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Abstract

This note considers the low-frequency magnetic field dis-
tribution in a simulator with the geamet=y of a half to;oid con-
nected to a per5ectL: conducting ground or watex surface. The
toroid minor radius ~s r=s=ricted to be sma~L comnared to its
major radius so ZSat :or calcu:atinq the low-fzeq~ency magnetic
f~~l~ tlhe cur=en.c can be canslaered as localized on a seinici=c*2-
lar current patlh ce.nt=xed i~nside the :half toroid. using image
theocy to give a Senk circ’ular cur=ent path t:hemagnetic field
is found from the vec=or “botsntial :rom suc:h a cur=e.nt. The
asymptotic forms of th.s f~elci distribution are :aund near the
csnt=r of the simulator and for distances ~ar :Eom the simulator.
The. field distribution is graphed for a wide range of ~arametezs.
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Abstract

note considers the low-frequency
in a simulator with the geometry
a perfectly conducting ground or

magnetic field dis-
of a half toroid con-
water surface. The

toroid minor radius is restricted-to be small compared to its
major radius so that for calculating the low-frequency magnetic
field the current can be considered as localized on a semicircu-
lar current path centered inside the half toroid. Using image
theory to give a bent circular current path the magnetic field
is found from the vector potential from such a current. The
asymptotic forms of the field distribution are found near the
center of the simulator and for distances far from the simulator.
The field distribution is graphed for a wide range of parameters.
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The figures are placed after the summary and before the ap-
pendices. We would like to thank. Mr. Terry L. Brown and Mr. Joe
P. Martinez of Dikewood, and Sgt. Richard T. Clark and .UC Rob-
ert N. Marks of AFWL for the numerical calculations and graphs.

Contents

Section
I.

11.
III.
W.
v.

VI ●

VII.

Introduction
Low-Frequency Magnetic Field in
Low-Fre~uencv Macrnetic Field in

a
a

Field I){stri~uti;n for Small r/a
Field Distribution for Large r/a
Graphical Results
Summary

Figures

ADnendices

Flat
Bent

Toroid
Toro id.

.*
A. ‘Elliptic Integrals and Their Derivatives
B. Two Integrals TA and T* and Their Derivatives

Page
2
6

I.o

:;
45
46

47

76
80



“

I. Introduction
..,-

In a previous notel we discussed some of the features of an
electromagnetic pulse simulator for simulating the case of a
pulsed electromagnetic plane wave incident on the earth’s sur-
face at some angle of incidence and polarization and with-a fi-
nite, nonzero (except for special cases) low-frequency content
of the appropriate field components. This simulator has the ge-
ometry of a half toroid connected to the ground or water surface
as shown in figure 1. A pulse generator is located at a partic-
ular position in the half toroid and the toroidal structure has
impedance loading for shaping the waveform. One varies the
angle ~1 of the plane of the half toroid with respect to the x
axis (vertical) , varies the angle ~2 of the generator from the
topmost position around the half toroid, and varies the angle 53
which positions the connections of the half toroid to the ground
or water surface with respect to the system under test; by so
doing various angles of incidence and polarization are achie~~ed,

The ground or water conductivity and permittivity influence
the fields, both in the case of an incident uniform electromag-
netic plane wave and in the simulator geometry being considered.
If the ground conductivity is sufficiently nigh the low-frequency
magnetic field near the center of the simulator on the ground
surface ((x, y, z) = (O, O, O)) closely approximates the desired
low-freqgency magnetic field resulting from the incident plane
wave as discussed in reference 1. In this note we consider the
low-frequency magnetic field throughout the vicinity of the sim-
ulator structure for the case of an infinite ground or water
conductivity. ,

Strictly speaking, if the ground or water conductivity is
finite then in the low-frequency limit the magnetic field pene-
trates the lower medium, assuming a distribution dependent on
the nonuniform current distribution in the lower medium plus the
current in the half toroid above. Such a distribution for the
low-frequency magnetic field will not in general be the same as
in the case for an infinihe ground or water conductivity which
we consider in this note. Provided that the lower-medium con-
ductivity is large efiough such that there are frequencies of in-
terest with both wavelengths in air large compared to a (the
simulator major radius) and skin depths in the lower medium
small compared to a cos(~~) p then the case of infinite conduc-
tivity for the lower medium gives accurate results for this case
for the magnetic field in the upper medium; possible exceptions
include positions where the fields are significantly changing

~ . E. Baum, Sensor and Simulation Note 94, Some Con-
siderations Concerning a Simulator with the Geometry of a Half
Toroid Joined to a Ground or Water Surface, November 1969.
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near the lower medium over distances less than or of the order
of the skin depth in the lower medium. Perhaps the case of
finite ground or water conductivity can be considered in future
notes.

Since in this note we consider the case of infinite conduc-
tivity for the lower medium and the surface of this medium a
plane, then we can use an image of the half toroid below the
y, z plane as shown in figure 2 for calculating the fields.
Note the choice of coordinates, the same as in reference 1,
where the ground or water surface is chosen as the y, z plane
with the y axis meeting the half toroid at two positions where
the image also meets the half toroid. In this note we are ~nly
considering the low-frequency magnetic field which we call H for
simplicity because the complete waveform is not being considered.
Let I be the low-frequency current in the toroid and the image
with direction around the complete bent toroid (upper half tor-
oid Dlus image) as indicated. This low-frequency current is
considered as localized on two semicircles of radius a as shown
in figures 2 and 3 where a is the major radius of the half tor-
oid; the semicircular current. filaments are located inside the
half toroid and image of minor radius b where the minor radius
is measured perpendicularly from the semicircular curve to the
toroidal surface. Since we are considering the limiting case of
low frequency (with infinite lower-medium conductivity) , then I
is uniform around the complete bent toroid and for purposes of
calculating the low-frequency magnetic field distribution the
generator position is then insignificant. Note that in calcu-
lating the fields in this note the presence of any system under
test (as shown in figure 1) is not included. Such systems will
distort the fields and interact with the simulator structure.
Perhaps idealized geometries of such systems can be considered
in future notes.

Besides the cartesian coordinates (x, y, z) we define a
cylindrical coordinate system (’Y,+, z) with the relations2

x= Y Cos($) , y = ~ sin($)
.

We also have spherical coordinates (r, e, o) with

(1)

z =rcos(0) I Y = r sin(0) (2)

For unit vectors we use the symbol ~ with the particular coordi-
nate added as a subscript.

2. All units are rationalized MKSA.
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Figure 3A shows a full perspective view of the line current
taken inside the toroid plus image on r = a on two planes each
containing the y axis and canted at angles E1 with respect to
the positive and negative x axes respectively. For positive $1
this current path is only in the half space z > 0. Note the
convention for positive I in the figure; for t~e spe$ial case of
<1 = O then I is taken positive in the direction of e~.

Figure 3B shows one half of the bent circuhr currenti path
with its own coordinate systems. There are cartesian coordi-
nates (u1, u2, u3) and cylindrical coordinates (~, ~, u3) re-
lated by

‘1 = L COS(13) , ‘2 = A sin(f3) (3)

There is also the coordinate Si which replaces 6 as’an integra-
tion variable when integrating over the current I on (1, u3) =
(a, O). Note that all of these coordinate systems are right
handed. This particular set of coordinates shown in figure 3B
is used in section 111 to find the magnetic field from a semi-
circular current filament which is then applied by superposition
to both halves of the bent circular current filament to give the
total loti-frequency magnetic field.

For convenience define a normalized -low-frequency magnetic
field as

(4)
L

Defining a

+
r sr

we have at

position vector as

+
e =X2 ~,+y:
r

+Z2Z = Y q + z ZZ
Y

(5)

+.
r= ~ from reference 1 the result that in the low-

frequency limit for infinite lower-medium conductivity

so that we also have

4
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Thus fc

(7):=6 = Cos(cl):z

r 61 = O we have a unit normalized magnetic Eield at the
coordinate origin. Since a uniform plane wave incident on the
surface of a perfect conductor would produce a uniform resulting
magnetic field at low frequencies over restricted dimensions
near the conducting plane one is then interested in the devia-
tion of the field in the simulator from a uniform field at low
frequencies. For this purpose define a normalized difference
field as

= hx:x

so that at the

L

+h:
YY

origin

A

+ [hz - cos(El)l:z (9)

(9)

,.., -. . .

and the origin is used as the reference point for the magnetic
field distribution. For the plots we also di~ide the various
components of h as well as scalars such as ]Ah\ by cos(~l) in
order to show the size of the various quantities relative to the
field at the origin; thereby one obtains fractional deviations
of the field components and magnitude of the difference field
from the reference field in equation 7.

,
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11. Low-Frequency Magnetic Field in Flat Toroid

First consider the somewhat simple~ special case of a flat
toroid specified by ~1 = O. This case is worked out in Smythe3
and is included for comparison to and as a special case of the
more general result in the next section.

First we go through some preliminary considerations. The
magnetic field is related to a vector potential as

3=1.li!=vd (10)

where P is the permeability of the medium being considered (p.
in our case) . For our static problem the vector potential can
be writiten as a volume integral over the current density in the
form

J,
~(~i)dVi

x(:)=% ++
v r-r,

1

(n)

... .,,,. ...

where V is the+volume of integration. A subscript i with coor-
dinates (like ri, dV1) is used to indicate the position of the
quantity over which the integration is being performed! as dis-
tinguished from the observer position where the appropriate
electromagnetic quantity is being calculated. If the current
density is localized+to give a current I on a contour with a
unit tangent vector es (with I taken positive in this direction)
then equation 11 becomes

(12)

where C is the integration contour for th$ line integra~ and s
is the arc length parameter. Thus I and es as well as ri can be
considered as functions of s. The magnetic field components in
cylindrical coordinates can be calculated from

3 . W. R. Smythe, Static and Dynamic Electricity, 3rd cd.,
McGraw-Hill, 1968, pp. 290-291.
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(13)

Now we consider Smytihe’s derivation for the case of ~~ = O.
In this case the bent circular current path (shown in figure 3A)
lies on the circle (Y, z) = (a, O). The unit tangent on the
contour in equation 12 becomes

+ +-
e =
s ‘+ (14)

so that the current I is taken positive in the ++ direction.
Since we have a single closed contour for the line integral in
equation 12 and since we are considering a static problem then I
is independent of $ and we have by symmetry

...-

‘Y
=Az.=o

(15)

with A~ independent of $ and where

1/2
]:-;il = [a2 + Y2 + 22 - 2aY COs($i)]

The result is

A,= :(%)”2{[, - ~]m) -Eonq

(16)

(17)

e
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where the parameter is taken as

The elliptic integrals (K and E) are discussed in appendix A.
‘The resulting magnetic field has no z component and has

= ##$[(a+Y)2+z2]
-1/2

-K (m)
. ..

.,...%.. :

.Bz=)diz=

= $$[(a+Y

,

= Ux -1/2

{

~2-y2-z2
~[(a+Y)4 + 22] K(m) + E (m)

{a-Y)2+z2 1

2+Z272 j (m) 1
(K [“z-2-

l+~)m]E(m)

(19)

J.

For convenience we have defined a normalized magnetic field
~ by equation 4. For our present case of gl = O we then have
on~y Y and z components given by



I

(20)

hz = ~ Hz

There are some special cases for which the results simplify
considerably. I we have only a z component given byon the z axis

,.-3/2

On the z = O plane we have

*Y [1
-2

m = ~ 1+:
2=0

(21)

(22)

. .

~. Note for O < Y < a that hz is positive while for Y’> a that hz
is negative—on the z = O plane.

This section has considered the special case of &I = O as
an introduction to the more general case considered iv the next
section. The graphs for the low-frequency magnetzc f~eld dis-
tribution are considered in section VI.



III. Low-Frequency Magnetic Field in Bent Toroid

NQW consider the low-frequency magnetic field distribution
associated wi’th a uniform current I around a bent circular path
lying in two planes. To do this we consider the vector potential
and magnetic field associated with a semicircular current path
carrying a uniform current I as in figure 3B. By taking two
such semicircular current paths and appropriately orienting them
in space and adding the fields from the two semicircular paths
the fields from the bent circular path are obtained. Note that
one cannot have a semicircular current path carrying a uniform
static current because of the charge buildup at the two ends of
the path. However the calculation of the magnetic field by a
superposition of the fields for two semicircular paths is still
legitimate. The fields for one semicircular current path are
calculated as an intermediate result. No e that for the semi-
circular current path in general V x ~ # 8 because the current
has+a divergence, while for the full bent current path the curl
of h is zero.

In section 111 A we first consider the magnetic field asso-
ciated with a uniform semicircular current path. Second the
transformations required to apply the results for a semicircular
path to a bent circular path are developed in section 111 B.

A. Low-frequency magnetic field associated with a uniform
semicircular current filament

Consider the geometry in figure 3B which is used for both
halves of the bent circular current path. Here we consider the
static magnetic field associated witih one half of the bent cir-
cular current path without specifying which half. The results
are used later for a superposition of the fields associated with
both halves. As shown in figure 3B we have cartesian coordinates
(ul, u2, u3) and cylindrical coordinates (Y, B, u3) related as
in equations 3. There is a coordinate 61 which is used as an
integration variable in place of 6. For convenience define

6A = ‘i - $ “ (23)

The vector potential and magnetic field calculated here
(section III A) are related to these special coordinate systems.
The vector components are designated by subscripts 1, 2, and 3
for the cartesian case and by subscripts A, 6, and 3 for the
cylindrical case. These are not the total vector potential or
magnetic field and the special coordinate reference identifies
this fact. From the vector potential we ‘obtain the magnetic
field by using

10
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● ‘a=

(24)‘El=
,.

‘3 =
PH3 =

no current is parallel to the U3 axis then from equa-Now since
tion 11 we have

‘3=0
(25)

a normalized magnetic field as in equation 4 we then

I

In terms of
have

‘hA =
,-,

‘B =

2a a——
WI au3 ‘6

2a. a——
VI au3 ‘A

(26)

Converting to cartesian form we use
..

sin(@)hB‘1

‘2
+

(27)
.-

sin(~)h, cos(@)hd
A P

The parameter for use with the elliptic integrals in this case
has the form

11
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(28)

Now consider the vector potential which can be calculated
from

where

Define .:.,
..>,=..,”.-,-

T+(B-ei)

$= ‘2 t d$ =.- ~ df3i

(29)

(30)

giving the relations

COS(13 - Bi) = COS(*4 - T) = -COS(2$)

(31)

sin((3 - @i) = sin(2* - T) = -sin(2*)

= -2 sin($) cos(+)

Then we have

12
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+ 2
r-

+
ri sin2 (~)

J

#

[
(a+A)2 +

[( )a2 1+$2

1u; [1 - sin2 ($)]m

(32)
.

m

1“
I

areof the vector potentialThe

(

++r-~,
1

[
us (a+A)

1

2 + 2 -l’Z*
2‘r_ ‘3 A

,.
., -

, =

2 -1/2

( )1
‘3.
r TA+

VI a l/2ml/dT
()

—-
47r A A

‘B =

. .

[ 1
-1/2

#+ ~ (a+A)2 + u:
‘B

()UI a l’/2ml/2T
777 0

=

A, = o
13



awhere we have defined two integrals
written, using equations 30 through

T~ and T~ which can be
32, as

J
‘n

sin(6i-6)dBi

1/2
o [1-m sin2 (*)]

1=—
2

-2=

‘a

I sin($)cos ($)
. 1/2 ‘@

(34)

J
‘r

1 cos(f3i-9)d13i
=

z 1/2
o [1-m sin2(Y)l

Tr+f3

\

T-
=. 2 sin2(*}-1

1/2 ‘*
8 [1-m sin2 (*)]
z

Appendix A considers some properties of the elliptic inte-
grals and their derivatives. In appendix B (equations B4 and
B6) &e integrals in equations 34 are solved giving

.0s2 ; 1’2()])[
l-m‘a

.

(35)
u

+ (+’)[+44 - +4]
elliptic integral notation (E, F, and ofwhere the twoone or

arguments as appropriate) is explained in appendix A. Using
these results,with equations 28 and 33 gives the vector potential
for the semicircular current path.
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In order to calculate ~ for the semicircular current path
we first calculate some derivatives of m from equations 33;
these are

Zlm [
4a (a+A)2+u~1-8aA(a+X)

m=

[ 1
2

(a+A)2+u~

m~__
A

&(l+*)m2

L 2J

There are also the useful derivatives

*

. .

[

-1/2 -3/2
& (a+A)%u:

1
=

[
-(a+A) (a+A)2+u~

1

1=-
- ~1’2 (’+M’28

[ 1

-1/2

[

-3/2
& (a+A)2+u~ = -U3 (a+A)2+u~

3 1

(36)

(37)

. ‘3 m 3’2
()

=-_ _
. 8 all

,.,,

Now we calculate the components of ~ from equations 26 and
33; these are

15
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‘3

m 3/’2

aA ) T,+ *(:T)’/2[-

- ,-

‘1/2

‘B
-1.,/2~(aA)

()
1+* m3/2.

-! /-

(38)

,,.
,.,..

In appendix B we have ‘the”derivatives

a
v ‘A = ‘sin($) cos($)~[l-m sin2(~)]-1/2 .0s2$ ‘1’2

()] ][
+ l-m

= >{- [.2-msin2($)] [1-m sin2 ($)]-1’2

+

1

[z-m cos2($)] [1-m C0.S2($)]-1’2

-> +’(%qm)- ‘(!14/

16
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●
[

‘3
-1/2

l-m z )]
2

sin

found in equations B7, B9, and B1l. Substituting

equations 35 and 39 into equations 38 gives

the results of

(B-E- 2
m)]m )

r

‘1

‘$

‘3

+ &(2-m) sin($) cos($)
......” A

9

2
Cos

L

H2$ E m
)

E.

“1/2
sin2($,

L[
l-m:3)4$)

+ [“l-m COS2

17



Using equations 3 and 27 these results for the cylindrical coor-
dinate system (1, 8, u3) can be converted to the cartesian coor-
dinate system (u1, u2, u3). Thus we have the normalized magnetic
field for the semicircular current path.

B. Low-frequency magnetic field for bent circular current
path

With equations 3, 27, 28, and 40 we have the normalized
magnetic field for the case of a uniform current I on a semicir-
cular current path as illustrated in figure 3B. Now we apply
these results to the two halves of the bent circular current
path with uniform current I as illustrated in figure 3A. TO do
this we consider two cases designated by a prime and a d~uble
prime for fields and coordinates. The normalized field h is
written as

(41)

where ~, ~r~ and ~if are all considered with respect to the coor-
dinate systems (x, y, z)+ (Y, $, z) , and (r, 6, @) shown in fig-
ure 3A. The prime case hf is for the normalized magnetic field
associated with the semicircular current path in the half space
x > 0 (with the restriction ~~~~ < Tr/2); the double prime case
~r’-is for the normalized magnetic field associated with the
semicircular current path in the half space x < 0.

Note that any field components written in terms of the co-
ordinate systems (u~, u2, US) and (Ar 8, u3) are taken from the
solution for the semicircular current path in equations 3, 27,
28, and 40. This solution is used twice with different defini-
tions of “the coordinates and field components when expressed in
the (x, y, z), (Y, @, z), and/or (r, e, $) coordinate systems.

Case 1: Prime

C~nsi~er 31 in (x, y, z) coordinates. To do this move the
(u~, UZ, US) coordinate system such that the semicircular cur-
rent path (including current direction) is aligned with that
half of the bent circular current path situated in x > C as
shown in figure 3A. This requires the coordinate transformation

‘i = ‘y

‘+=COS(E1)X + sin(gl)z

‘5=-sin(~l)x + cos(gl)z

18
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with

,

..

1.

or

1’ Cos (s’) = u~ ,

in another form

S’ sin (p’) = U+ (43)

“ = [“i2+u~21* = [c0s2(:I)x2+y2+sin2 (%)z2+2sin(gL)cos (’I-)xzl*

(44)

‘i %COS (6’) =p, sin (13’)= ~

The parameter for the elliptic functions is then calculated from

where A‘ and u> are taken from equations 42 and 44. Substitute
m’ and 6’ ,for,m and @respectively in equ?tions 40 and call the
results hX, he, and h3. Then calculate hl and h+ as

hi = sin(f3’)h~ + cos(e’)h~

Having hi, h~, and hi convert to (x, y, z) coordinates from

h’ = -hi
Y
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giving fir in ‘(x, y, z) coordinates.

Note for this case that all
had primes added to them. Thes e
the prime case.

Case 2: Double Prime

coordinates in figure 3B have
transformations only apply to

Now consider ~“. Us% do~le,,primes with the coordinates in
figure 3B. Orient the (UI, u2, u3) system such that the semi-
circular current path (including current direction) is aligned
with the half of the bent circular current path situated in
X<().

with

and

A“ =

A“

r

This requires the coordinate transformation

‘Y

= -COS(QX + sin(~l)z

= sin(gl)x + cos(~l)z

..-.

COS(6”) u: ,
L

,

$
1 1[

,,2+u,t2 =
‘1 2

2 2+sin2($1) z2-2sin(ClCos%l)x +y

‘1
COS(6”) = p ,

‘5
sin(i3”) = ~

The paraneter is

20
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1

1

T
COS(GL)XZ
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Substitute m“ and f3° f~r m,,and 6
and call the results h~, h~, and
from

h ,1

2

= cos(e’’)h~ - sin(~’’)h~

= sin(~’’)h~ + cos(13’’)h~

and finally convert to

-...
giving K“

-4

z)

(x, y, z)

r~spectively in equat:ons 40
h3. Then calculate hl and h;

(52)

reference using

(53)

coordinates.

Adding this result for ~“ to the result for ~’ in case 1
gives &he total normalized magnetic field as in equation 41.

21



Iv. Field ..Distribution for Small ria

Having developed the complete expressions for the low-
frequency magnetic field resulting from the bent circular cur-
rent path we now go on to consider the form of the magnetic-
field distribution for small r/a. This results in simpler ex-
pressions wh>ch apply to the field near the center of the simul-
ator (i.e. r = ~) so that the spatial variation of the fields
in this part of the simulator can be easily seen.

To approach this problem of the field distribution for
small r/a we first consider the magnetic field near (k, B, u3) =
(O, O, O) for the semicircular current path as discussed in sec-
tion 111 A. As a first step consider the two integrals T~ and
T~ which enter into the magnetic field solution in equations 38.
We have the power series expansion

where

and where two numbers
tation for a binomial

(54)

(55)

in a single pair of parentheses is the no-
coefficient. This series is absolutely

convergent for lsin2 (*) ml < 1. Since we are concerned with-
0 < m < 1 and with real $ then we can use this series to repre-
se~t the function. The first several coefficients are

.

(56)

For our present purposes we only use up through k = 3 in the
series.

From equations 34 write TA as

22
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n+6

/

-2-
2 sin(~) cos($)d$

‘A = 1/2
s [l-m sin2 (Y)]
7

Then we have a representation for TX as

co

x f,
‘A= am!?

8=0

whe r~e

IT+6

‘+l(W

(57)

(58)

(59)

.4

Note that a~ is bounded as 2 + ~ because a2 and the limits and
integrand in equation 58 are bounded. Thus the series in equa-
tion 58 is absolutely convergent for lml < 1. Integrating, we
have

.: ,

,’ aL
[
sin2!2+2 lT+f3

()
- sin22+2 e

a2=RT 7- ( )]z

(60)

Using the half angle formulas

23
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.0s2 { ,H ~ l+cos(f3)

we have

The first several coefficients are

a
o

= Cos(s)

(61)

(63)

a2 = &3cos(6)+cos 3(B)]

‘..,.

a3 = .+<[COS(6)+COS%)I

Next from equations 34 write TB as

sin2 ($)-l]sin
1

2i($)m2 d$

Then T~ can be represented as

24
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..

,, .

m

x k
‘B= bm!2

2=o

where

[2 sin2 ($) 1)

(65)

(66)

Since the limits, integrand, and ai are bounded as ! + ~ then bi
is bounded and the series in equation 65 is absolutely conver-
gent for \ml < 1. Letting

and using equations 62 gives
.,...,-.....

(67)

(68)

Expanding the integrand and integrating the first several coef-

b.

bl

b2

+ 4 sin(E3)

= sin(~)

_2~ sin3(8)
1

25
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a3
[

_3c”
b3 = - msin(~) T-

3 ‘1~(2c) + 3 sin(~) - sin3 (~)

- 3< sin(2G) - sin(4C)1
Tr+f3—-

8 4 32 ~

5
[
~n + 8 sin(~)

= 16*16 8 1
- 2 sin3 (S)

where one can find the integral of COSL+l (C) for small f in
standard reference tables.4

In calculating the normalized magnetic field certain deriva-
tives of T~ and T~ are used. From equations 58 and 6.5we have

~,.-....

m

&T6=
z

!Lbkm’-l

%=1

(70)

*

where these series are also absolutely convergent for \ml < 1.
Another derivative of interest is

CG

%=0

where

4. H. B. Dwight, Tables of Integrals and Other Mathematical
Data, 4th cd., Macmillan, 1961, chapter 2.
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Note that this last derivative can also be obtained directly from
equations 34 and then using the expansion in equation 54 to ob-
tain the absolutely convergent power series in m for Iml < 1.
The first several coefficients are

c =
o

-sin(s)

~ sin(B)
C1=-4

(73)

~[-2 sin(~) + sin3(S)lC2 = 32

5
‘4 = 8“16[

-~ sin(~) + 3 sin3((3)]

‘With these preliminaries now write the normalized magnetic
field from equations 38 for the semicircular current path for
small m as -

1 ‘3 m 2~bo + 3b1m + 5b2m2
()

.— —
‘A = 81Ta A + 7b3m3 + O

3

1
7

‘3 am Ja
()/

——. + 3a1in + 5a2m2 + 7a3m3 + 0(m4)~
‘6 ‘8raA o

(74)

lad
() mz~(b +C ) + (2b1+cl)m + 2 + (4b3+c3)m3——

‘3 = 2T a (00 (3b2+c2)m

( )[+0(m4) - * l+: born + 3blm2 + 5b2m3 + 7b3m4 + 0(m5)
11

1 ()
.4
\8b2 + 4=1 + (12b2+4c2)m + (16b3+4c3)m2 + 0(m3)

‘x?

-( )[1+;b. + 3b1m + 5b2m2 + 7b3m3 + O(m )
1

41
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where the last result has used b. + co = O. Equations 74 have
included only the first several terms in an asymptotic expansion
as m + O. The remainders are included in the order symbols
since an absolutely convergent power series is also an asymptotic
series.

Having the magnetic field for small m now convert this re-
sult to small r/a. Note first that

(3’=(3’+(3’+(3’
= (i+)’+(32 (75)

This result is independent of which of the two semicircular cur-
rent paths are being considered since the origin of the (UI, U2,
u3) coordinate system is the same position as the origin of the
(x, y, z) coordinate system in both cases. Then as r/a + O we
can write any cartesian coordinate divided by a as O(r/a) , in-
cluding u~{ u2, u3, x~ yt z; the same applies for 1 and Y. Then
from equat~on 28 expand m as r/a + O in the form

Thus we can also write.as r/a + O

(76)

(77)

One of the term combinations in equations 74 can be written for
r/a + O as

28



.

(78)

Next find the magnetic field for the semicircular current
path for r/a + O by substituting equations 76 through 78 into
equations 74. Equations 63, 69, and 73 are needed for the coef-

ficients. Then as r/a + O the low-frequency normalized magnetic
field for the semicircular current path has the form

‘33AU3= *sin(f3)~ + - - —4aa ()
+0 (:)3

( )/- 1+: s:

(79)

.
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‘

1= –+
2

$sin(f3)* + ;(:)2- ;(:)2+0 ((:)3)

where up through quadratic terms in k/a and u3\a have been re-
tained. Using equations 27 convert h~ and h~ to h~ and h2 for
r/a + O giving for h~~ h2, and h3 the results

(80)

~l”3+3u2u’+o E
3

—— ———
ra 4aa (())z

Now that we have the solution for small r/a for the semi-
circular current path we can apply it to the full bent current
path by superposition-of the results for the prime and double
prime cases as discussed in section III B. First apply the re-

sults of equations 80 to the prime case. From equations 42 the

coordinate transformations are

‘i = ‘y

‘; = COS(E1)X + sin(gl)z

‘5=-sin(~l)x + COS(5L)Z

30

(81)
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Substituting th$se results into equations 80, applying the trans-
formations for h’ from equations 47, and collecting terms gives
(for r/a + O)

,,
..
+0 (H)g-3

a
.

{
+ ~ cos(~l) (*j2+[-4sin2 (~1)cos (gl)+cos %1)] (:)2

[ 1
+ 8cos2(~1) sin(~l)-2sin3 (~1) ~ ~

31
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[ 1
+ 3sin2(<1)cos (<1)-2cos3(gl) (~)z

()+0 (:)3

Next apply the results of equations 80 to the double prime
case. From equations 48 the coordinate transformations are

‘f =

% =

‘+ =

Y

-cos(gl )x+sin(&, )2
J.

sin(~l)x+cos

-1.

(cl)z

(83)

(for

h; .

Substituting th$se results into equations 80, applying the trans-
formations for h“ from equations 53, and collecting terms gives

r/a + 0)

+0
r3(())z
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@

-.

3j
)[

X2
Z 2+ -4sin2(~1) COS(?1)+cQs

+ ~jcos(~l) a
3(E. )1 ~)

+
[
-8cos2( g1)sin(gl)+2sin %1)]: :

. .
1+[3sin2(5, )cos(~. )-2cos3 (51) (~)2

L,.,...

Having both

hx =

h=
Y

h++h “
x

Cos (Gl)

1.

i’

J.

and ~” results to

hl+hll

YY

y:
aa

+0((:)3)

33
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& &

= Cos

Note thaa COS (51) is factored out of the asymptotic expressions
for each of the components. Also note that some of the terms

vanish for the special case of c1 = O which introduces symmetry
with respect to both the z axis and the x, y plane.
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v. Field Distribution for Large r/a

Another limiting form for the low-frequency magnetic field
distribution which we consider is that for large r/a. Again

consider the results for the semicircular current path which are
represented for small m by the asymptotic form in equations 74.
For r/a + ~ we can write m from equation 28 as

. .- -1

(86)

Note in considering the asymptotic form as r/a + m that ~/r,
u~/r, and B are all considered as fixed numbers. One might de-
f~ne’a polar angle Y by

.-.

A : r sin(y) , ‘3’=
r Cos(y) (87)

so that (r, Y, 6) is a spherical coordinate sYst@m for ~h@ s@mi-
circular-current-path problem. Then as r/a + m one keeps y and
S fixed which implies fixed A/r and u3/r as well as fixed u~/r
and u2/k. Later, when considering the full bent-circUlar-curr@nt-
path problem, this implies fixed x/r, y/r, z/r, Y/r, o, and @ as
r/a + ~. From equation 86 there is the interesting result as
r/a + m that

m= O(;) (88)

Thus a/r + O implies m + O and the results of equation 74 direct-
ly apply. For r/a + m one of the term combinations can be
written as
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3.—
.- 2

c.

a31
()[F

3--
2

*2 Aa+a2
77 !)]F

3-—
91 2

J

(
a3

0 k) )]
(89)

into equationsSubstituting the results of these equations
74 gives for the low-frequency normalized magnetic field as
r/a + =

,U
=3a

(‘A=wrr

36



‘3a2
>0s (6)y(~) + +

.

[
+ + +15sin (6)- ~sin %](+ ;)2+0

Using equations 27 convert h~
giving for hl, h2, and h3 the

‘1= cos(~)hx-sin(8)hS

(90)

and h~ to hl and h2 for r/a + m
results

37



‘2 = sin((3)hA+cos(f3)h8

● (:)4+0((:)5)
(91)

=l”3a2+
H

——.
mrr ;%%)3+ +>[- ;+ ;(2)2+,(2)2](;)4+0( [;)’)

A%2+[+-:(32-:(2)2](33‘3=-Trr

,.
..-!-- _.

With the solution for z/a + ~ for the semicircular current
path we go to the solution for the full bent circular current
path by the superposition procedure outlined in section III B.
First apply the results of equations 91 to the prime case. The
coordinate transformations are (from equations 42)

‘i = ‘y

%
= cos(51)x+sin(~1)z

.
(92)

‘3 = -sin(cl)x+cos (Sl)z

Substituting the coordinate transformations into equations 91,
applying the transformations for h’ from equations 47, and col-
lecting terms gives (for r\a + ~)
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*

hz = h~+h”
z

= COS(51)
[
1-

.l 1
-20x Lza

()]
—.
nr FF

i-0((:)5)

2

Here cos(~l)
convenience.
drop out.

is factored out of the asymptotic expressions f
Note that for El = o the terms involving (a/r)

~r

For convenience these results can be converted to cylindri-
cal and spherical coordinate representations. In cylindrical
coordinat&s (Y, $, z) we have the relations

,. ..x= Y Cos(f$) ,

The field components

hw

Y = Y sin($)

= cos(@)hx+sin($)hy

can then be written

(97)

+0 as
(0)F

(98)
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‘6=-sin (@)hx+cos(@)hy

“(32:](34}++)5)
In spherical coordinates we have

Y = r sin(6) , z = r cos(6)

The field components are then

(99)

+ 0((:)5)

‘$s cOs(e)hV-sin(@):z

(loo)
a’+0

(())F

e
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With the general results and the asymptotic form for small
r/a worked out in the previous sections we next consider the
quantitative distribution of the normalized low-frequency mag-
netic field in the immediate neighborhood of the simulator.
Th$se results are graphed i~ figures
lAhl and the components of h are div
graphs so that hz/cos(~l) + 1 as r/a
ient reference for the relative size

4 through 29. Note that
ided by COS(E1) for the
+ O and to give a conven-
of the other field compo-

nents and of the magnitude of the difference field. The eqya-
tions for the computer prograins are in section 111 B with Ah
taken from equation 8. The special simpler case for c1 = O is
found in section II.

The figures come in groups. ‘I’hereare five groups associ-
ated with specific values of ~1. The first group (for EL = O)
has only two figures since the results can be expressed with
only two normalized field components (hy and hz) and two coordi-
nates (Y and z) . Figure 4 plots the field components as a func-
tion of z/a for various ‘f/a; figure 5 is a contour plot of Idfil
on a z, Y plane. Note because of symmetry we only consider
z > 0, y> 0. The second through fifth groups have 5 figures
fop each ~roup with fixed El. The first three figures take
fixed values of y/a and plot the three cartesian normalized
field components as functions of z/a for various xLa. The
fourZh figure in the group is a contour plot of lAhl on x, y
planes for 3 values of y/a. The fifth figure in the group con-
siders only the x = O plane (the ground or water surface) where
there are only two nonzero normalized field components, hv’ and
h=; these two components are plotted as functi~ns of z/a Zor
various y/a, and there is a contour plot of IAhl on the x = O
plane. Note that by symmetry we only need consider x > 0 and
y > 0, but both positive and negative z are needed. A~ter the
five groups of figures for fixed c1 values there is a sixth
group. This sixth group comprises two summary fi u$es, numbers
26 and 27. Figure 26 plots the maximum value of ~Ahl/cos(&~) as
a function of r/a for various values of El between O and r/2;
the maximum is taken over all 8, @ on the surface of a sphere of
constant r/a. Figure 27 specializes this result by constraining

~ O (the ground-or water-surface) ; the maximum valu@ of
YAhl/cos(gl) is taken over all 6 on a circle of fixed r/a to ob-
tain the maximum on the x = O plane; the maximum is plotted as a
function of r/a for various values of 51. These maxima are de-
termined numerically. Note that the maximum over the sphere is
in general only a little larger than the maximum over the circle
on the x = O plane for the same value of r/a. Figures 28 and 29
repeat the plots in figures 26 and 27 respectively, except with
expanded scales. ,

For convenience in the contour plots a star * is used to
indicate the position of the current path where it intersects
the plane being considered.
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VII. Summary

This note has considered the low-frequency magnetic field
distribution produced by a simulator with the geometry of a half
toroid connected to a perfectly conducting ground or water sur-
face. The minor radius of the half toroid has been assumed
small compared to the major radius so that the current could be
localized to a semicircular current path. Using image theory
then the magnetic field has been found by integrating over the
uniform current around a bent circular current path. After hav-
ing obtained expressions for the normalized field in terms of
elliptic integrals, the asymptotic forms for positions near the
“center” of the simulator (r = O) and for far away positions
(r + ~) have been obtained. Graphs show the magnetic field dis-
tribution in the vicinity of the simulator.

The results in this note apply to the case that low fre-
quencies of interest have wavelengths in the air large compared
to a (the major radius) but skin depths in the ground or water
small compared to a. Perhaps another note can consider the lim-
iting low-frequency magnetic field distribution for the case of
a uniform finite ground or water conductivity. Furthermore the
two positions where the half toroid meets the ground or water
surface need not be the positions of electrical. contact to the
lower medium. Conductors (perhaps including various impedance
elements as well) could run from the two ends of the half tor-
oid along or just above the ground or water surface tb two other
positions where electrical contact to the lower medium would be
made. ~With this flexibility and perhaps even more general con- ,
ductor distributions the low-f requency current density distribu-
tion in the lower medium can be tailored somewhat so as to make
the low-frequency magnetic field distribution better approximate
a unifo~ f~eld in the z direction near the center of the simu-
lator (r = 0).

,. .. . . .. .... .... . . ,-.. ..-. . .,.

*
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Appendix A: Elliptic Integrals and Their Derivatives

For the elliptic integral notation we follow a standard
reference. 1A There are three standard forms of incomplete el-
liptic integrals;

.
these are the first kind

second kind

-1/2
[1 - m sin2(v)] i<V

1/2
[1 - m sin2(v)l dv

(Al)

(A2)

and third kind

1
G -1 -1/2

ll(n;~~m) = IL - n-sin2(v)] [1 - m sin2(v)] dv (A3)
.-1- 0

e
where c is called the ahplitude, m is called the parameter, and
n is called the characteristic.
tude defined by

There are also the delta ampli-

and the complementary parameter

(A4)

defined by

(A5)

When c is taken as n/2 the elliptic integrals are called comp-
lete and can be written in a shorter form; these are the first
kind

I
Abranwwitz and I. A. Stegun, ed. , Handbook of Mathemati-

cal Functions, AMS55, National Bureau of Standards, 1964, chap-
ter 17.
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#

(A6)

second kind

(A7)E
i~

and third kind

II(n

Now

(A8)

the first two kinds of el-consider the derivatives of
liptic functions. First
tained from equations Al

consider <. The derivatives are ob-
and A2

=[1-

to give

-1/2
m sin2(C)] (A9)““~(<lm) = [A(c) ]-l

.

and

1/2
-&E(~lm) = A(c) = [1 - m sin2(K)] (A1O)

For completeness A3 we addfrom equation

-1
sin2(C)] ‘[A(c) ]-L[1

[1

n

n

c.

-1
sin2(C)] [1

-1/2
- m sin2(C)] (All)

The complete elliptic integrals are not functions of c and so
such derivatives are not considered.

Next consider the derivatives of the first two kinds of el-
liptic integrals with respect to m. Using equation Al we have
for the first kind
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.

The
can

JIc
-3/2

=—
20

sin2 (u)c1 - m sin2 (v)] dv

special elliptic integral of the third kind in this result
be written as2A

Sin(2r:)
~ n(~)

m sin(~) COS(C)
~ 1/2 (A13)

[1 - m sin2(~)l

Thus we can write this derivative in terms of incomplete ellipti&
integrals of the first and second kind as

In the case
this resulk

,
(A14)

of the complete elliptic integral of the first kind
reduces to

1 !1E(m)~K(m) = ——
2m {ml

- K(m)

2A. Ref. 1A, eqn. 17.7.24,
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*

For the incomplete elliptic integral of the second kind we

1/2
sin2(v)] dv

J1<=---
20

sin’(v) [l - m

= ~[E(Clm)- F(Clm)l

For the complete elliptic integral of

a
~E(m’ = &lE (m - K(m)]

-1/2

second

dv

kind this

(AL6)

re-

(A17)
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Appendix B: TWO integrals TA and T6 and Their Derivatives

From equations 34 we have the integral

i--lr

1 sin 0) cos $)
‘1 = 2 ‘—

,2d$

s [1 - m sin2($)l

Let

~=A2($)=l-

drl = -2m

giving

,.,
...

sin($)

m sin2(*)

cos($)d$

= ;~(!)-Awl

(31)

Thus for TX we have

.
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,.

‘$
I

2!1‘A”iiiJ - m sinz ~ 1’2- [1 - m sin2(~)]1’2~( )]

~[

21
- m sin’ $ 1’2- [1 - m CQS2(})]L’2}

‘z ( )]

From equations 34 we have another integral

2 sinz($) - 1
1/2

[1 - m sinz(~)l

(B4)

1/2 z -1/2/
- :[1 (-msinz(~)] +fi- l)C1 - m sin’(v)]

f
dt

(B5)

ThUS’ TQ can be written in termS of

lT+f3m) - E(~lm)]

These two integrals T~ and T~
m. Consider first the derivatives
tion B1 we have .

incomplete elliptic integrals

)]m. (B6)

are both functions of 6 and
with respect to 6. From equa-

b ‘A =‘43+(W)F - mSinz(w]-’”
- Sw-($)[1 - m‘in’(!)]-L”

.

= -.in($)cos($){[l - m sin2($)]-1’2+[1 - m cos2(~)]-1’2 ~

(B7)
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.-
and from equation B5 we have

&-T,= [sin’(w)

Now
equation

=

Finally

~in2 Tr+f?l( !]
-1,/~

-2-

- [s~n’(~)- *][1- m sin2($)]-1’”2

zonsider &he derivative of T~
34 we have

+
[
2 -m

consider the derivative of
equation B6 and using the elliptic
appendix A we have

%7‘B=+’(%+)-’(+4]
m

(B8)

to m. From

T6 with respect to

m

(B9)

m. From
function derivatives from

4-F(%+)-++”F($4]

m)-F($\m)]
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‘IT+9
m )-F m

L /
2

sin

,.

<
I

* Collecting terms, this becomes

1.

$
-1/2

.
2 )1 }

.
+l’-nl.

z Xp
co s

2

(Bll)


