200	.0497	.1115	1.0000	.1126	.0552
.00300	.0607	.1359	1.0000	.1372	.0675
.00500	.0782	.1736	1.0000	.1752	.0869
.00700	.0922	.2032	1.0000	.2052	.1025
.01000	.1097	.2393	1.0000	.2416	.1220
.01500	.1334	.2861	1.0000	.2890	.1484
.02000	.1529	.3230	1.0000	.3263	.1702
.03000	.1847	.3794	1.0000	.3834	.2056
.05000	.2322	.4554	1.0000	.4606	.2587
.07000	.2680	.5065	1.0000	.5125	.2988
.10000	.3093	.5595	1.0000	.5665	.3452
.15000	.3595	.6163	1.0000	.6246	.4017
.20000	.3964	.6533	1.0000	.6626	.4332
.30000	.4483	.7000	1.0000	.7107	.5016
.50000	.5111	.7493	1.0000	.7616	.5718
.70000	.5494	.7762	1.0000	.7894	.6140
1.0000	.5867	.8004	1.0000	.8143	.6544
1.5000	.6248	.8234	1.0000	.8378	.6945
2.0000	.6491	.8372	1.0000	.8518	.7192
3.0000	.6796	.8540	1.0000	.8685	.7496
5.0000	.7127	.8713	1.0000	.8855	.7811
7.0000	.7316	.8809	1.0000	.8948	.7986
10.000	.7494	.8898	1.0000	.9033	.8147
15.000	.7674	.8986	1.0000	.9116	.8306
20.000	.7788	.9041	1.0000	.9168	.8405
30.000	.7933	.9110	1.0000	.9232	.8529
50.000	.8093	.9185	1.0000	.9302	.8663
70.000	.8186	.9229	1.0000	.9342	.8739
100.00	.8276	.9270	1.0000	.9379	.8812
150.00	.8369	.9313	1.0000	.9418	.8886
200.00	.8429	.9340	1.0000	.9443	.8933
300.00	.8507	.9376	1.0000	.9474	.8994
500.00	.8566	.9415	1.0000	.9510	.9062
700.00	.8649	.9439	1.0000	.9531	.9103
1000.0	.8700	.9462	1.0000	.9551	.9141

Table 6b. Values of G_{b} for $2 \theta_{0} / \pi=0.6$.

q^{*}	θ / π	.5	.6	.	.
	.			.8	.9
.00010	.0124	.0079	.0056	.0040	.0026
.00015	.0152	.0097	.0068	.0049	.0032
.00020	.0175	.0112	.0079	.0056	.0037
.00030	.0214	.0137	.0096	.0069	.0046
.00050	.0277	.0177	.0124	.0089	.0059
.00070	.0327	.0209	.0147	.0106	.0070
.00100	.0391	.0250	.0176	.0126	.0083
.00150	.0478	.0306	.0216	.0155	.0102
.00200	.0552	.0353	.0249	.0179	.0118
.00300	.0675	.0433	.0305	.0219	.0144
.0500	.0869	.0558	.0393	.0282	.0186
.00700	.1025	.0659	.0465	.0334	.0220
.01000	.1220	.0786	.0555	.0398	.0263
.01500	.1484	.0959	.0678	.0487	.0322
.02000	.1702	.1104	.0781	.0562	.0371
.03000	.2056	.1343	.0953	.0687	.0454
.05000	.2587	.1711	.1220	.0882	.0585
.07000	.2988	.1999	.1432	.1038	.0691
.10000	.3452	.2346	.1692	.1231	.0824
.15000	.4017	.2790	.2034	.1490	.1004
.20000	.4432	.3136	.2307	.1700	.1154
.30000	.5016	.3655	.2733	.2036	.1399
.50000	.5718	.4337	.3325	.2522	.1769
.70000	.6140	.4783	.3736	.2875	.2051
1.0000	.6544	.5237	.4177	.3270	.2379
1.5000	.6945	.5716	.4668	.3732	.2782
2.0000	.7192	.6027	.5001	.4059	.3081
3.0000	.7496	.6421	.5441	.4509	.3508
5.0000	.7811	.6846	.5937	.5039	.4036
7.0000	.7986	.7087	.6227	.5359	.4367
10.000	.8147	.7313	.6503	.5671	.4699
15.000	.8306	.7538	.6782	.5993	.5048
20.000	.8405	.7679	.6960	.6199	.5276
30.000	.8529	.7856	.7183	.6464	.5573
50.000	.8663	.8048	.7428	.6755	.5905
70.000	.8739	.8159	.7570	.6926	.6102
100.00	.8882	.8264	.7706	.7090	.6293
150.00	.8866	.8371	.7844	.7258	.6490
200.00	.8933	.8440	.7934	.7367	.6619
300.00	.8994	.8529	.8048	.7507	.6786
500.00	.9062	.8627	.8176	.7665	.6976
700.00	.9103	.8686	.8253	.7759	.7090
1000.0	.9141	.8743	.8327	.7851	.7201

Table 7a. Values of G_{b} for $2 \theta_{o} / \pi=0.7$.

$q^{*} \quad \theta / \pi$. 1	. 2	. 3	. 4	. 5
. 00010	. 0090	. 0173	. 0538	. 0538	. 0176
. 00015	. 0110	. 0212	. 0658	. 0658	. 0216
. 00020	. 0127	. 0245	. 0758	. 0759	. 0250
. 00030	. 0155	. 0300	. 0927	. 0927	. 0306
. 00050	. 0200	. 0386	. 1191	. 1191	. 0394
. 00070	. 0237	. 0457	. 1402	. 1403	. 0466
. 00100	. 0283	. 0546	. 1664	. 1665	. 0557
. 00150	. 0347	. 0668	. 2016	. 2017	. 0681
. 00200	. 0400	. 0770	. 2302	. 2304	. 0785
. 00300	. 0489	. 0940	. 2761	. 2763	. 0959
. 00500	. 0630	. 1207	. 3429	. 3431	. 1231
. 00700	. 0744	. 1420	. 3916	. 3919	. 1449
. 01000	. 0887	. 1684	. 4462	. 4465	. 1719
. 01500	. 1080	. 2036	. 5099	. 5103	. 2078
. 02000	. 1241	. 2321	. 5550	. 5554	. 2370
. 03000	. 1505	. 2775	. 6161	. 6167	. 2834
. 05000	. 1904	. 3427	. 6865	. 6872	. 3502
. 07000	. 2211	. 3895	. 7276	. 7284	. 3982
. 10000	. 2574	. 4411	. 7661	. 7671	. 4513
. 15000	. 3026	. 5002	. 8036	. 8048	. 5123
. 20000	. 3368	. 5411	. 8264	. 8278	. 5546
. 30000	. 3865	. 5953	. 8537	. 8552	. 6109
. 50000	. 4491	. 6558	. 8808	. 8827	. 6740
. 70000	. 4887	. 6903	. 8951	. 8971	. 7098
1.0000	. 5284	. 7221	. 9077	. 9097	. 7428
1.5000	. 5698	. 7530	. 9193	. 9215	. 7746
2.0000	. 5966	. 7719	. 9262	. 9284	. 7937
3.0000	. 6308	. 7949	. 9343	. 9366	. 8167
5.0000	. 6682	. 8189	. 9246	. 9448	. 8404
7.0000	. 689.7	. 8323	. 9472	. 9494	. 8533
10.000	. 7102	. 8448	. 9514	. 9534	. 8651
15.000	. 7309	. 8571	. 9554	. 9575	. 8768
20.000	. 7440	. 8648	. 9581	. 9600	. 8840
30.000	. 7608	. 8746	. 9612	. 9631	. 8931
50.000	. 7792	. 8852	. 9646	. 9664	. 9028
70.000	. 7900	. 8913	. 9666	. 9684	. 9084
100.00	. 8004	. 8971	. 9685	. 9702	. 9137
150.00	. 8112	. 9032	. 9704	. 9720	. 9191
200.00	. 8181	. 9070	. 9717	. 9732	. 9225
300.00	. 8272	. 9120	. 9732	. 9747	. 9269
500.00	. 8374	. 9176	. 9750	. 9764	. 9319
700.00	. 8435	. 9209	. 9760	. 9775	. 9348
1000.0	. 8495	. 9242	. 9771	. 9784	. 9376

Table 7 b . Values of G_{b} for $2 \theta_{o} / \pi=0.7$.

$\mathrm{q}^{*} \quad \theta / \pi$. 5	. 6	. 7	. 8	. 9
. 00010	. 0176	. 0102	. 0069	. 0049	. 0032
. 00015	. 0216	. 0125	. 0085	. 0060	. 0039
. 00020	. 0250	. 0145	. 0098	. 0069	. 0045
. 00030	. 0306	. 0177	. 0120	. 0084	. 0055
. 00050	. 0394	. 0229	. 0155	. 0109	. 0071
. 00070	. 0466	. 0271	. 0183	. 0129	. 0084
. 00100	. 0557	. 0324	. 0219	. 0154	. 0100
. 00150	. 0681	. 0396	. 0268	. 0188	. 0123
. 00200	. 0785	. 0457	. 0309	. 0217	. 0142
. 00300	. 0959	. 0559	. 0378	. 0266	. 0174
. 00500	. 1231	. 0721	. 0488	. 0343	. 0224
. 00700	. 1449	. 0851	. 0577	. 0406	. 0265
. 01000	. 1719	. 1014	. 0688	. 0485	. 0317
. 01500	. 2078	. 1235	. 0840	. 0593	. 0388
. 02000	. 2370	. 1419	. 0967	. 0683	. 0447
. 03000	. 2834	. 1720	. 1178	. 0834	. 0547
. 05000	. 3502	. 2178	. 1504	. 1069	. 0704
. 07000	. 3982	. 2530	. 1761	. 1256	. 0830
. 10000	. 4513	. 2945	. 2071	. 1486	. 0987
. 15000	. 5123	. 3463	. 2474	. 1790	. 1199
. 20000	. 5546	. 3854	. 2791	. 2035	. 1374
. 30000	. 6109	. 4420	. 3273	. 2420	. 1656
. 50000	. 6740	. 5126	. 3920	. 2963	. 2074
. 70000	. 7098	. 5566	. 4352	. 3346	. 2386
1.0000	. 7428	. 5997	. 4801	. 3764	. 2741
1.5000	. 7746	. 6436	. 5285	. 4238	. 3167
2.0000	. 7937	. 6712	. 5604	. 4566	. 3475
3.0000	. 8167	. 7054	. 6014	. 5006	. 3907
5.0000	. 8404	. 7416	. 6466	. 5511	. 4429
7.0000	. 8533	. 7618	. 6726	. 5811	. 4750
10.000	. 8651	. 7806	. 6971	. 6100	. 5068
15.000	. 8768	. 7991	. 7216	. 6395	. 5399
20.000	. 8840	. 8108	. 7371	. 6583	. 5614
30.000	. 8931	. 8253	. 7566	. 6823	. 5892
50.000	. 9028	. 8410	. 7779	. 7086	. 6203
70.000	. 9084	. 8500	. 7902	. 7240	. 6386
100.00	. 9137	. 8586	. 8019	. 7387	. 6563
150.00	. 9191	. 8673	. 8139	. 7539	. 6747
200.00	. 9225	. 8730	. 8216	. 7636	. 6866
300.00	. 9269	. 8802	. 8315	. 7763	. 7022
500.00	. 9319	. 8882	. 8426	. 7904	. 7197
700.00	. 9348	. 8930	. 8492	. 7989	. 7303
1000.0	. 9376	. 8976	. 8556	. 8072	. 7407

Table 8a. Values of G_{b} for $2 \theta_{0} / \pi=0.8$.

$\mathrm{q} *=\theta / \pi$. 1	. 2	. 3	. 4	. 5
. 00010	. 0074	. 0131	. 0276	1.0000	. 0277
. 00015	. 0091	. 0161	. 0338	1.0000	. 0339
. 00020	. 0105	. 0185	. 0390	1.0000	. 0391
. 00030	. 0128	. 0227	. 0477	1.0000	. 0479
. 00050	. 0166	. 0293	. 0615	1.0000	. 0617
. 00070	. 0196	. 0347	. 0727	1.0000	. 0729
. 00100	. 0234	. 0414	. 0867	1.0000	. 0870
. 00150	. 0287	. 0507	. 1059	1.0000	. 1062
. 00200	. 0331	. 0585	. 1219	1.0000	. 1222
. 00300	. 0405	. 0715	. 1483	1.0000	. 1488
. 00500	. 0522	. 0920	. 1891	1.0000	. 1897
. 00700	. 0616	. 1084	. 2211	1.0000	. 2218
. 01000	. 0735	. 1290	. 2598	1.0000	. 2606
. 01500	. 0896	. 1566	. 3096	1.0000	. 3106
. 02000	. 1031	. 1794	. 3485	1.0000	. 3497
. 03000	. 1253	. 2162	. 4074	1.0000	. 4088
. 05000	. 1594	. 2709	. 4856	1.0000	. 4873
. 07000	. 1859	. 3117	. 5372	1.0000	. 5393
. 10000	. 2176	. 3583	. 5902	1.0000	. 5926
. 15000	. 2580	. 4143	. 6463	1.0000	. 6492
. 20000	. 2892	. 4547	. 6826	1.0000	. 6858
. 30000	. 3358	. 5107	. 7280	1.0000	. 7318
. 50000	. 3966	. 5766	. 7755	1.0000	. 7799
. 70000	. 4364	. 6157	. 8013	1.0000	. 8061
1.0000	. 4771	. 6529	. 8243	1.0000	. 8294
1.5000	. 5207	. 6898	. 8459	1.0000	. 8513
2.0000	. 5494	. 7128	. 8589	1.0000	. 8643
3.0000	. 5864	. 7411	. 8743	1.0000	. 8798
5.0000	. 6275	. 7710	. 8901	1.0000	. 8955
7.0000	. 6514	. 7878	. 8988	1.0000	. 9040
10.000	. 6742	. 8034	. 9068	1.0000	. 9118
15.000	. 6973	. 8190	. 9146	1.0000	. 9195
20.000	. 7120	. 8287	. 9195	1.0000	. 9243
30.000	. 7308	. 8410	. 9255	1.0000	. 9302
50.000	. 7515	. 8544	. 9321	1.0000	. 9366
70.000	. 7636	. 8622	. 9359	1.0000	. 9402
100.00	. 7753	. 8696	. 9396	1.0000	. 9436
150.00	. 7874	. 8772	. 9432	1.0000	. 9472
200.00	. 7952	. 8821	. 9456	1.0000	. 9494
300.00	. 8054	. 8884	. 9486	1.0000	. 9523
500.00	. 8169	. 8955	. 9520	1.0000	. 9556
700.00	. 8238	. 8997	. 9540	1.0000	. 9575
1000.0	. 8306	-9038	. 9560	1.0000	. 9593

Table 8 b . Values of G_{b} for $2 \theta_{o} / \pi=0.8$.

	. 5	. 6	. 7	. 8	. 9
. 00010	. 0277	. 0135	. 0086	. 0059	. 0038
. 00015	. 0339	. 0165	. 0105	. 0072	. 0046
. 00020	. 0391	. 0191	. 0121	. 0083	. 0053
. 00030	. 0479	. 0234	. 0149	. 0102	. 0065
. 00050	. 0617	. 0302	. 0192	. 0131	. 0084
. 00070	. 0729	. 0357	. 0227	. 0155	. 0100
. 00100	. 0870	. 0426	. 0271	. 0185	. 0119
. 00150	. 1062	. 0521	. 0332	. 0227	. 0146
. 00200	. 1222	. 0602	. 0383	. 0262	. 0169
. 00300	. 1488	. 0736	. 0469	. 0321	. 0207
. 00500	. 1897	. 0946	. 0604	. 0414	. 0267
. 00700	. 2218	. 1116	. 0714	. 0489	. 0315
. 01000	. 2606	. 1327	. 0851	. 0584	. 0377
. 01500	. 3106	. 1612	. 1038	. 0713	. 0461
. 02000	. 3497	. 1847	. 1194	. 0822	. 0531
. 03000	. 4088	. 2227	. 1451	. 1002	. 0649
. 05000	. 4873	. 2791	. 1845	. 1281	. 0834
. 07000	. 5393	. 3213	. 2151	. 1502	. 0982
. 10000	. 5926	. 3696	. 2517	. 1772	. 1165
. 15000	. 6492	. 4276	. 2982	. 2124	. 1411
. 20000	. 6858	. 4696	. 3339	. 2404	. 1611
. 30000	. 7318	. 5280	. 3869	. 2836	. 1931
. 50000	. 7799	. 5967	. 4553	. 3429	. 2394
. 70000	. 8061	. 6374	. 4992	. 3835	. 2732
1.0000	. 8294	. 6760	. 5434	. 4266	. 3109
1.5000	. 8513	. 7139	. 5894	. 4742	. 3550
2.0000	. 8643	. 7372	. 6190	. 5062	. 3863
3.0000	. 8798	. 7656	. 6563	. 5484	. 4293
5.0000	. 8955	. 7950	. 6965	. 5958	. 4802
7.0000	. 9040	. 8113	. 7193	. 6236	. 5111
10.000	. 9118	. 8264	. 7407	. 6500	. 5413
15.000	. 9195	. 8412	. 7619	. 6768	. 5726
20.000	. 9243	. 8504	. 7753	. 6939	. 5928
30.000	. 9302	. 8619	. 7920	. 7155	. 6188
50.000	. 9366	. 8744	. 8103	. 7392	. 6478
70.000	. 9402	. 8816	. 8208	. 7530	. 6648
100.00	. 9436	. 8883	. 8309	. 7662	. 6813
150.00	. 9472	. 8952	. 8411	. 7798	. 6984
200.00	. 9494	. 8997	. 8477	. 7885	. 7095
300.00	. 9523	. 9054	. 8561	. 7999	. 7239
500.00	. 9556	. 9117	. 8656	. 8125	. 7402
700.00	. 9575	. 9155	. 8712	. 8201	. 7500
1000.0	. 9593	. 9191	. 8767	. 8275	. 7596

Table 9a. Values of G_{b} for $2 \theta_{0} / \pi=0.9$.

$q^{*} \theta / \pi$. 1	. 2	. 3	. 4	. 5
. 00010	. 0062	. 0104	. 0185	. 0566	. 0566
. 00015	. 0076	. 0128	. 0227	. 0693	. 0693
. 00020	. 0088	. 0148	. 0262	. 0799	. 0799
. 00030	. 0108	. 0181	. 0321	. 0976	. 0976
. 00050	. 0139	. 0233	. 0414	. 1253	. 1253
. 00070	. 0164	. 0276	. 0489	. 1475	. 1475
. 00100	. 0196	. 0330	. 0584	. 1750	. 1750
. 00150	. 0241	. 0404	. 0714	. 2117	. 2117
. 00200	. 0278	. 0466	. 0823	. 2415	. 2416
. 00300	. 0340	. 0570	. 1005	. 2891	. 2892
. 00500	. 0438	. 0734	. 1290	. 3578	. 3579
. 00700	. 0518	. 0866	. 1518	. 4076	. 4076
. 01000	. 0618	. 1032	. 1798	. 4628	. 4629
. 01500	. 0754	. 1256	. 2171	. 5268	. 5269
. 02000	. 0869	. 1442	. 2473	. 5716	. 5717
. 03000	. $1057{ }^{\text { }}$. 1747	. 2951	. 6319	. 6321
. 05000	. 1350	. 2207	. 3633	. 7007	. 7009
. 07000	. 1579	. 2558	. 4119	. 7406	. 7409
. 10000	. 1857	. 2970	. 4650	. 7779	. 7782
. 15000	. 2217	. 3479	. 5255	. 8141	. 8144
. 20000	. 2499	. 3860	. 5669	. 8361	. 8364
. 30000	. 2930	. 4406	. 6216	. 8623	. 8627
. 50000	. 3509	. 5080	. 6821	. 8884	. 8889
. 70000	. 3900	. 5496	. 7163	. 9022	. 9027
1.0000	. 4310	. 5903	. 7477	. 9142	. 9148
1.5000	. 4758	. 6317	. 7777	. 9254	. 9260
2.0000	. 5058	. 6580	. 7959	. 9319	. 9325
3.0000	. 5452	. 6908	. 8178	. 9397	. 9403
5.0000	. 5894	. 7258	. 8404	. 9476	. 9482
7.0000	. 6153	. 7457	. 8529	. 9519	. 9525
10.000	. 6402	. 7642	. 8645	. 9557	. 9563
15.000	. 6655	. 7828	. 8758	. 9596	. 9601
20.000	. 6817	. 7944	. 8829	. 9620	. 9625
30.000	. 7023	. 8092	. 8917	. 9649	. 9655
50.000	. 7252	. 8252	. 9012	. 9681	. 9686
70.000	. 7386	. 8345	. 9067	. 9700	. 9704
100.00	. 7515	. 8434	. 9120	. 9716	. 9721
150.00	. 7649	. 8525	. 9173	. 9734	. 9739
200.00	. 7735	. 8584	. 9208	. 9746	. 9750
300.00	. 7848	. 8660	. 9252	. 9760	. 9764
500.00	. 7975	. 8745	. 9301	. 9776	. 9780
700.00	. 8051	. 8796	. 9330	. 9786	. 9790
1000.0	. 8126	. 8845	. 9359	. 9795	. 9799

Table 9 b . Values of G_{b} for $2 \theta_{\mathrm{o}} / \pi=0.9$.

$\mathrm{q}^{*} \quad \theta / \pi$. 5	. 6	. 7	. 8	. 9
. 00010	. 0566	. 0186	. 0107	. 0071	. 0045
. 00015	. 0693	. 0228	. 0131	. 0086	. 0055
. 00020	. 0799	. 0263	. 0152	. 0100	. 0063
. 00030	. 0976	. 0322	. 0186	. 0122	. 0077
. 00050	. 1253	. 0416	. 0240	. 0158	. 0100
. 00070	. 1475	. 0491	. 0284	. 0187	. 0118
. 00100	. 1750	. 0587	. 0339	. 0223	. 0141
. 00150	. 2117	. 0718	. 0415	. 0273	. 0173
. 00200	. 2416	. 0827	. 0479	. 0315	. 0199
. 00300	. 2892	. 1010	. 0586	. 0386	. 0244
. 00500	. 3579	. 1297	. 0755	. 0497	. 0315
. 00700	. 4076	. 1525	. 0891	. 0588	. 0372
. 01000	. 4629	. 1807	. 1061	. 0701	. 0444
. 01500	. 5269	. 2182	. 1292	. 0856	. 0543
. 02000	. 5717	. 2486	. 1484	. 0985	. 0626
. 03000	. 6321	. 2966	. 1797	. 1199	. 0765
. 05000	. 7009	. 3652	. 2271	. 1529	. 0981
. 07000	. 7409	. 4141	. 2633	. 1788	. 1153
. 10000	. 7782	. 4677	. 3058	. 2101	. 1365
. 15000	. 8144	. $5286^{\text { }}$. 3584	. 2504	. 1645
. 20000	. 8364	. 5704	. 3977	. 2818	. 1872
. 30000	. 8627	. 6257	. 4542	. 3295	. 2229
. 50000	. 8889	. 6870	. 5238	. 3928	. 2735
. 70000	. 9027	. 7215	. 5666	. 4349	. 3094
1.0000	. 9148	. 7532	. 6084	. 4783	. 3488
1.5000	. 9260	. 7836	. 6506	. 5250	. 3938
2.0000	. 9325	. 8019	. 6771	. 5557	. 4251
3.0000	. 9403	. 8238	. 7100	. 5954	. 4675
5.0000	. 9482	. 8464	. 7448	. 6392	. 5165
7.0000	. 9525	. 8587	. 7642	. 6645	. 5460
10.000	. 9563	. 8701	. 7824	. 6885	. 5745
15.000	. 9601	. 8812	. 8004	. 7126	. 6039
20.000	. 9625	. 8882	. 8117	. 7279	. 6228
30.000	. 9655	. 8968	. 8258	. 7472	. 6470
50.000	. 9686	. 9061	. 8411	. 7683	. 6740
70.000	. 9704	. 9115	. 8499	. 7806	. 6898
100.00	. 9721	. 9166	. 8584	. 7924	. 7051
150.00	. 9739	. 9217	. 8669	. 8045	. 7209
200.00	. 9750	. 9251	. 8725	. 8122	. 7312
300.00	. 9764	. 9293	. 8795	. 8223	. 7445
500.00	. 9780	. 9341	. 8875	. 8335	. 7596
700.00	. 9790	. 9369	. 8922	. 8403	. 7687
1000.0	. 9799	. 9396	. 8968	. 8468	. 7776

Table 10a. Values of G_{b} for $\theta=\pi / 2$.

q^{*}	. 1	. 2	. 3	. 4	. 5
. 00010	. 0180	. 0090	. 0060	. 0045	. 0036
. 00015	. 0220	. 0110	. 0073	. 0055	. 0044
. 00020	. 0254	. 0127	. 0085	. 0064	. 0051
. 00030	. 0311	. 0156	. 0104	. 0078	. 0062
. 00050	. 0402	. 0201	. 0134	. 0101	. 0080
. 00070	. 0475	. 0238	. 0159	. 0119	. 0095
. 00100	. 0567	. 0284	. 0190	. 0142	. 0114
. 00150	. 0694	. 0348	. 0232	. 0174	. 0139
. 00200	. 0800	. 0402	. 0268	. 0201	. 0161
. 00300	. 0977	. 0491	. 0328	. 0246	. 0197
. 00500	. 1254	. 0633	. 0423	. 0318	. 0254
. 00700	. 1476	. 0748	. 0500	. 0376	. 0301
. 01000	. 1750	. 0892	. 0597	. 0449	. 0359
. 01500	. 2115	. 1088	. 0730	. 0549	. 0439
. 02000	. 2411	. 1251	. 0841	. 0633	. 0507
. 03000	. 2881	. 1520	. 1025	. 0772	. 0620
. 05000	. 3555	. 1931	. 1312	. 0992	. 0797
. 07000	. 4039	. 2251	. 1539	. 1167	. 0939
. 10000	. 4573	. 2632	. 1817	. 1383	. 1116
. 15000	. 5183	. 3115	. 2182	. 1672	. 1354
. 20000	. 5605	. 3485	. 2473	. 1906	. 1548
. 30000	. 6165	. 4033	. 2924	. 2278	. 1863
. 50000	. 6790	. 4735	. 3545	. 2813	. 2326
. 70000	. 7145	. 5183	. 3973	. 3198	. 2668
1.0000	. 7471	. 5632	. 4428	. 3623	. 3058
1.5000	. 7783	. 6095	. 4929	. 4115	. 3524
2.0000	. 7972	. 6391	. 5265	. 4458	. 3860
3.0000	. 8199	. 6762	. 5705	. 4924	. 4330
5.0000	. 8431	. 7157	. 6195	. 5464	. 4893
7.0000	. 8558	. 7379	. 6479	. 5785	. 5237
10.000	. 8675	. 7586	. 6747	. 6095	. 5574
15.000	. 8789	. 7790	. 7017	. 6410	. 5922
20.000	. 8860	. 7919	. 7187	. 6611	. 6146
30.000	. 8949	. 8079	. 7401	. 6866	. 6432
50.000	. 9045	. 8253	. 7634	. 7145	. 6746
70.000	. 9100	. 8353	. 7769	. 7306	. 6929
100.00	. 9152	. 8447	. 7897	. 7460	. 7104
150.00	. 9205	. 8544	. 8027	. 7617	. 7282
200.00	. 9239	. 8606	. 8111	. 7718	. 7397
300.00	. 9282	. 8686	. 8219	. 7848	. 7545
500.00	. 9331	. 8775	. 8339	. 7993	. 7710
700.00	. 9359	. 8827	. 8410	. 8079	. 7808
1000.0	. 9387	. 8878	. 8479	. 8163	. 7904

Table 10b. Values of G_{b} for $\theta=\pi / 2$.

$\mathrm{q}^{*} \quad \mathrm{~h}_{\mathrm{s}} / 5 \mathrm{a}$. 5	. 6	. 7	. 8	. 9
. 00010	. 0036	. 0030	. 0026	. 0022	. 0020
. 00015	. 0044	. 0037	. 0031	. 0028	. 0024
. 00020	. 0051	. 0042	. 0036	. 0032	. 0028
. 00030	. 0062	. 0052	. 0045	. 0039	. 0035
. 00050	. 0080	. 0067	. 0057	. 0050	. 0045
. 00070	. 0095	. 0079	. 0068	. 0059	. 0053
. 00100	. 0114	. 0095	. 0081	. 0071	. 0063
. 00150	. 0139	. 0116	. 0100	. 0087	. 0077
. 00200	. 0161	. 0134	. 0115	. 0101	. 0089
. 00300	. 0197	. 0164	. 0141	. 0123	. 0109
. 00500	. 0254	. 0212	. 0182	. 0159	. 0141
. 00700	. 0301	. 0251	. 0215	. 0188	. 0167
. 01000	. 0359	. 0299	. 0257	. 0225	. 0200
. 01500	. 0439	. 0366	. 0314	. 0275	. 0245
. 02000	. 0507	. 0423	. 0363	. 0318	. 0282
. 03000	. 0620	. 0517	. 0444	. 0389	. 0346
. 05000	. 0797	. 0666	. 0572	. 0501	. 0446
. 07000	. 0939	. 0785	. 0675	. 0591	. 0526
. 10000	. 1116	. 0934 r	. 0804	. 0705	. 0628
. 15000	. 1354	. 1136	. 0979	. 0860	. 0767
. 20000	. 1548	. 1303	. 1124	. 0989	. 0882
. 30000	. 1863	. 1574	. 1362	. 1201	. 1073
. 50000	. 2326	. 1980	. 1723	. 1525	. 1368
. 70000	. 2668	. 2287	. 2000	. 1777	. 1598
1.0000	. 3058	. 2643	. 2326	. 2076	. 1875
1.5000	. 3524	. 3079	. 2733	. 2457	. 2231
2.0000	. 3860	. 3402	. 3040	. 2748	. 2507
3.0000	. 4330	. 3864	. 3489	. 3181	. 2923
5.0000	. 4893	. 4434	. 4057	. 3742	. 3474
7.0000	. 5237	. 4791	. 4421	. 4107	. 3838
10.000	. 5574	. 5146	. 4788	. 4481	. 4216
15.000	. 5922	. 5518	. 5176	. 4881	. 4624
20.000	. 6146	. 5759	. 5430	. 5146	. 4897
30.000	. 6432	. 6069	. 5759	. 5491	. 5254
50.000	. 6746	. 6412	. 6126	. 5877	. 5657
70.000	. 6929	. 6612	. 6341	. 6104	. 5894
100.00	. 7104	. 6804	. 6547	. 6323	. 6124
150.00	. 7282	. 7001	. 6759	. 6548	. 6360
200.00	. 7397	. 7127	. 6896	. 6693	. 6513
300.00	. 7545	. 7290	. 7071	. 6880	. 6710
500.00	. 7710	. 7473	. 7268	. 7089	. 6930
700.00	. 7808	. 7581	. 7385	. 7213	. 7061
1000.0	. 7904	. 7686	. 7498	. 7334	. 7189

Table 1la. Values of G for $\theta=\pi / 3$.

$\mathrm{q}^{*} \quad \mathrm{~h}_{\mathrm{s}} / 5 \mathrm{a}$. 1	. 2	. 3	. 4	. 5
. 00010	. 1396	. 0286	. 0140	. 0095	. 0073
. 00015	. 1696	. 0350	. 0171	. 0116	. 0089
. 00020	. 1943	. 0404	. 0198	. 0134	. 0103
. 00030	. 2344	. 0494	. 0242	. 0164	. 0126
. 00050	. 2942	. 0637	. 0312	. 0212	. 0162
. 00070	. 3390	. 0753	. 0370	. 0251	. 0192
. 00100	. 3906	. 0898	. 0441	. 0300	. 0229
. 00150	. 4530	. 1096	. 0540	. 0367	. 0281
. 00200	. 4986	. 1261	. 0623	. 0424	. 0324
. 00300	. 5626	. 1534	. 0762	. 0518	. 0397
. 00500	. 6394	. 1954	. 0980	. 0668	. 0512
. 00700	. 6858	. 2283	. 1155	. 0789	. 0604
. 01000	. 7305	. 2680	. 1373	. 0940	. 0721
. 01500	. 7753	. 3189	. 1667	. 1146	. 0881
. 02000	. 8031	. 3585	. 1909	. 1317	. 1014
. 03000	. 8370	. 4182	. 2299	. 1599	. 1234
. 05000	. 8719	. 4969	. 2876	. 2028	. 1575
. 07000	. 8907	. 5486	. 3305	. 2360	. 1842
. 10000	. 9075	. 6013	. 3794	. 2753	. 2165
. 15000	. 9233	. 6568	. 4377	. 3249	. 2583
. 20000	. 9326	. 6926	. 4796	. 3625	. 2910
. 30000	. 9436	. 7372	. 5375	. 4176	. 3406
. 50000	. 9543	. 7838	. 6051	. 4873	. 4066
. 70000	. 9599	. 8090	. 6448	. 5313	. 4505
1.0000	. 9648	. 8315	. 6823	. 5749	. 4957
1.5000	. 9692	. 8525	. 7191	. 6197	. 5440
2.0000	. 9720	. 8651	. 7417	. 6481	. 5757
3.0000	. 9751	. 8801	. 7691	. 6837	. 6162
5.0000	. 9783	. 8953	. 7978	. 7216	. 6605
7.0000	. 9800	. 9037	. 8136	. 7429	. 6859
10.000	. 9817	. 9114	. 8283	. 7628	. 7097
15.000	. 9832	. 9189	. 8427	. 7825	. 7335
20.000	. 9842	. 9236	. 8517	. 7949	. 7486
30.000	. 9854	. 9294	. 8630	. 8104	. 7674
50.000	. 9867	. 9357	. 8752	. 8272	. 7880
70.000	. 9875	. 9393	. 8822	. 8368	. 7998
100.00	. 9882	. 9428	. 8889	. 8461	. 8111
150.00	. 9889	. 9463	. 8957	. 8555	. 8226
200.00	. 9894	. 9486	. 9001	. 8615	. 8301
300.00	. 9899	. 9514	. 9056	. 8693	. 8395
500.00	. 9904	. 9546	. 9119	. 8780	. 8502
700.00	. 9906	. 9566	. 9156	. 8831	. 8565
1000.0	. 9907	. 9585	. 9193	. 8881	. 8627

Table 11b. Values of G for $\theta=\pi / 3$.

$\mathrm{q}^{*} \quad \mathrm{~h}_{\mathrm{s}} / 5 \mathrm{a}$. 5	. 6	. 7	. 8	. 9
. 00010	. 0073	. 0059	. 0050	. 0043	. 0038
. 00015	. 0089	. 0072	. 0061	. 0053	. 0047
. 00020	. 0103	. 0083	. 0070	. 0061	. 0054
. 00030	. 0126	. 0102	. 0086	. 0075	. 0066
. 00050	. 0162	. 0132	. 0111	. 0097	. 0085
. 00070	. 0192	. 0156	. 0132	. 0114	. 0101
. 00100	. 0222	. 0186	. 0158	. 0137	. 0121
. 00150	. 0281	. 0228	. 0193	. 0167	. 0148
. 00200	. 0324	. 0264	. 0223	. 0193	. 0170
. 00300	. 0397	. 0323	. 0273	. 0236	. 0209
. 00500	. 0512	. 0416	. 0352	. 0305	. 0269
. 00700	. 0604	. 0492	. 0416	. 0361	. 0319
. 01000	. 0721	. 0587	. 0497	. 0431	. 0381
. 01500	. 0881	. 0718	. 0607	. 0527	. 0466
. 02000	. 1014	. 0827	. 0700	. 0607	. 0537
. 03000	. 1234	. 1008	. 0854	. 0742	. 0656
. 05000	. 1575	. 1291	. 1096	. 0953	. 0843
. 07000	. 1842	. 1514	. 1288	. 1121	. 0993
. 10000	. 2165	. 1788 -	. 1524	. 1329	. 1180
. 15000	. 2583	. 2146	. 1838	. 1608	. 1429
. 20000	. 2910	. 2432	. 2090	. 1833	. 1633
. 30000	. 3406	. 2875	. 2487	. 2193	. 1961
. 50000	. 4066	. 3486	. 3050	. 2711	. 2440
. 70000	. 4505	. 3906	. 3447	. 3085	. 2791
1.0000	. 4957	. 4353	. 3880	. 3500	. 3188
1.5000	. 5440	. 4847	. 4372	. 3982	. 3657
2.0000	. 5757	. 5180	. 4711	. 4321	. 3992
3.0000	. 6162	. 5616	. 5164	. 4782	. 4456
5.0000	. 6605	. 6103	. 5681	. 5321	. 5008
7.0000	. 6859	. 6386	. 5987	. 5643	. 5343
10.000	. 7097	. 6656	. 6280	. 5955	. 5670
15.000	. 7335	. 6926	. 6577	. 6274	. 6006
20.000	. 7486	. 7098	. 6767	. 6478	. 6223
30.000	. 7674	. 7314	. 7006	. 6737	. 6498
50.000	. 7880	. 7550	. 7268	. 7021	. 6802
70.000	. 7998	. 7687	. 7419	. 7186	. 6978
100.00	. 8111	. 7817	. 7565	. 7344	. 7147
150.00	. 8226	. 7950	. 7713	. 7505	. 7320
200.00	. 8301	. 8036	. 7808	. 7609	. 7432
300.00	. 8395	. 8145	. 7930	. 7742	. 7575
500.00	. 8502	. 8268	. 8068	. 7892	. 7736
700.00	. 8565	. 8341	. 8149	. 7980	. 7831
1000.0	. 8627	. 8413	. 8229	. 8067	. 7924

Table 12a. Values of G_{b} for $\theta=\pi / 13$.

$q^{*}-h_{s} / 5 a$. 1	. 2	. 3	. 4	. 5
. 00010	. 0062	. 0095	. 0136	. 0185	0247
. 00015	. 0076	. 0117	. 0167	. 01827	. 0247
. 00020	. 0088	. 0135	. 0192	. 0262	. 0349
. 00030	. 0108	. 0165	. 0236	. 0321	. 0427
. 00050	. 0139	. 0213	. 0304	. 0414	. 0551
. 00070	. 0165	. 0252	. 0360	. 0489	. 0651
. 00100	. 0197	. 0301	. 0429	. 0584	. 0777
. 00150	. 0241	. 0369	. 0525	. 0714	. 0948
. 00200	. 0279	. 0426	. 0606	. 0823	. 1092
. 00300	. 0341	. 0521	. 0740	. 1004	. 1329
. 00500	. 0440	. 0670	. 0951	. 1287	. 1696
. 00700	. 0519	. 0791	. 1121	. 1512	. 1984
. 01000	. 0620	. 0942	. 1330	. 1788	. 2333
. 01500	. 0756	. 1146	. 1611	. 2152	. 2784
. 02000	. 0871	. 1315	. 1841	. 2444	. 3137
. 03000	. 1059	. 1590	. 2208	. 2901	. 3672
. 05000	. 1351	. 2004	. 2743	. 3540	. 4385
. 07000	. 1579	. 2318	. 3133	. 3985	. 4857
. 10000	. 1854	. 2685	. 3571	. 4463	. 5341
. 15000	. 2209	. 3135	. 4082	. 4995	. 5854
. 20000	. 2487	. 3470	. 4444	. 5353	. 6187
. 30000	. 2907	. 3951	. 4937	. 5822	. 6606
. 50000	. 3469	. 4547	. 5511	. 6341	. 7054
. 70000	. 3845	. 4921	. 5853	. 6638	. 7303
1.0000	. 4238	. 5292	. 6181	. 6918	. 7535
1.5000	. 4666	. 5679	. 6514	. 7195	. 7762
2.0000	. 4952	. 5930	. 6725	. 7370	. 7903
3.0000	. 5327	. 6250	. 6991	. 7587	. 8078
5.0000	. 5750	. 6602	. 7279	. 7821	. 8266
7.0000	. 5999	. 6806	. 7445	. 7955	. 8373
10.000	. 6239	. 7001	. 7602	. 8081	. 8474
15.000	. 6484	. 7199	. 7762	. 8209	. 8576
20.000	. 6642	. 7326	. 7864	. 8291	. 8642
30.000	. 6845	. 7488	. 7994	. 8395	. 8724
50.000	. 7070	. 7669	. 8138	. 8511	. 8816
70.000	. 7203	. 7775	. 8223	. 8579	. 8870
100.00	. 7333	. 7878	. 8306	. 8645	. 8923
150.00	. 7467	. 7985	. 8391	. 8713	. 8977
200.00	. 7554	. 8055	. 8447	. 8758	. 9013
300.00	. 7668	. 8145	. 8519	. 8816	. 9059
500.00	. 7798	. 8249	. 8602	. 8882	. 9111
700.00	. 7877	. 8311	. 8651	. 8922	. 9143
1000.0	. 7954	. 8372	. 8700	. 8961	. 9174

Table $12 b$. Values of G for $\theta=\pi / 18$.

$q^{*} \quad h_{s} / 5 a$. 5	. 6	. 7	. 8	. 9
. 00010	. 0247	. 0328	. 0442	. 0618	. 0936
. 00015	. 0302	. 0401	. 0540	. 0756	. 1143
. 00020	. 0349	. 0463	. 0623	. 0871	. 1315
. 00030	. 0427	. 0567	. 0762	. 1063	. 1599
. 00050	. 0551	. 0730	. 0981	. 1364	. 2035
. 00070	. 0651	. 0862	. 1156	. 1604	. 2376
. 00100	. 0777	. 1027	. 1375	. 1899	. 2786
. 00150	. 0948	. 1252	. 1670	. 2292	. 3311
. 00200	. 1092	. 1439	. 1913	. 2608	. 3717
. 00300	. 1329	. 1746	. 2306	. 3108	. 4327
. 00500	. 1696	. 2212	. 2890	. 3819	. 5126
. 00700	. 1984	. 2572	. 3327	. 4323	. 5648
. 01000	. 2333	. 2998	. 3827	. 4872	. 6179
. 01500	. 2784	. 3532	. 4427	. 5495	. 6737
. 02000	. 3137	. 3937	. 4862	. 5921	. 7097
. 03000	. 3672	. 4527	. 5468	. 6483	. 7547
. 05000	. 4385	. 5269	. 6182	. 7105	. 8017
. 07000	. 4857	. 5735	. 6606	. 7456	. 8273
. 10000	. 5341	. 6192	. 7006	. 7777	. 8501
. 15000	. 5854	. 6656	. 7398	. 8083	. 8714
. 20000	. 6187	. 6947	. 7637	. 8266	. 8839
. 30000	. 6606	. 7303	. 7925	. 8483	. 8987
. 50000	. 7054	. 7673	. 8217	. 8701	. 9134
. 70000	. 7303	. 7876	. 8375	. 8817	. 9212
1.0000	. 7535	. 8062	. 8520	. 8923	. 9283
1.5000	. 7762	. 8243	. 8659	. 9025	. 9351
2.0000	. 7903	. 8355	. 8745	. 9088	. 9393
3.0000	. 8078	. 8493	. 8851	. 9165	. 9444
5.0000	. 8266	. 8641	. 8964	. 9248	. 9500
7.0000	. 8373	. 8725	. 9029	. 9294	. 9531
10.000	. 8474	. 8805	. 9089	. 9338	. 9560
15.000	. 8576	. 8885	. 9150	. 9383	. 9590
20.000	. 8642	. 8936	. 9189	. 9411	. 9609
30.000	. 8724	. 9001	. 9239	. 9447	. 9632
50.000	. 8816	. 9073	. 9294	. 9487	. 9659
70.000	. 8870	. 9115	. 9326	. 9511	. 9675
100.00	. 8923	. 9156	. 9357	. 9533	. 9690
150.00	. 8977	. 9199	. 9390	. 9557	. 9705
200.00	. 9013	. 9227	. 9411	. 9573	. 9716
300.00	. 9059	. 9263	. 9438	. 9592	. 9729
500.00	. 9111	. 9304	. 9470	. 9615	. 9744
700.00	. 9143	. 9329	. 9489	. 9629	. 9752
1000.0	. 9174	. 9353	. 9507	. 9642	. 9758

FIGURE 9. NORMALIZED EQUIVALENT BICONE VOLTAGE

FIGURE IO. NORMALIZED RETARDED DISTORTION TIME WITH $2 \theta_{n} / \pi$ AS A PARAMETER

A. EARLY NORMALIZED RETARDED TIME

B. INTERMEDIATE NORMALIZED RETARDED TIME

FIGURE 12. NORMALIZED ELECTRIC FIELD WITH $2 \theta / \pi$ AS A PARAMETER FOR $2 \theta_{n} / \pi=0.1$

B. INTERMEDIATE NORMALIZED RETARDED TIME

FIGURE 13. NORMALIZED ELECTRIC FIELD WITH $2 \theta / \pi$ AS A PARAMETER FOR $2 \theta_{0} / \pi=0.2$

A. EARLY NORMALIZED RETARDED TIME

B. INTERMEDIATE NORMALIZED RETARDED TIME

FIGURE 14. NORMALIZED ELECTRIC FIELD WITH $2 \theta / \pi$ AS A PARAMETER FOR $2 \theta_{n} / \pi=0.3$

B. INTERMEDIATE NORMALIZED RETARDED TIME

FIGURE 15. NORMALIZED ELECTRIC FIELD WITH $2 \theta / \pi$ AS A PARAMETER FOR $2 \theta_{0} / \pi=0.4$

B. INTERMEDIATE NORMALIZED RETARDED TIME

FIGURE 16. NORMALIZED ELECTRIC FIELD WITH $2 \theta / \pi$ AS A PARAMETER FOR $2 \theta_{0} / \pi=0.5$

B. INTERMEDIATE NORMALIZED RETARDED TIME

FIGURE 17. NORMALIZED ELECTRIC FIELD WITH $2 \theta / \pi$ AS A PARAMETER FOR $2 \theta_{0} / \pi=0.6$

A. EARLY NORMALIZED RETARDED TIME

B. INTERMEDIATE NORMAIZED RETARDED TIME

FIGURE 19. NORMALIZED ELECTRIC FIELD WITH $2 \theta / \pi$ AS A PARAMETER FOR $2 \theta_{0} / \pi=08$

B. INTERMEDIATE NORMALIZED RETARDED TIME FIGURE 20. NORMALIZED ELECTRIC FIELD WITH $2 \theta / \pi$ AS A PARAMETER FOR $2 \theta / \pi=0.9$

A. EARLY RETARDED TIME

B. LATE RETARDED TIME

FIGURE 22. NORMALIZED ELECTRIC FIELD WITH $2 \theta / \pi$ AS A
PARAMETER FOR $h_{S} / a=2.0$ AND $E_{S T n}=10^{6}$ VOLTS

Appendix A. Asymptotic Expansion of $G(\eta)$ for $\eta \rightarrow \infty$
The function $G(\eta)$ can be written in the form

$$
\begin{equation*}
G(\eta)=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{y} \eta} \Phi(\mathrm{y}) \mathrm{dy} \tag{A1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(\mathrm{y})=\frac{\mathrm{I}_{\mathrm{o}}(\mathrm{y})}{\mathrm{y}\left[\mathrm{~K}_{0}^{2}(\mathrm{y})+\pi^{2} I_{0}^{2}(\mathrm{y})\right]} \tag{A2}
\end{equation*}
$$

The function $\Phi(y)$ has an asymptotic expansion for very small y given by

$$
\begin{equation*}
\Phi(\mathrm{y})=\frac{1}{\mathrm{y}\left[\ln ^{2}(\mathrm{y} \Gamma / 2)+\pi^{2}\right]}\left(1+\mathrm{O}\left(\mathrm{y}^{2}\right)\right) \tag{A3}
\end{equation*}
$$

where $\Gamma=1.7810 \cdots$, the exponential of Euler's constant.
Define the first term of Eqn. (A3) as

$$
\begin{equation*}
\phi(y)=\frac{1}{y\left[\ln ^{2}(y \Gamma / 2)+\pi^{2}\right]} \tag{A4}
\end{equation*}
$$

Then, there exist a δ and an $\epsilon>0$ such that

$$
\begin{equation*}
|\Phi(\mathrm{y})-\phi(\mathrm{y})|<\epsilon \quad 0<\mathrm{y} \leq \delta \tag{A5}
\end{equation*}
$$

Choose δ such that $0<\delta<2 / \Gamma$.

Also, $\phi(y)$ and $\phi(y)$ are bounded for $y>\delta$, thus,

$$
\begin{equation*}
|\phi(y)-\phi(y)|<\epsilon^{\prime} \quad 0<y \leq \infty \tag{A6}
\end{equation*}
$$

where ϵ^{\prime} is a finite constant.
To obtain the asymptotic form of $G(\eta)$ for $\eta \rightarrow \infty$, write ${ }^{7}$
$\mathrm{G}(\eta)=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{y} \eta} \phi(\mathrm{y}) \mathrm{dy}+\int_{0}^{\infty} \mathrm{e}^{-\mathrm{y} \eta}[\phi(\mathrm{y})-\phi(\mathrm{y})] \mathrm{dy}$

By condition (A6), the second integral can be bounded.

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{e}^{-\mathrm{y} \eta}[\Phi(\mathrm{y})-\phi(\mathrm{y})] \mathrm{dy}=\mathrm{O}\left(\eta^{-1}\right) \tag{A8}
\end{equation*}
$$

The first integral can be written as
$\int_{0}^{\infty} \mathrm{e}^{-\mathrm{y} \mathrm{\eta}} \phi(\mathrm{y}) \mathrm{dy}=\int_{0}^{\delta} \mathrm{e}^{-\mathrm{y} \mathrm{\eta} \phi(\mathrm{y}) \mathrm{dy}+\int_{\delta}^{\infty} \mathrm{e}^{-\mathrm{y} \mathrm{\eta} \phi(\mathrm{y}) \mathrm{dy}} . \mathrm{d}}$

The function $\phi(y)$ is bounded for $\mathrm{y}>\delta$, thus

$$
\begin{equation*}
\int_{\delta}^{\infty} \mathrm{e}^{-\mathrm{y} \eta} \phi(\mathrm{y}) \mathrm{dy}=\mathrm{o}\left(\frac{\mathrm{e}^{-\delta \eta}}{\eta}\right) \tag{A10}
\end{equation*}
$$

The first integral on the right side of Eqn. (A9) can be written as

$$
\begin{align*}
\int_{0}^{\delta} \mathrm{e}^{-\mathrm{y} \eta} \phi(\mathrm{y}) \mathrm{dy} & =\int_{0}^{\delta} \frac{\mathrm{e}^{-\mathrm{y} \eta}}{\mathrm{y}\left[\ln ^{2}(\mathrm{y} \Gamma / 2)+\pi^{2}\right]} \mathrm{dy} \\
& =\int_{0}^{\delta} \frac{e^{-y \eta}}{\mathrm{y} \ln ^{2}(\mathrm{y} \Gamma / 2)\left[1+\frac{\pi^{2}}{\ln ^{2}(\mathrm{y} \Gamma / 2)}\right]} \mathrm{dy} \tag{A11}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{\delta} e^{-y \eta} \phi(y) d y=\int_{0}^{\delta} \frac{e^{-y \eta}}{y \ln ^{2}(y \Gamma / 2)}\left[1+O\left(\ln ^{-2}(y \Gamma / 2)\right)\right] d y \tag{A12}
\end{equation*}
$$

Integration by parts gives

$$
\begin{align*}
\int_{0}^{\delta} \mathrm{e}^{-\mathrm{y} \eta} \phi(\mathrm{y}) \mathrm{dy}=\frac{\mathrm{e}^{-\delta \eta}}{\ln (\delta \Gamma / 2)} & +\eta \int_{0}^{\delta} \frac{\mathrm{e}^{-\mathrm{y} \eta}}{\ln (\mathrm{y} \Gamma / 2)}\left[1+\mathrm{O}\left(\ln ^{-2}(\mathrm{y} \Gamma / 2)\right)\right] \mathrm{dy} \\
& +\mathrm{O}\left(\mathrm{e}^{-\delta \eta}\right)+\mathrm{O}\left(\frac{\mathrm{e}^{-\delta \eta}}{\eta}\right) \tag{A13}
\end{align*}
$$

Now let $u=y \eta$, Eqn. (A13) becomes

$$
\begin{align*}
\int_{0}^{\delta} \mathrm{e}^{-\mathrm{y} \eta} \phi(\mathrm{y}) \mathrm{dy} & =\mathrm{o}\left(\mathrm{e}^{-\delta \eta}\right)-\int_{0}^{\delta \eta} \frac{\mathrm{e}^{-\mathrm{u}}}{[\ln (2 \eta / \Gamma)-\ln u}\left[1+\mathrm{O}\left(\ln ^{-2}(\mathrm{u} \Gamma / 2 \eta)\right)\right] \mathrm{du} \\
& =\frac{-1}{\ln (2 \eta / \Gamma)} \int_{0}^{\delta \eta} \frac{\mathrm{e}^{-\mathrm{u}}}{\left[1-\frac{\ln \mathrm{u}}{\ln (2 \eta / \Gamma)}\right]}\left[1+\mathrm{O}\left(\ln ^{-2}(\mathrm{u} \Gamma / 2 \eta)\right)\right] \mathrm{du} \\
& +\mathrm{O}\left(\mathrm{e}^{-\delta \eta}\right) \tag{A14}
\end{align*}
$$

Evaluating the integrals gives

$$
\begin{equation*}
\int_{0}^{\delta} \mathrm{e}^{-\mathrm{y} \eta} \phi(\mathrm{y}) \mathrm{dy}=\frac{1}{\ln (2 \eta / \Gamma)}+\mathrm{o}\left(\frac{1}{\ln (2 \eta / \Gamma)}\right) \tag{A15}
\end{equation*}
$$

The results of conditions (A8), (A10), and (A15) show that the main contribution to $G(\eta)$ for $\eta \rightarrow \infty$ comes from Eqn. (A15). Thus,

$$
\mathrm{G}(\eta)=\frac{1}{\ln (2 \eta / \Gamma)}+\mathrm{O}\left(\ln ^{-2}(2 \eta / \Gamma)\right)
$$

and

$$
\begin{equation*}
\mathrm{G}(\eta) \sim \frac{1}{\ln (2 \eta / \Gamma)} \quad \text { as } \eta \rightarrow \infty \tag{A16}
\end{equation*}
$$

* This development is an extension of the asymptotic form for $G(\eta)$ developed in Reference 2.

Appendix B. Asymptotic Expansion of $F(\zeta)$ for $\zeta \rightarrow 0$

The Laplace transform of $F(\zeta)$ is given by

$$
\begin{equation*}
f(y)=\frac{e^{-y}}{y K_{0}(y)} \tag{B1}
\end{equation*}
$$

where y is the normalized transform variable. For large y with $|\arg y|<3 \pi / 2$, the asymptotic expansion of $f(y)$ is

$$
\begin{align*}
f(y) & =\frac{e^{-y}}{y \sqrt{\frac{\pi}{2 y}} e^{-y}\left\{1-\frac{1}{8 y}+\frac{9}{128 \mathrm{y}^{2}}+o\left(\mathrm{y}^{-3} \cdot\right)\right\}} \\
& =\sqrt{\frac{2}{\pi y}}\left\{1+\frac{1}{8 y}+O\left(\mathrm{y}^{-2}\right)\right\} \tag{B2}
\end{align*}
$$

where the asymptotic expansion of $K_{o}(y)$ for large y with $|\arg y|<3 \pi / 2$ has been used.

To get a solution of $F(\zeta)$ for small $\zeta, F(\zeta)$ can be written down by the term by term inverse Laplace transformation of $f(y)$ as given in Eqn. (B2). This procedure for obtaining the asymptotic expansion for small argument is justified by the theorem developed on the following pages. Thus, aṣ $\zeta \rightarrow 0$,

$$
\begin{equation*}
F(\zeta)=\frac{\sqrt{2}}{\pi \sqrt{\zeta}}\left\{1+\zeta / 4+O\left(\zeta^{2}\right)\right\} \tag{B3}
\end{equation*}
$$

THEOREM: If $f(\xi)$, the Laplace transformation of $F(q)$, has the asymptotic expansion for $\xi \rightarrow \infty$ with $R_{e}(\xi)>\xi_{a}$ where ξ_{a} is some real number

$$
\begin{equation*}
f(\xi)=g(\xi)+O\left(\xi^{-\mu}\right) \tag{B4}
\end{equation*}
$$

where $\mu>0$ and there exists $G(q)$ the inverse Laplace transform of $g(\xi)$, then as $q \rightarrow 0$

$$
\begin{equation*}
\mathrm{F}(\mathrm{q})=\mathrm{G}(\mathrm{q})+\mathrm{O}\left(\mathrm{q}^{\mu-1}\right) \tag{B5}
\end{equation*}
$$

To prove the theorem, write $f(\xi)$ as

$$
\begin{equation*}
\mathrm{f}(\xi)=\mathrm{g}(\xi)+\mathrm{r}(\xi) \tag{B6}
\end{equation*}
$$

where $r(\xi)$ is bounded for $|\xi|>\xi_{0}>\xi_{a}$ by

$$
\begin{equation*}
|r(\xi)|<C\left|\xi^{-\mu}\right| \tag{B7}
\end{equation*}
$$

and C is a constant. $F(q)$ can be written as

$$
\begin{align*}
F(\mathrm{q}) & =\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty}\{g(\xi)+r(\xi)\} e^{\xi \mathrm{q}} \mathrm{~d} \xi \\
& =\frac{1}{2 \pi i} \int_{\gamma-\mathrm{i} \infty}^{\gamma+i \infty} g(\xi) \mathrm{e}^{\xi \mathrm{q}} \mathrm{~d} \xi+\frac{1}{2 \pi \mathrm{i}} \int_{\gamma-\mathrm{i} \infty}^{\gamma+\mathrm{i} \infty} \mathrm{r}(\xi) \mathrm{e}^{\xi \mathrm{q}} \mathrm{~d} \xi \\
& =\mathrm{G}(\mathrm{q})+\mathrm{R}(\mathrm{q}) \tag{B8}
\end{align*}
$$

Now let $\xi=\gamma+i \lambda, R(q)$ can be written as

$$
\begin{equation*}
R(q)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} r(\gamma+i \lambda) e^{(\gamma+i \lambda) q} d \lambda \tag{B9}
\end{equation*}
$$

For all $\gamma \geq \gamma_{0}>0$ where γ_{0} is a real number chosen to the right of all singularities in $r(\xi), R(q)$ can be evaluated. Now let $\boldsymbol{\gamma}=\boldsymbol{\alpha} / \mathrm{q}$ where $\alpha>0$. Then for all q such that $0<q \leq q_{o}$ where $q_{o}=\frac{\alpha}{\gamma_{0}}$

$$
\begin{align*}
|R(q)|= & \left|\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{(\alpha+i \lambda q)} r\left(\frac{\alpha}{q}+i \lambda\right) d \lambda\right| \\
& <\frac{C}{2 \pi} \int_{-\infty}^{\infty} \frac{\mid e^{(\alpha+i \lambda q) \mid}}{\left[\sqrt{\left(\frac{\alpha}{q}\right)^{2}+\lambda^{2}}\right]^{\mu}} d \lambda \tag{B10}
\end{align*}
$$

where condition (B7) has been used. Therefore, ${ }^{8}$

$$
\begin{align*}
|R(q)| & <\frac{C e^{\alpha}}{2 \pi} \int_{-\infty}^{\infty} \frac{d \lambda}{\left[\left(\frac{2}{q}\right)^{2}+\lambda^{2}\right]^{\mu}} \\
& =\frac{C e^{\alpha}}{2 \pi}\left(\frac{q}{\alpha}\right)^{\mu-1} \int_{-\infty}^{\infty} \frac{1}{\left[\sqrt{1+\rho^{2}}\right]^{\mu}} \mathrm{d} \rho \\
& =\frac{C e^{\alpha} \Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{\mu-1}{2}\right)}{2 \pi \Gamma(\mu)}\left(\frac{q}{\alpha}\right)^{\mu-1} \\
& =C_{1} q^{\mu-1} \tag{B11}
\end{align*}
$$

where $\rho=q \lambda / \alpha$ and C_{1} is a constant. Thus

$$
\begin{equation*}
|R(q)|=O\left(q^{\mu-1}\right) \tag{B12}
\end{equation*}
$$

This is the required result and the proof is complete. Theorems and derivations similar to this theorem can be found in the following references: Doetsch, G., Theorie und Anwendung der Laplace-Transformation; Kap. 13, (Berlin, 1937); and Carslaw, H. S., and Jaeger, J. C., Operational Methods in Applied Mathematics, Chapter 13, Dover Edition, 1963.

If $f(\xi)$ has the asymptotic power series expansion for $\xi \rightarrow \infty$ with $R_{e}(\xi)>\xi_{a}$

$$
\begin{equation*}
f(\xi)=\sum_{n=1}^{k} \Lambda_{n} \xi^{-\mu_{n}}+O\left(\xi^{-\mu_{k+1}}\right) \tag{B13}
\end{equation*}
$$

where $0<\mu_{1}<\mu_{2}<\cdots$, then it follows from the theorem, as $q \rightarrow 0$,

$$
\begin{equation*}
F(q)=\sum_{n=1}^{k} \frac{\Lambda_{n}}{\Gamma\left(\mu_{n}\right)} q^{\left(\mu_{n}-1\right)}+O\left(q^{\left(\mu_{k+1}-1\right)}\right) \tag{B14}
\end{equation*}
$$

where $q<q_{0}$. This result, Eqn.(B14), was used to calculate the asymptotic expansion of $F(\zeta)$ for $\zeta \rightarrow 0$.

Appendix C. Series Approximation for $F(\zeta)$

A regular function $F(\zeta)$ can be approximated by a least squares polynomial fit to give a polynomial approximation $P(\zeta)$ given by

$$
\begin{equation*}
P(\zeta)=\sum_{m=0}^{n} b_{m} \xi^{m} \tag{C1}
\end{equation*}
$$

The relative error of approximation $\Delta(\zeta)$ is given by

$$
\begin{equation*}
\Delta(\zeta)=\frac{P(\zeta)-F(\zeta)}{F(\zeta)} \tag{C2}
\end{equation*}
$$

and

$$
\begin{equation*}
P(\zeta)=F(\zeta)[1+\Delta(\zeta)] \tag{C3}
\end{equation*}
$$

To measure the accuracy of the approximation, define the maximum relative error in the range of approximation as Δ_{m}.

To remove the singularity in $F(\zeta)$ at $\zeta=0$, define a new function $F_{1}(\zeta)$ as

$$
\begin{equation*}
F_{1}(\zeta)=\frac{F(\zeta)}{f(\zeta)} \tag{C4}
\end{equation*}
$$

where $f(\zeta)$ is the asymptotic form of $F(\zeta)$ for $\zeta \rightarrow 0$ given by

$$
\begin{equation*}
f(\zeta)=\frac{\sqrt{2}}{\pi \sqrt{\zeta}} \tag{C5}
\end{equation*}
$$

For $0 \leq \zeta \leq \zeta_{1}, F_{1}(\zeta)$ is regular and can be approximated by a polynomial. The approximation for $F(\zeta)$ can now be written as

$$
\begin{equation*}
F(\zeta)=P(\zeta)=\sum_{m=0}^{n} a_{m} \zeta^{m+k} \tag{C6}
\end{equation*}
$$

where $\quad k=\left\{\begin{aligned}-\frac{1}{2} & \text { if } \zeta \leq \zeta_{1} \\ 0 & \text { if } \zeta \geq \zeta_{1}\end{aligned}\right.$
The series approximation of $F(\zeta)$ was calculated by a least squares polynomial fit with $\zeta_{1}=1.0$ and $n=10$. The coefficients a_{m} are tabulated in Table 1C for six ranges of ζ. The values of $F(\zeta), P(\zeta)$, and the asymptotic form for large and small ζ are tabulated in Table 2C.

Table 1 Ca. Values of b_{m} for $0.0 \leq 5 \leq 1.0$.

$$
\frac{\pi \sqrt{\zeta}}{\sqrt{2}} F(\zeta)=\sum_{m=0}^{10} b_{m} \zeta^{\mathrm{m}}
$$

$$
a_{m}=\frac{\sqrt{2}}{\pi} b_{m}
$$

Range of ζ	$0 \leq \zeta \leq .01$	$.01 \leq \zeta \leq 1.0$
	Δ_{m}	$5.4312 \mathrm{E}-07$
0	$1.0000 \mathrm{E}+00$	$1.0001 \mathrm{E}+00$
1	$3.5554 \mathrm{E}-01$	$2.5745 \mathrm{E}-01$
2	$-9.7015 \mathrm{E}+01$	$-1.9527 \mathrm{E}-01$
3	$7.2158 \mathrm{E}+04$	$1.0017 \mathrm{E}+00$
4	$-3.4541^{\circ} \mathrm{E}+07$	$-4.6672 \mathrm{E}+00$
5	$1.0601 \mathrm{E}+10$	$1.4199 \mathrm{E}+01$
6	$-2.1050 \mathrm{E}+12$	$-2.8027 \mathrm{E}+01$
7	$2.6856 \mathrm{E}+14$	$3.5595 \mathrm{E}+01$
8	$-2.1220 \mathrm{E}+16$	$-2.8028 \mathrm{E}+01$
9	$9.4404 \mathrm{E}+17$	$1.2437 \mathrm{E}+01$
10	$-1.8066 \mathrm{E}+19$	$-2.3750 \mathrm{E}+00$

The values of b_{m} above are given in the E-format, i.e., (Y) $10^{X}=Y E+0 X$.

Table 1 Cb . Values of a_{m} for $1.0 \leq \zeta \leq 10,000.0$.

$$
F(\zeta)=\sum_{n=0}^{10} a_{m} \zeta^{m}
$$

Range of ζ	$\begin{aligned} 1.0 & \leq \zeta \\ & \leq 10.0 \end{aligned}$	$\begin{aligned} 10.0 & \leq \zeta \\ & \leq 100.0 \end{aligned}$	$\begin{aligned} 100.0 & \leq \zeta \\ & \leq 1000.0 \end{aligned}$	$\begin{gathered} 1000.0 \leq 5 \\ \leq 10,000.0 \end{gathered}$
$\Delta_{m} \Delta_{m}$	-3.5485 E-04	-1.7943 E-04	-1.0808 E-04	-7.3248 E-05
0	$9.8379 \mathrm{E}-01$	$4.1086 \mathrm{E}-01$	$2.3447 \mathrm{E}-01$	$1.5806 \mathrm{E}-01$
1	-8.7481 E-01	$-2.5827 \mathrm{E}-02$	-1.0873 E-03	-5.6405 E-05
2	$6.8449 \mathrm{E}-01$	$1.9382 \mathrm{E}-03$	7.8962 E-06	$3.9949 \mathrm{E}-08$
3	-3.4999 E-01	$-9.7520 \mathrm{E}-05$	-3.9193 E-08	-1.9609 E-11
4	$1.1955 \mathrm{E}-01$	$3.3041 \mathrm{E}-06$	$1.3183 \mathrm{E}-10$	$6.5521 \mathrm{E}-15$
5	-2.7728 E-02	-7.6275 E-08	-3.0297 E-13	-1.4992 E-18
6	$4.3736 \mathrm{E}-03$	$1.1995 \mathrm{E}-09$	4.7504 E-16	$2.3434 \mathrm{E}-22$
7	-4.6122 E-04	-1.2623 E-11	-4.9887 E-19	$-2.4556 \mathrm{E}-26$
8	$3.1082 \mathrm{E}-05$	$8.4935 \mathrm{E}-14$	$3.3517 \mathrm{E}-22$	$1.6472 \mathrm{E}-30$
9	-1.2090 E-06	-3.3000 E-16	-1.3007 E-25	$-6.3852 \mathrm{E}-35$
10	$2.0633 \mathrm{E}-08$	$5.6267 \mathrm{E}-19$	$2.2156 \mathrm{E}-29$	$1.0868 \mathrm{E}-39$

Table 2C. Values of $F(\zeta), P(\zeta)$, and Asymptotic Forms

ζ	$F(\zeta)$	$\mathrm{P}(\zeta)$	Asymptotic Form	
			Small ζ	Large ζ
. 00010	45.01791	45.01794	45.01582	
. 00015	36.75761	36.75761	36.75526	
. 00020	31.83355	31.83354	31.83099	
. 00030	25.99281	25.99281	25.98989	
. 00050	20.13517	20.13517	20.13168	
. 00070	17.01832	17.01832	17.01438	
. 00100	14.23977	14.23977	14.23525	
. 00150	11.62834	11.62834	11.62303	
. 00200	10.07182	10.07182	10.06584	
. 00300	3.22582	8.22582	8.21873	
. 00500	6.37506	6.37506	6.36620	
. 00700	5.39071	5.39071	5.38042	
. 01000	4.51367	4.51367	4.50158	
. 01500	3.69007	3.69007	3.67553	
. 02000	3.19971	3.19970	3.18310	
. 03000	2.61903	2.61902	2.59899	
. 05000	2.03857	2.03858	2.01317	
. 07000	1.73113	1.73113	1.70144	
. 10000	1.45852	1.45852	1.42353	
. 15000	1.20437	1.20437	1.16230	
. 20000	1.05440	1.05440	1.00658	
. 30000	. 87882	. 87882	. 82187	
. 50000	. 70661	. 70662	. 63662	
. 70000	. 61729	. 61729	. 53804	
1.0000	. 53941	. 53941	. 45016	
1.5000	. 46785	. 46779		
2.0000	. 42589	. 42590		
3.0000	. 37653	. 37650		
5.0000	. 32689	. 32690		
7.0000	. 30000	. 30006		
10.000	. 27543	. 27548		
15.000	. 25149	. 25148		
20.000	. 23663	. 23664		
30.000	. 21816	. 21816		
50.000	. 19831	. 19831		
70.000	. 18693	. 18695		
100.00	. 17612	. 17613		. 21181
150.00	. 16515	. 16514		. 19506
200.00	. 15811	. 15811		. 18470
300.00	. 14909	. 14909		. 17183
500.00	. 13902	. 13903		. 15796
700.00	. 13307	. 13308		. 14999

Table 2C. Values of $F(\zeta), P(\zeta)$, and Asymptotic Forms (Continued)

			Asymptotic Form	
ζ	$F(\zeta)$	$P(\zeta)$	Small ζ	Large ζ
1000.0	.12727	.12727		.14238
1500.0	.12123	.12123		.13460
2000.0	.11728	. .11728		.12959
3000.0	.11210	.11211		.12312
5000.0	.10618	.10619		.11583
7000.0	.10260	.10261		.11149
10000	.09905	.09907		.10722

REFERENCES

1. Charles H. Papas, "On the Infinitely Long Cylindrical Antenna," J. Appl. Phys., Vol. 20, pp. 437-440, May 1949.
2. R. W. Latham and K. S. H. Lee, Sensor and Simulation Note 73, "Pulse Radiation and Synthesis by an Infinite Cylindrical Antenna," February 1969.
3. Capt. Carl E. Baum, Sensor and Simulation Note 84, "The Distributed Source for Launching Spherical Waves, " May 1969.
4. J. A. Stratton, Electromagnetic Theory, McGraw-Hill, 1941, pp. 486-488.
5. Capt. Carl E. Baum, Sensor and Simulation Note 69, "Design of a Pulse-Radiating Dipole Antenna as Related to High-Frequency and Low-Frequency Limits, " 13 January 1969.
6. Milton Abramowitz and Irene Stegun, ed., Handbook of Mathematical Functions, AMS55, Sixth Printing, June 1964.
7. E. T. Copson, Asymptotic Expansions, Cambridge University Press, 1965, pp.48-62.
8. H. B. Dwight, Tables of Integrals and Other Mathematical Data, The MacMillan Company, 1965, pp. 217, Equation 858.515.

[^0]: *

 $p=-i \omega$ is. used to achieve an outward going wave.

[^1]: * For the purpose of integration, Δz is considered to be a very small differential quantity dz .

[^2]: The quantity ξ_{4} has no easy analytic solution at $\theta \neq \theta_{0}$.

[^3]: * The small time asymptotes were calculated from Eqn. (78), (79), or (80) with the substitution of Eqn. (100) for G_{b}.

