
Sensor and Simulation

Note 122

February 1971

Low-Frequency Magnetic”Field Distribution of a Half
Toroid-Simuiator Joined to a Finitely Conducting

Ground: Simple Ground Connections

A. D. Varvatsis &nd M. I. Sancer
Northrop Corporate Laboratories

Pasadena, California

Abstract

In this note, we consider the low-frequency magnetic field distribution

of a half toroid simulator joined to the ground in such a way that the current

flows from the end point of the toroid directly into the ground and is collected

likewise by the other end. Making the assumption that the contact areas with

the ground are sufficiently small we find that the magnetic field on or above

the ground due to these currents can be calculated by replacing the ground

currents with two semi-infinite current elements oriented downward from the

toroid end points to infinity. The magnitude of the current is the same as that

in the toroid. For points below the ground the ground currents contribution is

the same as that of two semi-infinite current elements carrying the same current

as before, but oriented upward from the toroid end points to infinity. Plots

are given of the field components at points on, above or below the ground surface.

Additional plots are also presented that are related to the difference between

the actual field and the low frequency component of the EMP magnetic field.

Specifically we find the maximum value of the magnitude of the difference

between these vector fields normalized to the magnitude of the = field. This

maximum is fcund on the perimeter of a circle lying in the ground plane and

centered at the origin,or” the surface of a hemisphere resting on the ground and

also centered

normalized to

at the origin

the radius of

and it is plotted against the corresponding radius

the toroid.
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I. Introduction

In a previous note
[11

the low-frequency magnetic field of a half toroid

simulator directly connected to an infinitely conducting ground has been

analyzed. In the present note we consider the-same situation except that the

ground has a finite conductivity. It is known that &he finitely conducting

ground reflects the low-frequency content of the electromagnetic pulse due to

a nuclear explosion as though it were infinitely conducting. This is no longer

true for the case of a half toroid simulator joined to the ground through

connections that allow the flow of currents into the ground. In this note we

are primarily interested in the simulation of the low frequency magnetic field

at or close to the origin of our coordinate system (see Fig. 1). We would

like to study the deviation of this field from the field calculated in reference

1 and from the field in the actual situation. The actual situation refers to

the low-frequency magnetic field of an electromagnetic pulse, due to a nuclear

explosion, which impinges upon the ground. As we mentioned earlier the ground

behaves as perfectly conducting for the low-frequency interaction and consequently

the simulation would improve if the ground were infinitely conducting.

In the case of a finitely conducting ground one way to imitate an infinite

conducting ground would be to change the geometry of the ground connections.

This could be done in a manner which causes the currents flowing through them

and into the ground to look like the image of the half toroid, at least for

the calculation of the magnetic field at the origin of our coordinate system,

This problem will be the subject of a future note. Returning to the subject

of this note we would like to outline the method which we will employ to

calcula~e the low frequency magnetic field. We assume that a steady current

flows through the half toroid and that the pattern of the ground currents is

independent of the inclination angle of the simulator with respect to the ground.

This can be accomplished by making the contact areas with the ground sufficiently

small. The last assumption allows us to concentrate on the effect of each feed

point independently of the inclination angle. The magnetic field everywhere

is the superposition of the magnetic field due to the half toroid and the

magnetic field due to the ground currents. Using Ampere~s law and symmetry

arguments we prove that the field on and above the ground due to the ground
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currents can be calculated by replacing the ground currents with two semi-

infinite current elements oriented downward from the feed points to infinity.

The field below the ground is calculated in a similar way except that the two

semi-infinite current elements are oriented upward. We find that the ground

currents produce no vertical component of the magnetic field; therefore, for

an inclination angle gl # O (see Fig. 1) the half toroid produces a vertical

component of t’hemagnetic field at the origin. This is an undesirable feature

and deteriorates the simulation of the El@ in a region at and close to the origin.

We exhibit the results of our calculations as follows. For points on or above

the ground we plot the total magnetic field normalized to (1/2a)cos El, versus

zla with parameters x/a, y/a and Cl. (1/2a)cos gl~z is the EMP magnetic field

to be simulatedand it is also the field at the origin due to the half toroid

for the infinite conductivity case. I is the current in the half toroid and

a the radius of the half toroid. We denote the magnetic field normalized to

I/2a ask, i.e., ~ = (2a/1)~. To further compare the present situation with

that of a perfectly conducting ground we compute lAQ1/cos &l where Al = !I- c“s ~laz
A

@

on the periphery of a circle situated on the ground and on the surface of a

hemisphere resting on the ground. Both centers coincide with the origin. This

quantity is a measure of how well a simulator simulates the EMP. It is zero at

the origin for a perfectly conducting ground. We find the maximum deviations

for the circle and the hemisphere and we plot them versus the appropriate radius

normalized to the radius of the toroid, with Cl as a parameter. For points in

the ground we only plot the total magnetic field components, normalized to

(1/2a)cos gl, versus z/a with xla, y/a and gl as parameters.

3
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11. Formulation

The analysis that follows is primarily based on the assumption that the

flow pattern of the ground currents is independent of the manner that the half

toroid or any arbitrary current 10QP is joined to the ground (Fig. 2). This

will be the case if we make the contact areas with the ground sufficiently small.

This flow pattern is the superposition of two independent flow patterns. Drawn

independently they are depicted in Fig. 3. The flow lines are identical to

the electrostatic lines converging or diverging from a point charge. Before

we proceed with the calculation of che magnetic field we would like to examine

the effect of the difference between the ground and air electric and magnetic

permittivities. Notice that due to current continuity, V “ g = O, the problem ‘

under consideration is purely magnetostatic governed by equations which do not

involve the dielectric permittivity c. Thus we can set s = so. The difference

in the magnetic permittivity does not have a significant effect on the calculation

of the magnetic field due to the fact that u R Po.

We now concentrate on feed point 1 (Fig. 3), and we notice that the same

ground flow configuration exists as in the situation depicted in Fig. 4. Due o

to current continuity, (2Q/~t) = O throughout all finite space and consequently

we can apply Ampere’s

aximuthal symmetry of

where p is the distance

carrying the current I.

semi-infinite current I

lawj~*Q = I above or on the ground. Due to the

the problem we find

(1)

from the observation point perpendicular to the wire

This ~ is the superposition of the field due to the

and the field due to the ground currents. That is

Consider now the field due to

wire in free space (Fig. 5).

g=J--
2Tp

a current flowing along an infinite straight

The field in the upper region, is given by

.

a+=H–T(upper) -i-H
–I(lower) ‘

(2)

(3)

4



where upper and lower signify the contributions from the semi-infinite current

elements above and below the mathematical surface that represents the surface

of the ground. Comparing (3) to (2) and (1) we see that

I&=H
–I(lower) “ (4)

Thus the field above or on the ground due to the ground currents can be

calculated by replacing the ground currents with a semi-infinite current I

oriented downward in free space. Returning now to the original situation

(Fig. 2) the fields on or above the ground can be calculated as the super-

position of the fields from the currents depicted in Fig. 6.

Next we compute the field due to the ground currents at observation

points below the ground. Again we concentrate on feed point 1 in Fig. 3. This

field is the superposition of the field due to the semi-infinite wire above the

ground plus the field due to the ground currents. In superimposing these

two contributions we should be aware of the fact that current continuity is

destroyed and charges have to be supplied at the breaking points to satisfy

the continuity equation V ● ~+ (ap/3t) = O (Fig. 7). considering the picture

depicting the ground currents plus a charge Q = It (Fig. 8) we use Maxwell’s

equation V x g = J + (3D/~t) and azimuthal symmetry to derive— —

(5)

The properties of current elements with charges at the ends to satisfy the

[21continuity equation have been studied in an another note . Thus the

magnetic field associated with the current element is given by the usual

Biot-Savart law whereas the electric field has a static-like configuration,

but varies, linearly with time. Thus, D = (It/4~r2)~r whereas current—

continuity gives ~ = (-I/2m2);r. At this point we observe that the cal-

culation of D does depend on c and it would have been different from

(It/4m2)&r had we not set s = so. This point is discussed in the appendix.

Using (5) and the above expressions for J and Ewe find—
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0
(6)

The integral in (6) is equal to~ (~D_’/3t)“ ~where~’ is due to a charge
c

-It at the feed point. Thus Ho ~ue to the ground currents at observation

points below the ground can be computed as the field due to a semi- infini~e

current element I oriented upward. This can easily be seen if we integrate

equation V x H’ = ~’ + (3~’/at) over a contour the plane of which does not—

cross the semi-infinite current. Returning to the original situation (Fig. 2)

the fields below the ground can be calculated as the superposition of the

fields due to currents as depicted in Fig. 9.

So far we have considered a particular ground connection which assumes

the same ground flow pattern independently of the manner that the current

loop -joinsthe ground. An alternative connection would be to insert metallic

rods of length L perpendicular into the ground. If this is the case then we

can prove that for the calculation of the field on or above the ground the

length L is immaterial. The proof goes along the same lines as for the

calculation of the field on or above the ground which we gave before. The

field,however,below the ground does depend on L. This alternative ground

connection will not be further considered.
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III. Total Magnetic Field at a Given Observation Point

The total magnetic field at a given point on or above the ground is the

superpo~ition of the field due to the half toroid and the field due to ground

currents. The field due to the half toroid has been calculated in reference 1.

The ground currents as we showed in section II can be replaced by two semi-

infinite current elements oriented downward from the feed points to infinity.

The field due to a semi-infinite current element can be calculated as follows.

At the finite point we consider a charge -It to satisfy the continuity equation

(dQ/dt) +1 = O. Let us choose an observation point with z’ z O (see Fig. 12).

The magnetic field will only have an
$

component, which due to symmetry will

not depend on $. From Maxwell’s equation V X ~ = ~+ (3~/3t) we find

\

3D
2TrpH

4
=1+ ~*dS .— (7)

s
2“

In reference 2 it has been shown that Q = (-It/4nr )ar. Substituting this

value into (7) we obtain

,.

2TrpH@
/

-I ar’
= ‘+77 ~ “ = .

Sr

The surface integral ~ (;r/r’2, _b dS is the solid angle corresponding to
s

half angle a and it is equal to 2Tr(l- cos a). Equation (8) then gives

‘4 +(l+coscd .

(8)

the

(9)

Consider now an observation point with z’ < 0 (see Fig. 11 provided we set

& = so). FromVX~= ~+ (3~/8t) we obtain

s

and - ~ (~r,/r’2) _● dS is the solid angle corresponding to the half angle !3.

Notingsthat cos 6 = - cos a we obtain equation (9). Thus (9) holds for any

observation point. Consider now the half toroid situation and an observation
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point P(x,y,z) with x z O (Fig. 13). The field at P due to a semi-infinite o
current at 1 is parallel to (R x ~x)/Rl sin al,

–1
where a is the angle between

. 1
-a and R

–1 “
The magnitude of the field is given by (9) where p is equal to

x
RI sin al. Simple algebraic manipulations yield

‘lx = 0

lR1z
‘Iy = -

4TR:(1 - Cos al)

IRI

‘Lz =
4mR;(1 - Cos al)

where

cosa=-~
1 R,

L

‘Ly
=y-t-a

(lo)

(11)

‘lZ = z

Similar calculations for the field due to the semi-infinite current at 2 yield

‘2X =

‘2y =

‘*Z =

o

1R2Z

4TR;(I - Cos a2)

-IR2

4TR:(1 - Cos a2)

(12)

where



cosct =-~
2 ‘2

‘2y=y”a

(13)

’22 = z

‘2
= [X2 + (y - a)2 + 22?

Next we consider the magnetic field in the ground due to the ground

currents. The contribution due to the half toroid can be calculated with the

aid of reference 1. As we showed in section II for calculation of the field

at points in the ground the ground currents can be replaced by two semi-

infinite current elements oriented upward from the feed points to infinity.

We then understand that for points with x < 0 we can use formulas (10) and

(12) provided we set

Finally we present the formulas for the magnetic field due to the half

toroid. They are valid for any observation point above, on or below the

‘ground and their derivation is given in reference 1.

“Htx = (HA sin i3-1-HBcos 6)COS Cl -H3 sin ~1

H = H6 sin 13
ty

- HA COS 6

H
tz

= H3 sin El - (lIXsin 6 +H6 cos f3)COS cl
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where the subscript t indicates the toroid field, and

% =

‘6 =

H3 =

A=

B=

In’

1-3/Zm$ 1
‘A
4ma [ II [ 1— ~(l+A)m-2A1 E(~ m)-E(~ m) +$ F(9 m)-F(; m)

4(1-m)

C(l+A)m-2A]sin ~ cos {
$ ~1-msin2(~)l-%+El-m c0s2(~)l

-+

+ 4(~-m) }1

“1 L

a

4A

(1+A)2+ B2

E(p -f- E(p~q)

p+s ‘

~
(1 -q

P

p+s

J
-%F(p+s~q)-F(pld= (1-q sin2t) dt

P

10



Discussion of Results

The results of this work will be discussed as falling

above and below the ground. In the region above and on the

into two categories,

ground we can

compare our results with those that consider the ground to be perfectly con-

ducting’]. In the perfectly conducting case (IS= CO)the region near the origin

is where the best simulation of the El@ occurs and at the origin the simulation

is exact. In the finitely conducting case (o # ~) considered in this note, the

simulation suffers even at the origin. The major effect of the finite con-

ductivity of the ground on the simulation is the presence of a nonzero x-component

of the field on the ground surface;whereas, in the perfectly conducting case this

component is zero. The value of this component on the ground is plotted in

figures 17A, 25A, 33A, 41A and 49A and it is seen to increase with increasing

cl. The y and z components of the magnetic field are also affected by the

finite conductivity of the ground, but to a lesser extent than the x component.

The combined effect on the EMF simulation can be observed in figures 54

through 57. These figures contain plots of \A~I/costl maximized on the perimeter

o of a circle or the surface of a hemisphere, each centered at the origin.

Specifically the figures contain these maxima plotted against the appropriate

radius normalized to the radius of the toroid, r/a, and they have :1 as a

parameter. “From these plots we can see that in the important region near the

origin the finite conductivity deteriorates the simulation of the EMF. For

larger values of r/a the maximum deviation for the a ~ ~ case tends to stay

below the a = ~ case. For the hemispherical region this occurs beyond the

range of our plot’ (r/a = ,6). For the circular region in the ground plane the

transition occurs at r/aw .25 for 2~1/r = .2, at r/a- .55 for 2~1/T = .5,

and beyond the range of our plot for 2gl/7T= O, .7 and .9. This behavior

can be understood if we recall that in the a ~ cucase we have ground currents

that are replaced by two semi-infinite current elements, while for o = m, we

have an image half loop. For any given 61> as r/a increases the field and

consequently the maximum deviation change more rapidly due to two current

half loops rather than to one half loop and two semi-infinite current elements.

11
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In discussing the fields that penetrate into the ground we note a

difference in the behavior of the x component of the magnetic field from the

y aridz components. For all ehree components the rate of decay increases

with increasing cl; however, the decay rate of hx has the most sensitive gl

dependence. This is the case because it is only the half toroid that produces

the hx component while the other components are due to both the half toroid

and ground currents, We also observe that the decay rate for all three

components increases with increasing y for gl fixed. The reason for this is

that an increasing y corresponds to a closer proximity to the currents primarily

causing the underground fields, i.e. the half toroid and one of the 5w0 semi-

infinite equivalent current elements. (This current element corresponds to

ground contact number 2.) In general the rate of change of a magnetic field

is larger when it is near its current source than when it is further away

from its source.

In conclusion we would like to summarize the main undesirable features

caused by the finite conductivity of the ground relative to a perfectly

conducting ground. a) The magnetic field in the symmetry plane xz and

especially close to the origin deviates considerably from the magnetic field

that would exist if the ground were perfectly conducting. b) Increasing the

inclination angle gl of the toroid increases the field distortion relative

to the infinite conductivity case. c) The maximum normalized field

deviation lA~l/cos &l over the surface of a hemisphere, or the perimeter of

a circle both centered at the origin, assumes large values close to the origin,

thus deteriorating the simulation.

12
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Appendix o
Consider the situation depicted in Fig. 10. The magnetic field at

any point is the superposition of the field due to the semi-infinite current

I going s~raight up and the field due to the ground currents. As we mentioned

before charges -It and It have to be supplied at the breaking point to satisfy

the continuity equation V . ~+ (aP/at) = 0. In free space the magnetic field

due to a current element has been computed in a previous note
[2]

and is given

by the Biot-Savart law. In the presence of two different dielectrics this

is no longer true. Consider for example Fig. ~~. For observation points say

below the tip of the current

The displacement vector ~ due to -It does depend on E, g can be calculated

as follows. Consider,a charge Q at the interface of two dielectrics as in

Fig. 10. To calculate ~ in region I we assume that the entire space has a

permittivity so but the charge has a value equal to Q1. For fields in

region II we assume that the entire space has a permittivity s and the charge

has a value Q1l. Thus in region 1, 111= (Q1/4fir2)~rand in region II,

%1
= (Q11/4m2)~ Applying Gauss’s law for the original situation we find

r’

Q*
–++=Q .
2

(A-2)

Continuity of the tangential electric field along the interface gives

or

Q1 Qn—=—
E E
0

(A-3)

From (A-2) and (A-3) we find

‘o*
14



Returning to (A-1) we obtain

A

_ 2.s1

~

ar,
21TpH —,

4 E+& ,2 ~ “
0 s 4Tr

,2,
and Ho can be computed easily since -~ (~r!/r ● Q represents the solid

angle corresponding to the half angle 6 (Fig. 11). If we compute the field

due to the ground currents and add this to the field computed by (A-5) we

will find that the total field is independent of s which is true for the

original situation (Fig. 10).

(A-4)

(A-5)
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Figure 1. The half toroid simulator directly joined to a finitely
conducting ground, The U2 axis lies in the plane of the
toroid.

Figure 2. Flow pattern of ground currents for
any arbitrary loop directly joined
to the ground.
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Figure 3. Flow patterns for ground current~
independently drawn.
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Figure 4. Semi-infinite .current directly
feeding into the ground,
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Figure 5. Infinite current bisected by an
imaginary plane representing the
ground interface.
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Figure 7. The charges -It and It are supplied at the breaking points to
satisfy the continuity equation.
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4TF’
Figure 10. Semi-infinite current feeding into the ground the permittivity

s of which is different from that of the air.

Region

Region

m

Y’

s

Figure 11. Geometry for the calculation
of the field due to a semi-
infinite current at a point
with Z’ < 0.

z

Figure 13.

s

/“ -It - ‘

x’

Figure 12. Geometry for the calculation of
the field due to a semi-infinite
current at a point with z’ > 0.

P(x,y,z)l

Calculation of the total field at P(x,y,z) with x > 0. The
dotted line is the projection of the half toroid on the ground
interface yz.

19



.

1.5

1.2

.9

.6

.3

hx
—o
Cos c1

-. 3

-.6

-.9

-1*2

-1.5

L

-1,6 -1.2 -.8 -.4 0 ●4 .8 1.2 1.6

z—

A. a

1.5

1,2

.9

.6

.3

h=
—o
Cos c1

-.3

-.6

-.9

-1

-1
.

c.

.

I I t I 1 I I ! I I 1 I 1 I I

4 0 ●4 ,8 ~.~ 1.6-*.6 -1.2 -. 8

‘Magnetic Field

z
a

.------..... ...

coti~onentsas a ??Wcaou

20

●



1

hx

Cos gl

-1

,

.

.

.
hV

-.

-.

.2
I I I I i I I I

,8 -

.4 –

o -

.4 –

.8 –

.2 I I I I i I
-1.6 -1.2 -.8 -o 4 0 .4 .8 1.2 1.6

A,
z
;

8

6 – 1

4 –

2 –

o

2 –

4 –

6 –

8 I I I I I I

-1.6 -1.2 -. 8 -* 4 0 .4 .8 1.2 1.6

‘n
D.

2.0

1.5

1.0

hz
.5

Cos gl ()

-. 5

-1,0

z
a

I I I I

I
1

I I I I

-1.6 -1.2

c.

-* 8 -. 4 0

z
z

.4 ,8 1.2

2<1

Figure 15. Magnetic Field Components as a Function of z: ~ = ();:= ●5*
.,

1.6

21



.9 I I I 1 ! I I I\

.6 -

,3 –

hx
o –

Cos 51 —, —.. o 1.4

-. 3

-*6

‘“~1.6
I I I 1 ! 1 I 1 I ( I I I I

-1.2 -.8 -.4 0 .4 .8 1.2 1.6

z
A, z

1.2
I I I I I I I I

o

.8- da ==.5

.4 -

-.4 –

-.8 –

-1.2- 1 I f I I I

-1.6 -1.2 -,8 -.4 0 .4 .8 1.2 1.6

z
B. F

4
~ I I I 1 I I

3
da = .5

2

h
z 1

Cos gl

o

-1

} I-2 ~ 1 ! I ! I
-1.6 -1.2 -.8 -.4 0 ●4 .8 1,2 1.6

z
c* z

2<~

Figure 16.
Y= .8,

Magnetic Field Components as a Function of Z: ~ = 0; a

22

.

0



.

.15
i

.10–

.05–

hx

o –
‘Os ‘$1

-.05 –

-.10 -

-.15 I I I I

-106 -1.2 8 4 0 .4 .8 1*2 1,6-* -.
z

A, z

.9

.6

.3

_&o

1

-.3

-. 6

-. 9
-1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6

r I t I I I I I

I I I I I I I I I I I I I I I I

B,

2

1

1

1

1

.00.
I I I I I

.75 – y/~= .8

.50 –

.25 –

.00 –

.75 –

.50 –

.25 –

o I

-1.6 -1,2 -.8 -.4 0 .4 .8 1.2 1.6

z
c, z

2E1
Figure 17. Magnetic Field Components as a Function of z: ~ = O; ~ = O.

23



. .

.09

.06

.03

IIX
o

Cos #l

-.03

-.06

-.09

A

.36

.24

.12

.-
.8

! I ! 1 t I I

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2

-.12

-.24

-.36

.

1.6

t I I 1 1 I I I

yfa - 0

-1.6 -1.2

B.

I 1 I I I i I I I I ! I I I I
o .4-. 8 -. 4 .8 1.2 1.6

.82
I I I 1 I I I I I I

.70 -

.58–

.46_

.34– yja = O

.22–

.10
-1.6 -1.2 -.8 -.4

c,

Figure 18. Magnetic Field Components

24

0 .4 .8 1.2 1.6
z
z

2<~
as a Function of z: — =

n
0; := -.2.

@



.06

.04

.02

-.02

-.04

I I I I I I

O .3 .5 .7 .8

/

-1.6 -1.2 -68 -.4 0 .4 .8 1.2 1.6

A.
z
x

.15
I I I I I I I I I

.1(-I–

.05–

30 yla = O

Cos &l

-05

-610 –

-.15 I I I I
-1.6 -1.2 -.8 -.4 02 .4 .8 1.2 1.6

z
B.

1

.48
I I I I I I I I I I I I I I 1

oL_uJJ——~
-1.6 , -1.2 -.8 -. 4 0 .4 1.2 1.6

c.

Figure 19. Magnetic Field Components

25

z
z

as a Function of

.8

2C1
z:—=

[T
o; ~= -*5*

a



.

.045

.030

.015

-.015

-.030

-.045

yia = .8 .7 .5.3 0

1.6 -1.2 8 4 0 .4 .8 1.2 1.6-. -.

.

0

.075
I i i i I I I 1 I I I 1 1

.050 –

.025 –

&o
yta = O

I

-,050 –

I ! I p8
-.075 L I I t

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

B.

.30

.25

.20

,15

.10

.05

0

c

I I 1 I

I I I I I I I 1 1 I 1 I I I I I I
1.6 -1.2 8 -.4 0 .4 .8 1.2 1.6-.

z,
. z

26



.

.036
I I I I

.024

.012
t-

hx

Cos c1 o

t
-.012 –

-.024 -

I I I I t-.036 I
-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

A.
2’
z

.045

.030–

.015–

-LO
yla = O

Cos c1

-.015 k

-.030

-.045 ‘l~
-1.6 -1.2 8 -.4 0 .4 .8 1.2 1.6-.

z

B. x

.24

.20

.16

.08

.04

-n-n-J-

1 I
0 1 I I I I I I I I I

-1.6 -1.2 8 -.4 0 .4 .8 1.2 1.6-.
z

c, z
---, ,zglfi ~;,z=

. . . .

-1,.
Figure 21. Magnetic Field CO~POUents as a ‘unction-of-z:’ ~ a

27



.

1..5

1.2

.9

.6

.3

hx
—o
Cos <1

-. 3

-.6

-.9

-1.2

. 1

.

.

.

.

1

d I
-1.5 1 1 I I I I

-1.6 -1.2 -.8 -.4 0
z

I t t I \ I

.4 .8 1.2

A. a

3.0 I 1 I I

““A

I I I I I

da = .8

2.5

2.0 –

1.5 –

-I

o –..

.5 –

o -~

,5 -

.0 I I

-1.6 -1.2 -.8 .4 .8 1.2

c.

Figure 22. ‘Magnetic Field

-. 4

.

Coulponenm

28

0
z“
z

as a

.

Function

.

●

1.6

●

6



.

.6
I I J I I I I I

.3 -

0 -

hx
-.3 –

Cos &
1

-.6 –

-.9 – .8

-1.2. I I I I I I I
-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1,6

z
A. 5

.6
I I I I I I I I.5 I I I I

~. I

--&
1

.4 –

1
.2–

o –

-.2–

;
4

-. 4 –

I I I
.8 .8

I I I I I I
-. 6. I I I

-1.6 -1.2 8 4 0 .4 .8 1.2 1.6
-. -.

B,

2.0

1.5

1.0

h
z .5

Cos 51

0

-. 5

-1.0

I
x[a = .5

1

I I I I I I I \l [ I I I I I I

-1.6 -1.2 8 4
0.

.4 .8 1.2 1.6-. -,

c.

251

Figure 23. Magnetic Field Components as a Function of z: ~ =
,2; := .5,

29



.9
1 I i I I I 1 I

.6

.3

hx
o

Cos gl

-.3

6-.
.5

I-.9 I I I I I I 1:

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 l.b

z

1
I I I I I.- . .

1.2
I I I I

.8 -
da = O

.4 –

*O ~.. . .. 1.4

1

-. 4 –

-.8 –

.5

-1.2 I I I ! !

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1..6

B. z
;

I I I I
2.5- i I I I I I I

2.0 –

xia = O

1.0 -

!-
tl
z

v1

-1.0 -

.8

-2.0[ I t I I 1 I I I I I 1 t

-1.6 -1.2 8 4 0 .4 .8 1.2 1.6-. -.

c.
z—
a

.

2.5~

Figure 24. Magnetic Field Components as a Function of z: ~ = .2; ~= .8.

30



.
—..-
.2

.1–

0 –
hx

Cos tl-”l —

-.2-

-.3 -

‘“:1.6
I I I I I I 1

-1.2 -.8 -.4 0 .4 .8 1.2 1.6
z

A. 3

1.2
I [ I I I I I I I I I

yla = .8

.9 – —

.6 –

.3 – —

o ~

.3 -

.6 I I I 1 I I I I I I
-1.6 -1.2 -.8 L-., 0 .4 .8 1.2 1.6

3.

2.

2.

hz
—1.
Cos c1

B.
z
z

I I I I I I I I I 1’ I I I I I

yja = .8

1.

●

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

c*
z“
z

261

Figure 25. Magnetic Field Components as a Function of z: ~ = .2; ~ = 0.

31



.08
I I I I 1’ i I I 1 I [

.04 –
.7

.8
.5

or
/

.3 //
.2 ///

h I -1

-.12 -.

-.16- 1 I 1 1 I
-1.6

f I
-1.2 -.8

1 t’ / I f-.4 0 .4
f I

.8 L*2
I

1.6

.45

.30

.15

-._&-O
1

-.15

-.30

-.45

I I I [ .8

.82

.70

.58

hz
,46

Cos El

.34

.22

.10

-1.6 -1.2 -.8 -.4

B.

o .4 .8 1.2

I I I I I I

.

-1.6 -1.2 -. 8

c.

Figure 26. Magnetic

-. 4

Components

o .4 .8 1.2
z
x

2~1 ●2as a Function of z: — =
T ;

32

1

1.6

.6

x
-s-.

a
2.



.

.

hx

Cos gl
-,

-.

-.

h
z

Cos ~,
1

-.u~~
-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

A.
z
z

.175

.150_ I I I

.100–

.050–

o
yla = O

.100 –

.12~i 6
. -1.2 -.8 -.4 0 .4 .8 1.2 1.

B.

o~~
-1.6 -1.2 -.8 -.4 0“

c. z
z

Figure 27. Magnetic Field Components as a

.4

Function

.8 1.2 1.6

2% .2 x
Ofz:—= =.

Tr
;: .5.

6

33



●

.

04
I I I I I I 1 I I I I

.

h
x --*

Cos c1

-.

-.

-. 081 I I I I I I I I I I I ! I I I J
-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

A.

.09

.06

.03

-.03

-.06

-.09

.8

-L.6 -1.2

B.

-. 8 -, 4 0 .4 .8 1.2 1.6

.35
I I I i I i I I I I 1 I I

.30–

.25–

hz
.20–

Cos [
I 4??7///

~

Y

.05~~
-1.6 -1.2 -.8

c.

-. 4 0
z
Zi

.4 ,8 L,2 g 1.6

Figure 28. Magnetic Components as

34

a Function
2~1 ●2 x

of z: —= ●–=-.8.
T ‘a

.

0



.
.04

1- -i

hx

Cos c
1

-.061 I I I I I I I I I I I I I 1 I I
-1.6 ,.-1 2 -.8 -.4 0 .4 .8 1.2 1.6

A.
z’
z

.06

.04

.02

_&o

1

-.02

-.04

y/a = O

— .5

-.06 I I I I I I I I I I 1 I
-1.6

I
-1.2 -,8 -.4 0 .4 .8 1.2 1.6

B. z—

.25

.22

.19

h
z ,16

Cos c1

.13

.10

.07

a

-1.6 -1.2 -.8 -.4

c.

Figure 29. Magnetic Field Components

-~
o .4 .8 1.2 1.6

z
z

2g1
as a Function of z: — =

T
.2; := -1.

35



1*2

k
,9

*6

.3

0I
-...

-. 3

y<i9

6

4

2
-.

-. 9

-1*2

I \ I !~
.8

.5

-1.5
-1.6 -1.2 -. 8 -. 4 c) ,4

2*O

1.5

1.0

hq
z

\

.8

.

I
F-41

‘ 4 1>%
-1. 5. I I \ I I ! i t I I I !) . I I t

-1.6 -1*2 -:8 -. 4 0 .4 ●8 1,2 1.6

c.

%1
Figure 30. Nagnetic Field Components as a Function of z: ~= ,5; := 0’

1

( ,.



1,2

.8

.4

-. 4

-. 8

-1.2

I I I I I I I I I I I

.5

-1.6 -1.2 -,8 -.4

A.

o
z-a

.4 .8 1.2 1.6

2.0

1.5

1.0

.5

-1.O I I I I I I I I I I
-1.6 -1.2 -.8 -,4 0 .4 .8 1.2 1.6

z
B. z

2.C

1.5

1.C

hz

Cos El “5

c

-. 5

-1.C

I I I I I 1 I I I

.

.
.8

I I I I I I I I I I

-1,6 -1.2 -.8 -.4

c.

.4 .8 1.2 1.6

%1Figure 31. Magnetic Field Components as a Function of z: ~ = .5; := .5.

37



.

.75

.50

0

-.50

hx

Cos &l -1.00

-1.50

-2.00
-2.25

.

I I ! I I I I I I I .8 I
.2

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2

A.

3

2

1

Z&”
1

-1

-2

-3

.

1.6

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6
z

B. x

4
1, I I I 1 I 1 1 i i i I I I I

,2

. —
o

-1
t .s%’

-21 I I I 1 I I 1 I I \! /! I I I I I

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

c.
z
E

.

38



h
x

.3.
1 I I I I I I I I_ I I 1

0 –

I .8 1
-1.5 I I I I I I I I I I I I I I I I

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

A.

2.25

1.75

1.25

& .75
Cos gl

.25

0

-.25

-.75

z
-a

I I I I I I I I I I I I
-1.6 -1.2 -.8 -.4 0 ●4 ,8 1.2 1.6

B. “’

3.0

2.5

2.0

h
z

1.5
Cos <

1

1.0

.5

0’
-1.6 -1.2 -.8

c.

. .

Figure 33. Magnetic Field

-. 4

.. . .

Coinpon6nts

o .4 .8 1.2 1.6
z
z

39



,15
I I I I I I I I [ I

.05 –

o –
-.05 –

.8 .7 .5 .3 0

-.15 –

-.25 –

-.35 –

-.45 I t I I I I 1 I

-1.6 -1.2 -.8 -.4 0 *4 .8
z-

YI1 f t II ;

1.2 1,6

A.

.8 t I I I i I I I I I I

n[ y/a = u

/722% -1

I
.“

-. 41 I I I I I I 1 t I I I I I
-1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6

B.

1.3

.1

.9

.7

.5

.3

.1

t I I I I 1 I

-1.6 -1.2 -.8

c.

Figure 34. Magnetic

-. 4 ,0

Field Components as

40

.4 .8 1,2

.

0

●

6



.09

.06

0

-.06

-,12

-,18

-.24

.j;~~
-1,6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

A.

.32

.24

.16

I-J
v

h_

o

-.08

-,16

I I I I

.

yla = O

I I I I I I I I I
-1.6 -1.2

I
-.8 -.4 0 .4 ,8 1.2 1.6

B.

z .4
Cos El

.3[

.6

.5

1
/

.2–

.1 ~Lllllll I
-1.6 -1.2

J
-, 8 -.4 0 .4 .8 1.2 1,6

c.
z
z

u ~
Figure 35, Magnetic Field components as a Function of z: ~= .5; ~= -.5.

41



,06
I I I I 1 I [ I I 1 t I I I I

-.181 I I I I [ I I i 1
-1.6

! I
-1.2

! I 1 I
-.8 -.4 0 .4 .8 1.2

ii. z
-a

.18
I I 1 1 I I I I I I .81 I / I I

.15 –

.12 –

,09 –

.06 –

.03 –

o y~a = O

.03 .

1 1 I I I 1
-1.6 -1.2 -.8 -.4 0 .4 ,8 L.2 1.6

z
B. z

.46.
I \ I I I I I I

y[a = O
I I [ I I I

.40 –

.34 –

,28 –

,22 _

.16

.10
-1.6 1.2 1.6

c.

Figure

-1.2 -.8

36. Magnetic Field

-* 4 0
z
x

Components as a

42

.4

Function of

.8

.

2% ,5 ~ 8

z: —= *
7T

; —= -“ “a



Cos

.06

.03

0

h
x

—-.03
51

-.06

-.09

-.12.

.12
I I I I I I I I I I G i I I I I

.09

.06

o

-.03

-.06 I 1 I I I I I I I I I I I I
-1.6 -1.2 -. 8 -* 4 0 .4 .8 1.2 1.6

B.

.35 I

.30 –

.25 –

h
z—.20 –

Cos gl

.15–

.10

I I I I I I

.05 I !

-1.6 -1.2 8 4 0 .4 .8
-. -.

z

1.2 1.6

c.

Figure 37. Magnetic

?-El

Field ComponeIlts as a Function of z: ~ = .5;5= -~.
a



1.2

.9

.6

●3

hx
—o
Cos c1

-* 3

-. 6

-. 9

-1.2

-1.5

I I I i I t I t I t I 1

.

.

.

.

! I I I 1 I I 1 I
-1.8

-1.6 -1.2 8 4 0 .4 .8-. -.
z“

I I
\i

\

5
.2

P

.8

0

5
i i i

1.2 1.6

4.2 -
i \ i I i i i i 1 i i I i i i

3.6 –

3.0

2.4 t

1.8

1.2

.6

-. 6

-1.2

-1.8 L

Axla = .2

-1,6 -1.2 -. 8 -. 4

Components
,..

Oz .4

T

.8

%1——
aS a Function Of z; = =

1.2 1

,7; := (),

44



.-.

Isx
—0 L

L I

../. - , ,

18-.

-1,6

.2

-2.4 I ! 1 t I I I I 1 t
-1.6 -1.2

U. I
-.8 -. 4 0 .4 .8 1.2 1.6

A.
.-

z.
a

2.0

1.5

1.0

& ●5

1

-.5

-1,0
-1.6 -1.2 -.8 -.4 9 .4 .8 1.2
B. ~

4

3

2

o

-1

-2

a

-1.6 -1,2 -.8 -.4

c,
z
a

.4 .8 1.2 1.6

45—- ..



1.5
I I I I I I I I i i

1,

.

hx

Cos c1

.

.

.

-. 5–

o, .2

-1.0 I I ! I I I
-1.6 -1.2 -.8 -.4 c) .4

A. z—
a

2.4
i I I I I I [ I

1.8 -
da = O

1.2 -

-_&_ .6 -

1
0

-. 6-

-1.2\ I ! I 1 I

-1.6 -1,2 -*8 -.4 0 .4 .8 1.2 1.6

B. z—
a

4..2. ‘
I I I I 1 I I I I I i

3.6? 4

-1.2L

I 1 I I J ! I I ,~,,1-
-2.4

-1.6 -1.2 -.8 -.4 0. .4 .8 1.2 1.6
c. z—

a

.

.

—0, .2 1
I I I I I
.8 1.2 “ 1,6

~~1 ‘“ . .
9?iJgure40. Magnetic Field Components as a Function af z: —

= .7? 5* ,8.
T

46



.

.6

.
0

-. 6

h
—-1.2x
Cos Cl

-1.8

-2.4

-3.0-

-_&_
1

I I [ I I I I I I I I

-

.

.

.

I I 1 1 ! I I I

-1.6 -1.2 -. 8 -.4 (-1
A. z—

a

.4 .8 1.2 1,6

Si
I I I 1 I I I I

4 –’.

3–

yla = .8
2–

1–

o

-1 I I I I I I

-1.6 -1.2 8 4 0 .4 .8 1.2 1.6-. -,

B.

4.8

4.0

3.2

h
z 2.4

Cos gl

1.6

.8

0

z—
a

i I I I I I I I I I I I
7

.

1-

Py/a = .8

~~
I I I I I I I I I II ! I I I I I I 1 I t ! J

1.6 -1.2 -.8 1.2 1.6

c.

Figure 41. Magnetic

-. 4 0 .4
z—
a

.8

Components as a Function of
%1 .7 x o

z:—=
?T

;—=*a

47



.6

.3 -

hx
o -

Cos &l

-*3 -

-.6 -

-.9 _

-1.2. I I I I 1 I I I I I I t I 1
-1.6 -1.2 -.8 -.4 0= .4 .8 1.2 1.6
A. —

a

1.8 .
I I I I [ I I I

.8
I I I 1 t I

1.5 -

1.2 -

.9 -

.6 –

.3 –

-.3 –

‘4:1.6
c 1 I ! I I I I I I I I I I I

-1.2 -.8 -.4 Oz .4 .8 1.2 1.6

B. z

1

L

h
z

.60-
1 I I I I 1 I I 1 I I

.35 –

.10 –

.85 –

.60 –

.35–

-1.6 -1.2 -.8 -.4 0 .4 .8 1,2 1.6

c. z“—
a

.

.

●

2C1
Figure 42. Magnetic Field Components as a Function of z: ~ = .7; ~= -.2,

48



.18.
I I I I I I I

.09–
I I I I I 1

0 –

-.09 –

61L+JYEii. -.8 -.4
A.

o .4 .8 1.2
z 1.6

z

g?

yja = .8

.7

0

I

.75
i I I I I I I I I I I 1

.

I-I
Y—.

Cos ‘$1

.

-.

.8

60 –

45 –

30–

15–

o -

i
15’ I I I I I I 1 I J
-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

B. z—
a

1.05
i I

.90 -

.75 -

hz
.60 -

Cos gl v/a - 0

.45 -

.30–

,15
-1.6 -1.2 -.8 -.4 0 .4
c.

.8 1.2 1.6
z—
a

2?1
Figure 43. Magnetic Field Components as a Function of z: ~ = .7; ~ = -.5.



.12 r I I I I I I I 1 [ I I i I I I i

. 06

0

-.06
llx

—-.12
Cos E,

L
-.19

-.24

-.30

-.36
-1.6 -1.2 -.a -.4 0 .4 .8 1.2 1,6

A.

.40

.32

.24

.08

0

-.08

1 1 I 1 I I I I 1 i I I i i

.8 ‘J

-k.6 -1.2 -.8 -.4 0 ,4 .8 1.2 1.6

B.
z—

a

.11 \ I I I I I I I 1 I I I ! 1
-1.6 -1.2 -. 8

c.
-. 4 0 .4 .8 1.2 1,6

z“—

Figure 44. Magnetic Field

a

2~1 ●7 x
*

Components as a Function of z: ~ = * — = -,8.
‘a

50



.

h
—-.12x
Cos c

1

-.18

-.24
..27

,09

.06

0

-.06

I

I I I
o

I I

-1.6 -1.2 -.8 -. 4 0 .4 .8 1.2 1.6

A. z—
a

.25 I I I I I I i I I I I I I

.20 – ,8

.15 –

*.1O –

1
.05 –

o ~
y/a = O

-.05 ) I I I I 1 I I I I

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

B.
z—
a

.60
I I I I I I I I I I I [

.52 -

.44 -

hz
.36 -

Cos El

.28 _

.20 -

.12
-1.6 -1.2

L.

Figure 45. Magnetic

-. 8 -. 4 0 .4 .8
z

a

2<1
Components as a Function of z: ~ =

51

1.2 1.6

.7;;= -1,



2.0

1.5

1.0

.5

hx
—o
Cos 61

-s 5

-1.0

-1..5

-2.0

-2.5

-3.0 I 1 I I I \ I
-1.6 -1.2 -.8 -.4 (). .4 .8

A, z
;

3.0

2.4

1.8

1.2

-. 6

-1.2’

-1.8

-2.4

-3.0

1 .21—
o—

r.5

fi

—0, .2

I I
1,2 1.6

.

.

.

.

\

.5

I I I I 1 I I I I I \l
-1.6 -1.2

c.

Figure 46. Magnetic

-. 8 -. 4

Components as

52

0 “.

z—
a

,4

Function of

.8

““d

/1.5
I

1.2 1.6

.9; & o.

.

●

●



1.25

1.00

.50
F
L

-h
x o -

Cos gl

-.50 ~

-1,00 “yy~

.5
0, .2

-1.50 - I I I I
.8 I

-1.721 ~ I I ! I
0 .4 .E

-1.2 -.$ -.4. z“
A.

—
a

I

I ! 1 I
1.2 1,6

1.

.

.

-&
1

-.

-.

-1.

2.
I I 1 I I I I I I I I i

8 –
xla = O

4 – .2

0

4 –

8 “

2 L I I i I I

-1.6 -1.2 -.8 -.4

B.

o .4
z’—
a

.8 1.2 1.6

2.8 I I I I I 1 I
2.4 -

1 I I I I I

xla = O .2
fl

L

1.6 –

hz “8

Cos gl o

-. 8 –

-1.6 –
.5

I-2.0 , I 1 I I I I I I I

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

c.

Figure 47. Magnetic Field

.4
—

a

Components as a Function

53

of

Ztl

z: —=
?T

●9; f= .56



.

1.2
i I 1’ I I t 1 1 I I I I I I

.5

.8-

.4-

h
x o–

Cos c1

-.

-. 8–
o, .2

-1.2
-1.6 -1,2 8 4 0 ,4 .8 1.2 1.6-. -.

A.
z—
a

1.5
I I I I I i I i 1 I I

1.0– xla = O

.5-

Cos gl

-. 5 – —

o
-1.0

-1.5
-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1,{.

B.
z—
a

1 (11--
. ...--”

/.

-. 5 -7

-1.0

-1.5 I I I I I t ! I 1

-1.6 -1.2

c*

Figure 48. Magnetic

-. 8

Field

-. 4

Components

o .4 .8

z“—
a

Z&l
as a Function of z: — =

T

54

1.2 1.6

.9;~Z .8.

)

,



5 -

h
— -5 –x
Cos 51

-lo -

-15 –

-20( I I I I I ! ! I I I I I I I I i
-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

A.

35

28

21

+14
Cos c1

0

-7. [ I 1 I I I I I I I I I I I

-1.6 -1.2 8 -.4 0 .4 .8 1.2-.

30

20

10

0

z“

;

yfa = .8 ,7 .5 .3 0

, i I I I I I I I I I i

-1.6 -1.2

c*

-. 8

Figure 49. Magnetic Field

-* 4 0 .4 .8
z’—
a

261
Components as a Function of Z: ~=

I*2 1.6

,9; := o,

55



..

L

2.4
1 i I I I I I I I I i I I I I [

1.2

0
L
I

—-1.2“x

Cos c, t
L

-2.4

-3.6

I

,
yla = .8

@.

-4.81 I I I I i I t I
-1.6 -1.2 -.$! -.6 r-l L Q 19.-

A.

7.5

6.0

4.5

_&3. o

1
1.5

0

-1.5-

B.

,-..
0.4

5.4

4.4

_ 3.4
h
z

Cos c1

2.4

1.4

,4’

.- . .T ● U

d
1.6

-1.6 -1.2 -. 8 -. 4 0
z—

a

*4 .8 1,2 1.6

.

.

-1.6 -1.2

c.

r , I 1 I I I I I I ! I J
-. 8 -.4 0 .4 .8 1.2 1.6

z—
a

261
Figure 50. Magnetic Field Components as a Functim Q~ z; ~“ ‘ ~ R -.2..9T ~

56



.9

.6

0

.6

.2

.8

.4

2

1

-&
1

J I
-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

A. z—
a

.5
I I I I I I I I 1- I 1 I I

Q

,0

.5

.0

I

I

,5~ I I 1 I I I I I I I
-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

B. z—
a

o~ I I I
-1.6

I I
-1.2

I
-.8

I I
-.4 0 .4 .8

c,

Figure 51. Magnetic Field Components as

57

z—
a

,,~~;;,,
.,

a Function of z: —=
Tf

1.2

..

1.6

..
~
,5,



.8

.4

0

hx
—-. 4
Cos c1

-. 8

-1,2

-1.6/ I I { I I I I
u

I I 1
-1.6

I
-1.2

I I I I
-.8 -.4 0 .4 .8 1.2 1.6

A, z—
a

.5
I 1 I I I I I I { I I i I I

.2 – .8

.9–

.6–

.3 -

0
y!la - 0

.3 I I I I I I t i I I

2,

2,

1.

h
z 1.

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6.. .
B. z—

a

i i I i I I I I I I j i i
Y14

Cost,.,- /

-A&

Io
I

‘“:1.6
i i I i i ! I i i [ I

-1.2
i i i J

-. 8 -. 4 0, .4 .8 1.2
c. z

a

6

c
2qFigure 52, Magnetic Field Components as a Function of Z: —

~ ,9; ~wj,
r

58



.3 I I I I I

o –

-. 3

-* 6 -

-. 9 -
0

-L2~ I I I I I I I

-1.6 -1.2 8 4 0 .4 ,8 1.2 1.6-. -.

A.
z“.—
a

.

.

.

.

,

75
I I

60–

45–

30–

15–

o

15- 1 ! I I I I i

-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6
.

1.80
I I I I I I I I I I I I

y~a . 0

1.55 –

1.30 –

hz
—1 .05 –
Cos <1

.80 –

.55 –

.30
-1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6

c.

Figure 53. Magnetic Field

z—
a

2?1
Components as a Function of z: ~ = .9; := -1.

59



5.5

5.0

4.5

4.0

3..5

3.0

For X=o

2.5

2.0

1.5

/

/

/

/’
.

//

//

/

/

//
/

-o .2

a

Figure 54. Maximum -l@_ on the perimeter of
Cos(&I}

of radius r centered at the origin:

60

.4

x
—a o.
a

.5 .6

+

o

0

on the ground surface
9



1,

.

.

.
.

For x=O
.

.

.

.

.

. —(J+.

a /———— =m

I ;’ 1’
/ /
/ /1~

/’
/

I
/

/
/

/ ‘j/ ,’
I

.9/ /’.7 /1

/’ /i /i

/ ///

/ /

/
.> /’

/ ,’
/’ /’
//
/

/’
//

//
,/’

/“
,/

,- / /5

/’

.2,1

/
/

/

/ /
/

/-
// /

/’/
/, / / /

// ,/ /
//

// /’

/
/// /

0

///
/ 0

/ /

/// / /
/ /

/+’ ,/’
//

/p /’:E
/“ ,~’ /“ J=o

~/ //.-”” Tr

- #- I I I 1 1 I
0 .1 .2 .3 r .4 ,5 .6

zA.

Figure 55. M~xi~~ A on the perimeter of a circle on the ground surface
ms(g,)

L
of radius r centered at–the origin: x

- = O (scale of Figure 54a

expanded),
61



.

5.

5.

4.

4.

3.

3.

2.

2.

1.

1.

.

0

/
/

/
1

—=”9/‘n

/

/
/

/
/

.7

.1 .2 .3 .4

centered at the

r
z

on the surface of a

origin .

62

hemisphere

.5

or

.6

radius r

@



l.O

.9

.8

.7
9

.5

*4

.3

.2

.1

I I I 1 I I

.

.

.

.

~+-
/ /

/

//
-——— a =W I /

1 / ,5
/!5

//’ //
//

.

/ /
/’

I
I /~

/

/i

I

/ Ii
.9/ .7/

/’
/

/// /

/“
// ///// // / /// ///// /’ //

/ ,/ // /’/ .
/ // //

/ / /“5’ /

,/’
,/

o
0 .1 .2 .3 ~ .4 .5 .6

—
a

Figure 57, Maximum -.l.&.l on the surface of a hemisphere of radius r centerei
COS(E1)

at the origin (scale of Figure 56 expanded).

63



.

Acknowledgement

We thank Mr. R. W. Sassman for his invaluable assistance which enabled

the compueer plotting of our results. We also thank Dr. C. E. Eaum, Dr. R. W.

Latham, and Dr. K. S. H. Lee for their helpful comments.

64



References

1. Capt. Carl E. Baum, “Low-Frequency Magnetic Field Distribution for a

Simulator with the Geometry of-a Half Toroid Joined to the Surface of

a Medium with Infinite Conductivity,” Sensor and Simulation Note 112,

1 July 1970.

2. A. D. Varvatsis and M. I. Sancer, “Low-Frequency Magnetic Field Interaction

of a Half Toroid Simulator with a Perfectly Conducting Hemisphere,” Sensor

and Simulation Note 120, October 1970.

65


