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Abs~ract

In this note we study the high frequency diffraction due to the junction

between the biconical wave launcher and the cylindrical portion of the antenna.

We also study the early time breaking effect on the radiated electromagnetic

pulse due to this junction. The high frequency solution is obtained by employ-

ing the geometrical theory of diffraction and then the early time solution is

derived by taking the inverse Fourier transform of the diffraction solution.

We obtain early time diffraction coefficients corresponding to each of the

junctions where the bicone joins the cylinder. These coefficients are compared

to those that appear in a previous note.
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I. Introduction

A method for achieving the desired early time behavior of a pulse-
EIlradiating dipole antenna is to employ a biconical feeding section ● This

,system is depicted in figure 1. In this note we investigate the effect on

the radiated pulse of the edge formed by the joining of the bicone to the

cylindrical portion of the antenna. Since we are interested in the diffraction

effect of an edge at high frequencies, it is reasonable to employ the geometrical

theory of diffrac~ion[2~*~31. This method yields high-frequency corrections to

the geometric optics solution. A quantitative error bound has not been estab-
-,

lished for solutions obtained by this method; however, numerous comparisons

between exact and experimental results with geometrical diffraction solutions

have supported its validity. Eventhough the high frequency solution itself is

of interest, our primary interest is in the early time solution which exhibits

the “effectof the edge on a pulse. We obtain our early time solution by taking

the inverse Fourier transform of the geometrical diffraction solution. A

quantitative validity time for which such a solution is’s good approximation

can not be determined. There is no way of determining this time duration even

if we knew that the geometrical diffraction method gave the exact high frequency

asymptotic solution; however, in appendix A we establish that there is a finite

length of time for which the asymptotic solution obtained by this method is a

good approximation to the exact solution. In that appendix we compare the

approximate and exact solutions for the problem of scattering by a perfectly

conducting wedge.

We believe that this procedure yields a good approximation to the exacc

early time asymptotic solution and that it accurately predicts the breaking

effect of the edge for a short but finite length of time. The form of the

solution is a quite tractable function of the bicone angle, the radius of the

cylinder, and the observation angle. Because of this, one can readily study

the edge breaking effect as a function of these variables.

The problem studied in this note was also studied by BarnesL41 by a

method we will refer to as the aperture integration method. In appendix B

we again study the problem of scattering by a perfectly conducting wedge by

the aperture integration method. It is found that the aperture integration
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method yields”a.good approximation to the exact solution for-an extended-— >.

period of time; however, our method yields the exact early time asymptotic
.. . ... ,.

solution. his study also-supported Baumts contention (private communication)
.- ---.-

that the exact solution is always larger than the one obtained by the aperture
,.

integrationmethod. Our contribution to the time dependent solution of this

pulse radiating antenna is the prediction of the diffraction coefficients–..––

which describe the breaking effect of both the upper and lower edge on the
.,.. , -

pulse radiated by this antenna. We present tables and curves which sunmarize

these early time diffraction coeff-icients. In the tables we also present .,....
Barnes’s coeffici”entiand in our set of ck~es”we plot a’ratio ‘thatindicates

-,.-

the percentage difference between our coefficients and those of Barnes. This

ratio is small corresponding to the break

for the second break corresponding to the

from the upper

lower edge-.

edge, but is appreciable

.
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“’~rTT.- Pertirknt ‘Aspectso-fGecmkt&al ~if~raction fi”eory
‘!:9r’v IMmrffi’ks?

j.; .-.’.,

Those aspects of the geometrical theory of diffraction which are used

in our problem are the following:

1. A wave is any quantity that satisfies a Helmholtz equation, scalar or

vector, and it can be expressed as

U = A(r)exp[flcV(Q]— .— (1)

. > ,J:

In our problem U will be the magnetic field and ~will be a vector. ..._=&
..- ,— - ,- .....-.. .-4.-.

2. I&ys ‘~~ethe orthogonal”irajectoriesto the wave fronts ~(~) = constant.

3. The field at any point in space is the sum of the fields associated with

the rays passing through that point. The phase of the field on a ray is

assumed to be k times the optical length of the ray measured from some

reference point, where the phase is zero, to the observation point. The

amplitude is assumed to vary in accordance with the principle of conserva-

tion of energy in a narrow tube of rays. The direction of ~ is perpen-

dicular to the ray and in a homogeneous medium this vector slides parallel

to itself along the ray. Finally, in such a medium all rays are straight

lines.

The preceding three numbered statements have been extensively used in ordinary

geometrical optics. A significant statement in the geometrical theory of

diffraction is that these same rules can be used to assign a field to each

diffracted ray.

when an incident

diffracted rays,

direction can an

For our problem a diffracted ray is one that is produced

ray hits an edge. When applying this theory to edge

one must answer the following two questions. Into what

incident ray be diffracted? What “coefficientr’should the

field on an incident ray be multiplied by in order to describe the initial

behavior of the field on a diffracted ray. For the vector case of interest,

this ‘tcoefficient~fis a matrix. Both of these questions will be answered as

we discuss our particular geometry.
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111. The Direction
..;,

Consider the geometry depicted in figure 1. The antenna of intere:t.~~ .,.

the one obtained by imagining the figure to be rotated about the z axis. The .-AI-4.7

jagged lines are used to indicate that the antenna extends between z tending

to fmo The surface at r = b corresponds to our source and we consider that

the electric field is specified on this surface in such a way that it corr~sp.ends
.. . ..... -----

to the electric field of the TEM mode of an infinite biconical antenna. In this.,#.J,.,<

note we assume that b is va,nishinglysmall. With this source the magnetic.~,,,il
... -.-

field that is generated iS the TEM magnetic field~nd this is used to def~=n,,:J.-,,-:- .7 ,2: - .> .-
the field incident on the upper and lower edges, PU and PL. Our problem is .

@ independent-sowe chose $ = O in figure 1.

..

The rules governing diffracted

rays are such that for our problem all diffracted rays will remain in the

@ = O plane, Shortly this rule will be given in more detail. If our observation

point P lies in this plane then it is only those rays associated with the

incident magnetic field that lie in this plane that can be diffracted into the

direction that allows them to pass through P. For the TEM magnetic field,

the associated rays are all radially directed and consequently they strike

the junction between the bicone and cylinder at a right angle.. The general ,,,

rule for determining the direction of the diffracted rays for this angle of

incidence is as follows. Imagine a plane that contains the incident ray and

that has as its normal the vector that is tangent to the edge at the point of

incidence. All diffracted rays will lie in this plane and they will be radial

lines with their origin at the point of incidence. When the angle of incidence

is other than 90° a more general rule for determining the direction of the

diffracted rays is necessary. Since it is not pertinent to our problem we

will not state it in this note; however, it can be found in reference 3.

Referring back to figure 1 we can trace out the path that diffracted rays must —

take in order to pass through P. The ray associated with ~i(PU) strikes the

edge at PU and gets initially diffracted

a diffracted ray to pass through P. The

associated with I&. This ray is the one

direction that causes it to pass through

will be seen to decrease the most slowly

5

into four directions that could allow

ray we first consider is the one —

that is directly diffracted into a

P and the corresponding field, Ell,

with increasing frequency of all those
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diffracted fields associated with PU. The frequency dependence of any singly
-kdiffracted ray is k times the incident field. A second direction that allows

a ray to pass through P is along the straight-line from PU to PL. After it

strikes PL it can be diffracted so as to pass through P. The field associated

with this double diffracted ray just discussed is 113. We can now see that the

ray directed from P
u

to PL can initiate an infinite number of rays that pass

through P. For example the next case is that of the triply diffracted ray

traveling from Pu to PL to PU to P. The third direction to be considered for

the initial diffraction at Pu is back toward our source surface Sb. Tlie “’”
-.~~il

uncertainty of how t-oha~dle the contributio”n”tothe”total fi-elddue to””t”his

ray places a limitation on our analysis. We may handle this in either of two

way. One is to calculate the time, tc, that this contribution would arrive

at our observation point and to state that our solution could have validity

at most up to this time. Anoeher possibility is to assume that the source is

designed to absorb the field associated with this ray and its effect is never

felt at P. The fourth direction we consider is from Pu onto the walls of the

bicone so that the diffracted ray can be reflected so as to pass through P.

This effect is indicated by !+ and is treated in detail in the appendix. TO

summarize, the diffracted field that passes through P initially started at

PU and was directly diffracted to P, multiply diffracted to P, or singly or

multiply diffracted and then reflected to P. Clearly the same discussion

applies for the ray that is initially diffracted at PL“
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.- ‘1~’f’;zh:‘“ High”frequency Diffra-~t~on’Field

First we attach right handed coordinates (TU,

.4
.7 , .—G - .,-, .–, +

Calcuiation’-

Nu, BU) and (TL, NL, BL)

at P
u and PL (see figure 2). We will resolve our incident magnetic field

into these coordinates. This field is given by –.

““-”‘Hi(Pu) = Hi(PL) = h$

where

V(u)foe
ikd

h=
2d sin OoZo

f
o
= {2ln[cot(@o/2)]}-1

d = dL2 + a2

Z. = ipo/eo , k = o

(2)

___ -

(3)

(A) _

(5)__

(6)

and V(w) is the voltage difference between the two cones as measured alohg a

radial arc. It should be noted that h is one half of the TEM bicone field

rather than the total field. The reason for this half factor is that the

entire TEM bicone field is equally divided between the incident field and the

reflected field and it is only the incident field that enters into this cal-

culation.

We now note that ~U = - ~ and ~L = SO.
+

For this reason we resolve the

incident field on P
u

as follows

H.(PU) = - hiU (7)
—1

and

?.-?,(PL)= hiL
—1

7
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We are now ready to obtain the singly diffracted fields that pass through P.

The field coming directly from PU is
)

where

A(cS,S) = ]1 - (s/a)cos 61-%

f(s) = s
-%eiks

$=B&

~_AsinATr #/4

i%

A = (1 + eo/m)-l

[

U+v o

W = (U + V)cot y sin 8
s

-(u - V)cos a Cos 6

(U+v)cOt Y cos 6 (U - V)COS a sin 6

(10)

. f=

(11)

-1
u = (Cos AT - Cos 1(’TI- 13+a))

(12)

(13)

(14)

o

(u - V)sin a cos B1 (15)

-(u - V)sin a sin 6J

(16)

.
v= (Cos km +Cos A(7I- B - Cl)]-i

I
(17)

The dyadic ~ is obtained by solving the canonical wedge problem. We obtained

this quantity by slightly modifying the dyadi.cfor an electric field geometric
[5]diffraction analysis contained in a recent paper by Senior and Uslenghi .

I
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The remaining factors Afk are well known . The calculation of A can ..
-., .-.*,, x-

sometimes be veg__.d$fficult;however~ because of the symmetry of our excitation.
and of the bicone this quantity was comparatively easy to obtain since our

diffraction caustic was always the axis of the cylinder. For a more detailed’’’’:”>

discussion o%”A see reference 3. The ordering of the rows and columns in “’“-’

t& is ‘iU,iiU,iiU. The angle between the incident ray and the negative BU axis

is a, and the angle between this axis and the line joining P,,and P is 6,.
u 1.

The ~ngle between this line and AU is6.
1 The length of–this line is S1.

These quantities are depicted in figure 2. The angle yl is between the

tangent to the edge at P
u
and the incident ray. Explicitly these factors

= (r2+d2
+

‘1
- 2r(a sin e + L cos Q)

al=T-Q

Bl=fl+&l

r sin 6-a
lT- arctan(

L-r cos 8)
L > r cos 8

c1 =

r sin o-a
arctan( ) r cos 8 > L

r cos 6-L

61=$ -ET1

r sin El-a
‘1 = arctan(

L-r cos 61)

~l=;

T-O
n

o=—
2

are

(18:)

(19:}

(20;

(21)

(22)

(23)

(24)

(25)

Similarly the singly diffracted ray from PL is

9
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“L. . ..- -,. -.~-..+ .._’.-_.231 KC,
(26)H =--A(&jf(s2)k- ~(a2, &Y2) ● ~(pL)

–2 1

..-

where A and f aredefined in (11) and (12). ~ has the same definition as

I& except now the rows and columns are associated with ~L, ~L, ~L. The angles

U? and f19are measured with respect to the negative By axis and 65 is measured
&

from the&AL axis. Explicitly

‘2
‘2

=(r+, ~=+.,...

We now consider

the diffraction

J-1 L

these quantities are

d2 -1-2r(L cos 6 - a sin 6))!5
..

,..

w>,:

a2=T-fi=al (28)

L+r cos 6

<2
= arctan(

r sin 6-a)

the field diffracted from P~ to FL to P. First we consider
A

from PU to FL and having direction T
L“

It is

~(PL) = A(&@f(s3)k-%Q(a3,~3,y3) “ Ili(Pu)

(31)

(32)

(33)

and this is in the -~L direction. We introduce the subscript i because the

diffracted ray is now an incident ray on FL. The arguments of the quantities

that appear in (33) are

63
==T/2, s

3
=2L, a3=al, B3=Q+r, y =7/2

3 (34)

10
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Now to “go‘~;om ‘PLY- ‘“to P ‘wecan use (26) wit~ ~?PL) ‘r~pla;edbay‘-~~(PL)-aid

.. c .>,!4 qi-
a~ replaced by $2. Explicitly

~3
= A(62,s2)f(s2)k-%#,62,~/2) “ [-A(&@f(s3)k-%~(a3,B3,y3) 0 ~i(pU)](35)

It should be noted that E13is the first doubly diffracted field we consider

and it is O(k-l). To obtain the field diffracted from PL to PU to P we first
..-.. ..._—— — -

consider the diffraction from PL to P
u“

This is ‘givenby

~~(pu) = A(~4,s4)f(s4)k-%~(a4,B4,y4) ● ~i(PL)

.
and this is in the -T direction.

u
The arguments that appear in (36) are

64=~/2,s4=2L,a4=a2 =al,fi4=Qi-r,y4=7r/2

(36)

(37)

AS before the field then rediffracted to P is

~= -4A(61,sl)f(sl)k ~(~,61,Yl) ● E-A(64,s4)f(s4)k-%QL(a4,84,y4) “ Em]

Now there are a set of rays that are best discussed for a particular

geometry. These are the rays corresponding to a diffraction and a reflection

before they pass through P. We will now present the fields corresponding to

these rays for a special case that was also treated by Barnes‘4] fn detail.

That case corresponds to a = 5 meters and L = 10 meters so that 6 = arctan %,o
0 < 8 S ‘Ir/2,and it is necessary that the diffracted ray start from PL, strike

the upper cone and then get reflected to P. The singly diffracted and reflected

contribution is

55
= A(6j,s5)f(s5)k-%L(a2,~5,~/2) . ~i(PL)

and the doubly diffracted and then reflected contribution

~= A(65,s5)f(s5)k-%L(M5,d2) “ [-q (PL)1

(39)

.—

(40)

11



where ~(PL) is given in (33), The determination of d5~s5, and 85 appe~rs_ ~-i
., :-..4- ., .. , . .

in the a“ppe”ndix.They ~ie’” \
)

65
=m/2+lJJ-eo, $5=2V n-l) (41)

where

(42)
d+r COS(360-6)

IJ= arcos( )
‘5

-.

‘5
= (r2+d2+ 2rd cos{300 - e))% (43)

In the appendix it is also shown

field if the observation angle 6

‘1
= arcos

and

that ~5 and I& contribute to the total diffracted

lies between 61 and @2 where they are given by

22%
L+((r -L ) -a)cos 290

r
(44)

‘2
= 30

0

For this reason we introduce the function P(8~,@2) given by

p(e1,62) = u(6 - 61) - u(6 - 92)

(45)

(46)

where U is the unit step function. Finally, the total diffracted field through

O(k-l) is

The negative signs in front of 111and ~ are due to the fact that the final
.

dyadic multiplication involved E& and $U = - &d. It should be noted that all

of Che terms on the right hand side of (47) are directed along ~ . The only
4 . .

components of D
~=w

and

and (U + V)~LTL. It

& which were used in obtaining (47) were (U + V)TUTU

might appear that the vector nature of our calculation

12
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was superfluous since only the 4

involved in our calculation. It

rather

but h
4

and we

than only the’+ component

does not satisfy a scalar

obtain it from ~ through
J#

TX

which implies .. -

5=--7- -. .

—, .:

was necessary to treat vector magnetic field~~
A

‘ince‘$a$satisfies a vector wave equation

wave equation. We are interested in E6D

(48)

(49)

In order to calculate E8D to only as high an order in inverse powers of k%

as we are permitted in order to be consistent with our calculation of
%

we will consider only part of the radial derivative term in the right hand

side of (49). That is -. .,.

asi
* f(si) = ikf(si) ~- * f(si) (50)

i

and it is only the first term on the right hand side of (50) that can be used

in computing a~/ar. This leads to

[

asl as2 as2 asl

[

3s5 as6
—_ —+ P(61Y62) ‘5 ar

‘eD = ‘O -HI F ‘H2F+H3ar ‘2 ar 1]—+H—
6 ~r

where

asl
r-(a sin 6+L cos 6)—=

ar
‘1

as2
r+L cose -a sin 9—=

ar
‘2

as5 r-klcos(300-e)
—=
ar

‘5

(51:)

(53)

.

(54)

13



. . .
Combining our results we-obtain

V(w)foe
ikd

E-

{

_~eiks~ ~
B A(61,sl)g(a@l)(ksl)

OD = 2d sin O 3r
o

. .

iks2 ~s2
-ke _

-I-A(&@g(al,f32)(ks2) ar

as5 iks
5+ P(81,62) ~ e A(65,sJ

x [g(a#=5) ‘%+ g(cxl,fl+ m)g(Q,B5)(2L+ ‘&k e
}

-1 ik2Ll (55)

where for convenience

g(a,B) = U+v (56)

with U and V defined in (16) and (17). Equation (55) is the final expression

for E6D for a calculation through O(k-~).

The quantitative validity of (55) has not been established. Even if we

know that (55) is the correct asymptotic expansion through O(k-l) we could

draw no conclusions concerning the length of time the inverse Fourier trans-

form of (55) is a good approximation. We determine an upper bound in the

region r/2 > @ > 9
[4]

o by comparing our results with those of Barnes . We

believe that the exact solution is always larger than that obtained by Barnes

and the time at which ~he inverse Fourier transform crosses Barnes solution

is the maximum validity time for the solution obtained by the method employed

in this note. The general argument concerning Barnes’s solution being lower

14



than the exact solution,was supplied by Baurn(pr~vate-%om&nication). Briefly

it is that if the appropriateGr+een’s function ispsed, then the exact radiated:_!*- -.*-::’.-. ---

field can be expressed as the integral over the,cylindrical aperture used ix ...
Barnesfs note. The exact-radiated field would be obtained if the exact aperture

electric field were employed; however, Barnes employes only the incident electric

field. It is argued that the exact aperture field is larger than the incident

field so that the exact radiated field is larger than the one calculated by

Barnes. There are some subtleties that could be studied concerning this
-,

argument, two in particular, are the occurence of the time derivative of the

aperture field and the constancy of the sign of the time dependent Green’s

function. It is not possible to perform a precise study of Baumfs argument

for the bicone problem because we are not positive of how the edge diffraction

effects the ape~ture field. Instead we study the analogous problem in two

dimensions where we have the exact wedge solution available. This study is

performed in the appendix and it completely supports Baumrs argument. Another

feature of the wedge study is that eventhough the solution obtained by employing

only the incident field in the aperture is always lower than the exact field,

the degree of approximation to the radiated field that one obtains is excellent.

This observation supports the possibility that the solution obtained by Barnes

might have an extensive range of time for which it is an excellent approximation.

Our contribution to the time dependent bicone solution is for very short times

after the breaking effect of–th-eedge is felt at the observation point. In

the next section we will determine the early time asymptotic solution which

describes the breaking effect.

..-”,-

—

15



v. Early Time Asymptotic Solution .._~._ --
;}

To determine the most reliable early time asymptotic solution we consider
,-

.
the inverse Fourier transform of only the first term in (55) or for the specihi -

observation angle 6 = n/2 the first two terms in (55). It is first necessary ‘“

to specify the form of V(u). We are interested in the case V(t) = VboU(t),

where U(t) is the unit step. For this case

(57)
. .-

We need only consider the inverse Fourier transform

F-l(k-+
i—
u
eiks

) =c%e-iT’4 A.-: U(t (58)

where c is the speed of light. We now take the inverse transform of these two

terms to obtain

foVboQ

.{

C1%’2 3s1
E -— (—) — (t* - t$%(t’ - tl)A(dl,sl)g(a@31) ~eD 2a

‘1 &

C1+2 as2
+ (—) -# - t2)%t*- t2)A(~2,s2)g(a@2) ~

‘2 }

where

(59)

(60)

The physical meaning of these t’s will now be discussed. The time after the

first signal arrives
*

from the origin measured in nanoseconds is t . When t*

equals tl and t
2
the corresponding contributionsarise from single diffraction

from Pu and PL.

In order to compare our results with those of Barnes[41 we approximate

(59) for the case r >> d. When this is the case we obtain the following

simplifications

16
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A(+s1) = A(62,s2) ‘ [(r/a)sin 9]-%, .<61)

—.

.

cltl = d
-asinf3-Lcos9, c1t2 =d-asin9+Lcos6

and when the following quantities appear as multiplicative factors they are .._

approximated as

(6:!)

Using the fact that the geometric optics field is

‘OG.O.
= P[eo, ;

we can express the total field E = EeD
0

Vbofo
1 U(t’%)
r sin @

(63)

+ ‘eG.O. ‘0 ‘hat

where

rE
e
- rEl + rE2 (64)

Vf

[

c1
sin e ~

rEl_=- P(eo, ~) +Q( ~a
1

) g(a@l)(t* - t#u(t* - tl) (65)

and

Vbofo
rE
2 = = Q~l T ‘)% ‘%’~2)(t* - t2)% ‘(t’ - ‘2) (66)

When 8 # Tr/2then E6 ~ El. When 6 = T/2, then tl = t2 and ,g(al,BI)= g(al,~2) =

g(~l,Q+ ~/2) so that

[

=1 +

1 + 2Q(~) g(al,fl+~)(t* - tl)
+

rE
e - Vbofo 1u(t* - tl) (67)

———

17 -... .-
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It is desired to compare (65), (66) and (67) with the solution obtained by

Barnes. It is convenient to rewrite these equations as

Vbofo

[

2CI sin 6 ~ 1-Q%u(t* - QrEl = — P(eo, ;) -+ ( a ) Al(OO,G)(t*
sin 8

Vbofo 2C1 sin 6 ~
(a

%
rE=-
2

) A2(60,6)(t* - t2) U(t* - t2)
m sin 6

and for 6 = IT/2

[

2C1 $ k
rE -Vbofo 1 - + 1(-y)A1(f@(t*-tl)U(t* - tl)
e

where

Al(@o,%) =

A2(60,6)=
k sin A60

Cos Aeo-Cos A(T-6)

-1
(1 + >)

(68)

(69)

(70)

(71)

(72)

(73)

The corresponding expressions derived by Barnes are exactly the same as (68),

(69) and (70) with Al(80,6) rePlaced bY ‘l~eoze) and ‘Z(60Yg) ‘ep~aced by

B2(00,9) where

sin O
BI(90,6) =

o
Cos 6 -Cos 8

0

(74)

and

sin B
o

B2(80,6) = (75)
Cos eo+cos e

It is very important to note that for m/2 > 0 > 6., BI(80,6) > AI(60,6),

while for O < 9 < 6., \Al(60,6)l > \Bl(eoJ8)!” This shows that our solution is

initially larger than the one obtained by Barnes, as required. For the special

18



solution could be a good approximation.
‘8’i);,>

For this case we can see when ‘our”

asymptotic solution crosses Barnes total solution. For the observation arigle,

6, equal to .7 Tr/2we drop below this solution in approximately 1 nanosecond

and for 9 = Tr/2we drop below his solution in approximately 3 nanoseconds. For

8 = .ln we are always above Barnes’s total solution so it imposes no time

limitation. It is expected that the difference between Al(eo,fl)and Bl(eo,O) ~ .

is monotonically related to the length o~_~ime that it would take our solution

to cross Barnes’s total solution in the’’regionIT/2> 6 > e For many cases
o“ *

our asymptotic solution will drop below Barnes’s solution before t = t2.

The reason that we present the asymptotic solution that begins at t2 is that the

breaking effect predicted by this solution would be valid even though the

level at which the break occurs is not accurately determined.

Tables 1 through 4 summarize the breaking effect at tl and t2 as predicted

by our theory and that of Barnes. In these tables we present the new quantities

DA1, DBI, DA2, and DB
2
as well as t

1
and t2 for different values of a, 60,and t3,,

These new quantities are defined as “
—

‘Al =
a\All, DB = (76)aIBl\> ‘A = CYA2>‘B = aB2

1 2 2

where

(77)

and in terms of the D’s, (68), (69), and (70) can be equivalently written as

Vf

[

_bool
rE1

-DA (t* - tl)%U(t*
sin 6 - tl).1 ;2@>90

1

Vbofo
rE~_=~DA (t* - tl)~ U(t* - tl)

1

Vf
rE =
2

- -DA (t* - t2)~ u(t* - t2)
2

O<e<eo

0<9s;

(78)

(79)

(80)

19
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Barnes~s corresponding solutions are obtained by replacing DAI by Dgl and DA2

by DB2. A schematic plot illustrating the early time breaking effect described

by (78), (79), and (80) is contained in figure 3.

In table 5 we tabulate the ratios PI and P2 which are given by

‘l-B1

‘1=2 A1+B~

and

‘2-B2
‘2=2 A2+B2

These quantities are a measure of the relative correction to the

solution found by Barnes corresponding to the first break due to

(81)

,j

A ,:.

(82)

asymptotic

the upper edge

and the second break due to the lower edge.

Table 1 corresponds to a = 1, and it is of special interest. By noting

(76) and (77) we see that the value of any D for a ~ 1 can be determined from

the D corresponding to a = -+1, simply by multiplying by a . If we rewrite the

last two equations in (61) as

Cltl = a(csc 60 - sin 9 - cot @o cos 9) (83)

clt2
= a(csc 60 - sin 6 + cot @ Cos 6) (84)

o

then we see that the value of tl or t2 for a ~ 1 can be obtained by multiplying

the appropriate t for a = I by a. Tables 2, 3, and 4 are included only for

convenience. Because the values of the D’s, tl, and t2 for a = 1 can readily

be used to compute these quantities for any value of a, we plot these quanties

in figures 4, 5, 6,7,ati8. specifically we plot DA1, DA2, Pl, P2, tl and t2

versus the observation angle, 6. Each figure corresponds to a different value

of the bicone angle, 6 .0
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~First we will discuss the validity of-our frequency’dependent sol&<!on+p&q

expressed in,’(55). Its accuracy is limited for two reasons. One is tha”~**&LJn”’3

quantitative error bound has not been established for solutions obtained by ‘f

geometrical diffraction calculations. A second is that the effect of diffracted

rays striking the source region is neglected. The first difficulty is somewhat

compensated bybhe fact that numerous comparisons between exact and e@eki&kt\a~

results with geometrical diffraction solutions have supported its validity: s “

The*second-limitation can-be handled in either of two ’ways. One is to exi&&vs~$

the source”region’and determine its effect. The second is most easily viewed-”“

in the time domain. It is to determine the time that this secondary source

contribution would reach our observation point and let this serve as a time -

limitation beyond which we discard our solution.

The accuracy of our time dependent solutions (78), (79), and (80) is

limited by another consideration. There is no quantitative procedure which

determines the time duration chat the inverse Fourier transform of a high

frequency asymptotic expansion is a good approximation. In appendix A we

establish that there is a finite length of time for which such a solution is

a good approximation. Because of this our early time asymptotic solution can

be used to describe the breaking effect of the edge formed by the junction of

the bicone and the cylinder. This early time behavior is described by two

coefficients, one corresponding to the junction nearer to the observation

point and the other corresponding to the junction further from the observation

point. The early time dependent behavior is obtained by multiplying these

coefficients by the square root of the time duration beyond the first instant

the effect of the junction is felt at the observation point.

The same Eorm for the breaking effect is predicted by Barnes
[4]

who uses

an aperture integration method. In appendix B we again study the problem of

scattering by a perfectly conducting wedge by using the aperture integration

method. A comparison of that solution to the exact solution indicates that it

can yield a good approximation for an extended time duration; however, the

method employed in this paper yields the exact asymptotic solution. In tables 1

through 4 we present our diffraction coefficients as well as those derived by
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Barnes. These are presented for both the upper and lower edge and the time
.-

that these contributions will first be felt at the observation point is also

tabulated. ,Thesequantities are presented for different values of the cylinder

radius, a, the bicone angle, 6., and the observation angle, 6.

In cable 5 we tabulate PI and P2 only for different values of B and 90

because these quantities are independent of a. As previously discussed, by

noting (76), (77), (83), and (84) we can see that the data presented in table-

I,a= 1, can readily be used to compute the D’s and tfs for any a. In

figures 4, 5, 6,.79 and 8 we plot ~A~$ ~@? ~1, P2, tl, and t2 for a = 1. We

plot these quanties versus 6 and each figure corresponds to a different value

of 6.. The plot of DAI is cut off near the boundary between the illuminated

and diffraction region. The reason for this is that the geometrical diffraction

solution diverges at this boundary. It is seen that in general, the percentage

difference between our solution and that of Barnes is smaller for the break

corresponding to the nearer edge, Pl, than it is for the break corresponding

to the further edge, P2. It is also noted that PI has a minimum for 0 = O.,

while P decreases monotonically with increasing 6.
2 Another general feature

is that for most observation angles, the break corresponding to the nearer

edge is sharper than the break corresponding to the further edge.

In conclusion, the solution obtained by Barnes using the aperture

integrationmethod has the potential for being a good approximation for an

extended period of time; however, the solution obtained in this note offers

an improvement in describing the asymptotic early time breaking effect of

the edges, especially from the further edge.
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Appendix A. Comparison of the Exact and Approximate Wedge Solutions

Consider a plane wave step function incident on a perfectly conducting
,.-,-.7 %- ,.

wedge with the geometry defined in figure 9. The notation in this appendix

was chosen to agree with that used in a previous note that treated the time-—
l_6J

dependent wedge problem for $1 = O , The polarization of the incident wave

is such that the magnetic field is directed along the positive z axis. For
. . .. . . . .

comparison with the singly diffracted bicone problem we can restrict our

interest t&~/4 < 40 < Tr/2and “$1”=; - $.. ‘-tien~l =Tm - $0 we can write

down the soltlution-forthe totai tig;e”~~c’’’”fiel”u~in~k~e~e-work o~-~eller:a~~ao;’’;i:

Blank[’] as

H=hg— z

where

+(l-pzx)cos A(m-r#)l)

h = 1 - ~arctan
(l+p2A)sin A(n-4Jl)-2pAsin A(T-0)

+J-

-(1-p2bcos Wr++l)

arctan
‘n

(l+p2A)sin A(7r+@l)+20Asin L(n-@)

and

1

[

‘5-1
p= :+(($ - 1)

1

(Al)

(A2)

A =+ (1 +)-] (A3) ..

where t is the time after the incident wave hits the tip of.the wedge. The

arctangent is defined to lie in the range between O and T. Actually (Al) is

valid for 40 ~ 41 ~ ~ - +.. We now compare (Al) with the ~olution one obtains

by taking the inverse Fourier transform of the geometrical diffraction theory

solution. For this case_the geometrical diffraction solution is precisely the

23
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high frequency asymptotic solution to the wedge diffraction problem. What

we are testing in this case is completely a mathematical problem involving

the asymptotic properties at high frequencies and early times of an exact

Fourier transform pair. It is intended that inferences can be made regarding

the early time behavior of electromagneticproblems which are solved by taking

the inverse Fourier transform of the geometrical diffraction theory solution

when the true time behavior is noC known.

In order to present the geometric diffraction solution we consider the

incident field slightly bounded away from grazing along the lower portion of .:!

the wedge. That is@I=m-@o- c and we are interested in the limit as c

goes to zero. For this angle of incidence we can, by making a suitable change

of coordinates, use the results in reference’] to express the diffracted

field as

+ (Cos LIT+ Cos L(I7- $ - 41))‘l]hi(u) (A4)

where hi(u) is the Fourier transform of the incident field evaluated at the

tip of the wedge. NO matter what the angle of incidence is, the value of hi(u)

for an incident plane wave step field is

hi(u) =+ (A5)

Combining (A4) and (A5) and taking the inverse Fourier transform we obtain

-1- (Cos ATr+ Cos A(?T- $ -
-1

41)) 1 (A6)

where c = (t - r/c)/(r/c) and U(5) is a Heavfside steP function* Physically

24
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~ is the time after which an observer wouldfirst sense the electromagnetic
r-.,’e,..,.- .-.. .<

field and it is measured in units of r/c. The total field an observer would
.-.,

sense is either 2 +-hD or s ‘ePending on wh~the~- ‘ ‘ --the observer were situated in

the illuminated region (n - $0 < $ < 2m - +.) or in the shadow region
..r--

($O’+<T-’$O). We add 2 to the diffracted field rather than 1 to account

for the reflected field. Earlier we mentioned that the incident angle was

?T- 40 - c rather than r - $ . We did this to emphasize that in using the
o

geometric theory of diffrac~ion i~is oh~~ the Fourier”\ransform of the
..----,’..

incident field, hi(u), which is used in the expression for ~(u). If & were

equal to zero then it would appear that the field incide-nton the tip were
.-.-r,<!-J

2hi(u) rather than hi(u). It is only when we consider the field incident on

the tip to be hi(w) that we obtain agreement with the exact solution for high

frequencies and early times. We present plots of the approximate magnetic ..

field given by ha(g) = 2 + ~(z) since we are in the illuminated region and -

of the exact magnetic field he(~) given by (Al) with

P= (&+l+(c2+2g)+)
-1

(A7)
.,

A comparison of ha(~) and he(~) is contained in figures l@andll. Figure.10

corresponds to $0 = 60° while figure 11corresponds to $ = 75°. Both figures
:

contain a comparison of the ha(c) and he(~) for ~ = 150 , 165°, 180°. It is

seen that ha tends to be a better approximation to he with increasing $0 and

0.

To relate the wedge and bicone geometries consider figure 12. If-we are

observing at a distance r such that r >> 2L, then ~ and ~ are approximately

parallel and @ is related to the bicone observation angle, 8, as $ ‘ $0 + f3.

To give a numerical example of--thedata contained in figures l@and 11 we

consider $0 = 75° and 6 = 90°. For this case there is less than a 5% differerlce

between the exact and approximate wedge solutions for & S .4.

..—
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Appendix B. Comparison of the Exact Wedge Solution With the
One Obtained by Integration Over the,Aperture

Consider a perfectly conducting wedge of angle 2flwith a plane wave Fu~se

propagating parallel to one side of the wedge. The polarization of the incident

wave is such that it is parallel to rhe edge. The geometry is depicted in

figure 13.

;*Q
H = 2u(t -&=Hz
‘incident i

(Bl)

where p is the two dimensional radius vector and—

i= -L_;x sin a +&y cos a]

and

a = 2f2-:

(B2)

where t is the time after the field first reaches the edge. In the frequency

domain

The analogous

in the region

this integral

of this plane.

iko&Qp
Hz =~e – ~B4)

i

[43
approach to that of Barnes is to represent the magnetic field

y < 0 as an integral over the plane y = O and by then reducing

so that it is only over the “aperture’!or non-conducting Portfon

First we write

~

A

Hz =
s aY
aperture

+ 1s
conductor

“ [HZV’G- GV’Hz]dx’

.
0 [HZV’G - GV’Hz3dx’

aY
(B5)

and use the fact that
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. .V’H = - iuE
aY z x (B6)

as well as a Green’s function that has the property

i . V’G = O fory’ = O and -m < X’ - co (B7)
Y ...-

Using (B6) and (B7) in (B5) as well as the fact that Ex = O for x’ < 0 we ,_

obtain

J [mH = iu dx’ExG = iu dx‘EXG
z

aperture Jo
(B8)

The G that satisfies (B7) is

[
G=-&H ‘l)(ko[(x

40

We now approximate

X’)2+-(Y - y’)m + H$)(ko[(x - X’)2
24

1
+ (y+y’) ] ) (B!])

the Ex that appears in (B8) by just the incident field.

That is

2Z i -ikox’ sin a
EXSE =ZocosaHz =cosa~e (B1O)

x
i i

Substituting (B9) and (B1O) in (B8) we obtain

~

w -ikox’ sin a
HZ(A,W) = dx’H~l)(ko[(x - X’)2 + y2]4)ico cos o.Ze (Bll)

o
0

To obtain the time behavior take the inverse Fourier transform

Using

(lm
H~~)(koR)e-iut

-2i c
z

dti=— U(ct - R)
IT

J -m
~c2t2-R2

(B12)

(B13)

,
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we can express (B12) as

I-Iz
2

J

m dx’U(t-(R-x’ 5ina)/C)
= ; Cos a

22+
o (c2(t+(x’ sin a)/c) -R )

where

Equation (B14)

R = [(X - X1)2 + #

could also be derived by substituting the time dependent

(B15)

.-Jfl

representationof Ex given in (B1O) into a general formula derived in a previous
rnl

noteLYd, The unit step function

‘1 = (COS2)-l[T

‘2
= (COS2)-l[T

in (B14) is unity as long as x <x’<x
1 2

where

- (~z- (P2- c2t2)c052ct)4] (B16a)

+ (T2 + (p2 - c~tz)cosza)>t (B16b)

T=x+ctsina

After changing variables we can write (B14) as

where

2
x Cos U-T

‘2
= W(X2), WI = W(xl), w(x) =

(T2-(P2-C2t2)COS2a)k

Equation (B19) is meaningful only if W2 and WI are real, i.e.

T’ - (P2 - c2t2)cos2a > 0

(B18)

(B19)

(B20)

The smallest value of t that allows (B20) to be satisfied is denoted to and

is given by
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. . . . .. .

to = YIcos a-x sin a
c

Another critical time occurs when xl
‘>1.,

= O since for larger t, zero is still

the minimum value of.x’. The time corresponding to xl = O is denoted by t, and

it is found to be

Returning to (B18) we now write

~,

‘1 = plc

H
~

z = [U(t - to) - U(t - tl)l ~ ‘2 d: ~+ U(t
I

‘2
- tl) :

dt
(B23)

n WI (1-g ) w(o) (1-&2)+

It is easy to verify that WI = -1, W2 = 1, and

w(o) =

In the illuminated region (fig.

T

and in the diffraction region

T < fjfor tls t <

–T

(T2-(p2-c2t2)~os2a)+

5)

> 0 for t> t
1

_bd- and T > 0 for L.t
c sin a c sin a

(B24)

(B25)

(B26)

so finally we have in the illuminated region

Hz = 2[u(t - to) - U(t - tl)l + U(t - tl)[l +: T
arcsin z J (B27)

(T2-(p2-c2t2)cosa)

and in the diffraction region

Hz = U(t - tl)[l -i-~ arcsin(
T

)1 (B28;}
(T2-(p2-c2t2)cos2a)%

Equations (B27) and (B28) are our final solutions and we will examine them in

29
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the early time and the late time asymptotic limits. Before we do this it is

significant to note the functional dependence of the solution expressed in

(B27) and (B28) on t, x, and p. If we define et/p
.—- —

= T, redefine a coordinate

system so that our z axis corresponds to a new y axis, and define an angle x

so that x = p cos $, then our new Hy for T > 1 would be a function only of ‘r ‘

and.cos $. This situation now exactly conforms to the case treated by Baum in
[9]

a previous note . When this cornDonenthas only this functional dependence,

he shows how to readily determine all of the -remainingfield quantities.

We’will now refer our wedge geometry to a coordinate system that is more

appropriate to the bicone problem. See figure 14. In this coordinate system

and for 6 > 60 and t > tl (B27) becomes for early time
%..:>..”

(B29)

sin 6
B=

o
Cos e -Cos e (B30)

o

‘r= t-t 1
(B31)

The early time geometric diffraction solution which is necessarily the same

as the early time exact solution which is given by

(B32)

A sin 160
A=

Cos Ae
(B33)

-Cos A8
o

A= 1
l-f-60/7T (B34)

Further details concerning the exact solution can be found in references E6] ‘

and [7]. It is significant, first, that A # B and secondly that in the

illuminated region A < B. This shows that the field just calculated imme-

diately drops below the true field. In the diffraction region, 9 < 6., the

approximate solution behaves like

)
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while the exact solution behaves like

,..

(B35)

“-.,_’

. ..=.

. ..> $-%

and in this region \Al > \B’\.

For large values of t both the exact and approximate solutions have an

asymptotic behavior that is independent of 0 and consequently independent

of whether or not’we are observing in either the illuminated or diffracticm

region. For large t the approximate solution behaves like

e
Hz- 2(1 -+) (B37)

and the exact solution behaves like

0
H - 2(1 -;)

1
2

(B38)
z

l-(eo/T)

which is larger for any 60 of interest. These results support Baum’s claim

that the exact solution is always larger than the one obtained by using Barnes’s

method.

Another interesting result was obtained from doing this test problem.

It is that the same factors A and B,which naturally arose in our test problem,,

also appear in the bicone problem. We expected A to appear simply from the

geometric diffraction theory construction; however, the appearance of B from

Barnes’s asymptotic evaluation of an integral that contained a different Greerl’s

function from that of the test problem is an interesting result. Specifically

for the bicone problem, Barnes’s early time solution can be written as

Vbofo
rEO - — [1 -~ (2C ‘;no)%BT% U(T)]

sin e
0>00

and

31
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%+
rE -Vbofo+ (-) Im ~(~) eceo

e
-.

(B40)
.:)

where T is the time after the first diffraction effect is felt. The geometric

diffraction solution is the same as (B39) and (B40) with B replaced by A.

.- -- ,

.r,~.
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. . ,Appendix C. Geometrical Considerations for Reflected Rays .&ns

In figure15we depict that part of the bicone that is necessary to

discuss the mechanism which allows rays to be singly or multiply diffracted

and then reflected so as to pass through P. Whether or not we are concerned ’”r-

with singly or multiply diffracted rays is immaterial to the analysis contained

in this section. Once the edge at PU or PL is struck by an incident ray, which

may itself’be ‘adiffracted ray, then P
u

and PL act as sources for diffra~tedq’”““

rays. Figure15 corresponds to a constant $ plane; however, for our geomet~i~~al=
..

considerationswe can imagine that the geometry in this figure is cylindrical

and extends to infinity in a direction perpendicular to the paper. This

amounts to the linesOPU and OPL representing rectangular mirrors and P
u

and

PL representing line sources. If a ray emanating from PL is going to be

reflected from OP and pass through P then it must be possible to draw a line
u -r

from the image of PL to P that intersects OPU. That is P~P must intersect

OP. The point of intersection is PR and this is the physical point on the

mirror struck by the ray emanating from PL and reflected to pass through P.

The same discussion is applicable for the rays emanating from PU. Because

of the symmetry of our antenna we chose to restrict the observation angle, 6,

to lie between 80 and IT/2. In order for a ray from Pu to be reflected from
.

OPL and pass through P-it is necessary that the image point P: lie on or belcw

the line OPH. It can be shown that this is possible only if 60 > n/6. Since

arctan ~ < iT/6we have no reflections from OPL to consider. We now return to

reflections from OP
u“

The minimum value of 6 for an observation point P’

which receives a reflected ray is denoted by 61 and it is depicted in figure

15. P’ is any point on the extension of the line P~PU and 8~ is the angle

between OP’ and z axis. The explicit expression for 61 is given in (44) where

r is the length OP’. The maximum value of 6 for an observation point P“

which can receive a reflected ray is denoted by %2. P“ is any point on the

extension of the line P~O and 82 is the angle between OP” and the z axis.

The calculation of 81 and 62 is straightforward using figure15; however, the

calculation of 6
5’ ‘5’ and ‘5

is facilitated by modifying figure15. If we

rotate PRP and OP about the line OP, then we obtain the triangle depicted in

figure 16. First we note that S5 = PLPR + PRP = PLP and that once we determine
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the angle T, tfieeval-uationof S5 and v becomes elementary. 1~ can be shown

that r = ?r+e - 3e .
‘5

is now determined by the law-of cosines to yield

(43) and y given i.n0(42)results from proj-tiwg Op tO alignwith OPL and .

then applying the definition of cosine. Once $ is determined, 65 and f35

follow from (41).

It should be mentioned that for certain values of 90 it is possible for

a ray emanating from either PU or PL to get multiply.reflected and then pass

through P. It can be shown that this is not possible if PO < 7T/4and this .-._.-.

is the situation that was treated in detail in this note. ..-
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Figure 1. Antenna Geometry.

35



.

A.

Figure 2. Appropriate Diffraction Coordinate Systems.
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Table 1

20/lT

.1

.2

.3

.5

.7

.9
1.0

.1

.2

:;
.7
.9

1.0

.1

.2

.3

.5

.7
,9

1.0

.1

.2

.3

.5

.7

.9
1,0

.1

.2

.3

.5

.7

.9
1.0

‘Al

.4693
1.0846

21.7090
.4907
.231.4
.1429
.1175

.2825

.4722

.8326
2.5168
.4828
.2518
.1983

.2036

.3142

.4542
1.4196
1.3899
.4403
.3192

.1582

.2360

.3181

.6112
3.0391
.9724
.5658

.1372
2.020
:2656
.4513

1.0563
3.0585
.9905

a = 1

60 = arctan .5

‘B,

.4;75
1.0820
21.7122
.4948
.2362
.1484
,1232

‘A.

.0;88

.0276

.0354

.0513
● 0707
.0982
.117’5

20-/’iT= .45

DB
‘-J

.0;32

.0332

.0416

.0579

.0772

.1042

.1232

u

.2786 .0271

.4667 ● 0404

.8258 .0524
2.5255 .0780
.4931 .1109
.2634 .1608
.2105 .1983

200/T = .6

.1972 .0352

.3051 .0531

.4431 .0698
1.4053 .1070
1.4068 .1586
.4594 .2454
.3392 .3192

2e#T = .75

.1489 .0439

.2227 .0671

.3018 .0897

.5902 .1429
3,0144 .2246
1.0003 .3893
.5950 .5658

2E@r = .85

.1257 .0505

.1857 .0779

.2456 .1054

.4255 .1737
1.0258 .2892 .3291
3.0929 .5733
1.0266

.6109
.9905 1.0266

.0362

.0520

.0653

.0917

.1244

.1735

.2105

.0501

.0720

.0909

.1295

.1807

.2663

.3392

.0657

.0949

.1205

.1757

.2569

.4198

.5950

.0776
●1125
.1436
.2143

‘1

.3478

.0832
● 0002
.3828

1.4579
3.1205
4.1231

.7569

.3910

.1419

.0158

.3910
1.2306
1,8005

1.2076
.7874
.4494
.0508
.0508
.4494
.7874

1.7240
1.2657
.8650
.2748
.0111
.0998
.2748

2.1177
1,6380
1.2025
.5055
.0948
.0106
.0948

‘2

13.5260
12.7727
11.8885
9.8174
7.5153
5.2078
4.1231

8.4717
7.8197
7.1016
5.5390
3.9371
2.4525
1.8005

5.9949
5.3972
4.7681
3,4781
2.2512
1.2076
.7874

4.4533
3.8937
3.3272
2.2288
1.2657
.5320
.2748

3.6996
3.1613
2.fj29fj
1.6380
.8219
.2611
.0948
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Table 2

a= ..5

60 = arctan .5

2e/7f
‘A. ‘B, ‘Am

DB
. ‘1 ‘2

.6;37
1.5339

30,701.2
.6940
.3272
.2021
● 1661

.6;11
1.5302

30.7057
.6998
.3341
.2099
.1743

.0;66

.0391

.0501

.0726

.1000

.1389
,1661

.0;28
,0470
.0588
.0818
.1091
● 1474
.1743

.1

.2
●3
.5
●7
.9

1.0

.1739

.0416

.0001

.1914

.7290
1.5603
2.0615

6.7630
6.3863
5.9443
4.9087
3.7577
2.6039
2.0615

2eo/lT= .45

.1

.2

.3

.5

.7

.9
1.0

.3995

.6679
1,1775
3.5592
.6828
.3560
.2804

● 3939 .0384 .0512
.6601 .0571 .0735

1.1679 .0742 .0924
3.5716 .1103 .1297
.6974 .1569 .1760
.3725 .2274 .2454
.2977 .2804 .2977

.3784 4.2359
● 1955 3.9099
.0710 3.5508
.0079 2.7695
.1955 1.9686
.6153 1.2262
.9002 ,9002

28#T = .6

.1

.2

.3
,5
.7
.9

1.0

.2880

.4444

.6424
2.0076
1.9656
.6227
.4514

.2789 .0498 .0708

.4315 .0751 .1019

.6266 .0987 .1285
1.9873 ,1514 .1831
1.9895 ,2242 .2555
.6497 .3470 .3766
.4798 .4514 ,4798

.6038 2.9975

.3937 2.6986

.2247 2.3840

.0254 1.7390

.0254 1.1256

.2247 .6038

.3937 ●3937

2eo/T = .75

.1

.2

.3

.5

.7

.9
1.0

.2238

.3337

.4498

.8643
4.2980
1.3751
.8001

.2105 .0621 .0929

.3150 .0950 .1342

.4269 .1268 .1704

.8347 .2021 .2485
4.2630 .3177 .3633
1.4146 .5505 .5937
.8415 .8001 .8415

.8620 2.2267

.6328 1.9469

.4325 1.6636

.1374 1.1144

.0056 .6328

.0499 .2660

.1374 .1374

28#r = .85

.1777 .0714 .1098

.2626 .1102” .1591

.3473 .1491 .2031

.6017 .2456 .3030
1.4507 ,4090 .4654
4.3740 ●8108 .8640
1.4519 1.4008 1.4519

.1

.2

.3
●5
.7
.9

1.0

.1941

.2857

.3756

.6382
1.4938
4.3253
1.4008

1.0588 1.8498
.8190 1.5806
.6013 1.3148
.2528 .8190
.0474 .4110
.0053 .1306
● 0474 .0474
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2e/lT

.1

.2
●3
.5
.7
.9

1.0

.1

.2

.3

.5

.7

.9
1.0

.1

●2
.3
.5
,7
.9

1.0

.1
-.2
.3
.5
.7
.9

1.0

.1

.2

.3

.5

.7

.9
1.0

—

‘Al

.3318

.7669
15.3506
,3470

-.1636
.1011
.0831

.1997

.3339

.5887
1.7796
.3414
,1780
.1402

,1440
.2222
.3212

1.0038
.9828
.3113
,2257

.1119

.1669

.2249

.4322
2.1490
.6876
.4001

.0970

.1428

.1878

.3191

.7469
2.1627
.7004

Ta.blel1

~L2 .

e. = ar~tan .5

‘B~ ‘A2 ‘B2

.3306 .0133 ..0164

.7651 .0200 .0135
15.3528 .0251 .0294
.3499 .0363 .0409
.1670 .0500 .0546
● 1050 .0694 .0737
.0871 .0831 .0871

2eo/Tr= .45

.1970

.3300

.5840
1.7858
.3487
.1863
.1489

.1395

.2158

.3133
● 9937
.9948
.3249
.2399

.1053
1575
:2134
.4174

2.1315
.7073
.4208

.0889
1313
:1737
.3009
.7253

2.1870
.7260

.0192

.0286

.0371

.0551

.0784

.1137

.1402

2f30/Tr= .6

.0249

.0375

.0494

.0757

.1121

.1735

.2257

260/?T= .75

.0311

.0475
,0634
.1010
.1588
.2753
.4001

290/IT= .85

.0357

.0551

.0745

.1228

.2045

.4054

.7004

.0256

.0368

.0462

.0649

.0880

.1227

.1489

.0354

.0509

.0642

.0916
,1278
.1883
.2379

.0465

.0671

.0852
,1242
.1817
.2968
.4208

.0549
,0795
.1015
.1515
.2327
.4320
.7260

‘1
.6955
.1664
.0004
.7655

2.9159
6.2410
8.2461

1.5137
.7819
.2838
.0317
.7819

2.4612
3.6009

2.4152
1.5749
.8988
.1015
.1015
.8988

1.5749

3.4480
2.5313
1.7301
.5497
.0223
.1995
.5497

4.2353
3.2761
2.4051
1.0110
.1896
.0211
.1896

‘2

27.0521
25.5454
23.7770
19.6347
15,0307
10.4155
8.2461” “

16.$1435
15.6394
14.2032
11.0782
7.8742
4.9050
3.6009

11.9898
10.7943
9.5361
6.9562
4.5025
2.4152
1.5749

8.9066
7.7875
5.6544
4.4576
2.5313
1.0641
.5497

7.3991
6.3225
5.2592
3.2761
1.6438
.5222
.1896
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20/7r

.1

.2

.3

.5
●7
.9

1.0

.1

.2

.3
●.5
.7
.9
1.0

-*1
.2
.3
.5
.7
.9

1,0

.1

.2

.3

.5

.7

.9
1.0

,1
.2
.3
.5
.7
.9

1.0

‘Al

.2099

.4851
9.7086
.2195
● 1035
.0639
.0.525

.1263

.2112

.3723
1.1255
.2159
,1126
.0887

.0911
● 1405
.2031
.6349
.6216
.1969
.1427

.0708

.1055

.1422

.2733
1.3591
.4349
.2530

.0614

.0903

.1188

.2018

.4724
1.3678
.4430

Table 4

a = 5

0 = arctan .5
0

DB1 ‘Az ‘Bz

.2091 .0084 .0104

.4839 .0124 .0148
9.7100 .0158 .0186’
.2213 .0230 .0259
.1056 .0316 .0345
.0664 .0439 .0466
.0551 .0525 .0551

2eo/n = .45

.1246 .0121 .0162

.2087 .0181 .0233

.3693 .0235 .0292
1.1294 .0349 .0410
.2205 .0496 .0556
.1178 .0719 .0776
.0941 .0887 .0941

2eo/n = .6

.0882 .0158 .0224

.136.5 .0237 .0322

.1982 .0312 .0406

.6285 .0479 .0579

.6291 .0709 .0808

.2055 .1097 .1191

.1517 .1427 .1517

2eo/~ = .75

.0666 .0197 .0294

.0996 ,0300 .0424

.1350 .0401 .0539

.2640 .0639 .0786
1.3481 .1005 .1149
.4473 .1741 .1877
.2661 .2530 .2661

280/r = .85

.0562 .0226 .0347

.0830 .0349 .0503

.1098 .0471 .0642

.1903 .0777 .0958

.4587 .1293 .1472
1.3832 .2564 .2732
.4591 .4430 .4591

‘1
1.7388
.4159
.0011

1.9138
7.2897
15.6026
20.6154

3.7843
1.9548
.7096
.0792

1.9.548
6.1529
9.0024

6.0381
3.9372
2.2469
.2538
,2538

2.2469
3.9372

8.6200
6.3283
4.3252
1.3742
.0556
.4988

1.3742

10.5883
8.1901
6.0127
2.5275
.4739
.0529
●4739

‘2

67.6302
63.8635
59.4425
49.0868
37.5766
26.0388
20.6154

42.3587
39.0986
35.5081
27.6954
19.6855
12.2625
9.0024

29.9745
26.9859
23.8403
17.3904
11.2562
6.0381
3.9372

22.2666
19.4687
16.6360
11.1440
6.3283
2.6602
1.3742

18,4978
15.8064
L3.1480
8.1901
4.1095
1.3056
.4739
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20/lT

.1

.2

.3

.5

.7

.9

1.0

(30 = arctan .5

‘1 ‘2

.0039 .2082

.0024 .1830

.0001 .1601

.0083 .1200

.0208 .0868

.0378 .0596

.0480 .0480

200/Tr= ‘.45

‘1 ‘2

.0139 .2865

.0117 .2510

.0081 .2185

.0035 .1618

.0211 .1148

.0452 .0762

.0598 .0598

‘Kable>

200/r = .6

‘1 ‘2

.0320 .3478

.0293 .3029

.0248 .2618

.0102 .1900

.0121 .13(34

.0425 .0817

.0610 .0610

2eo/lT= .75

‘1 ‘2

.0610 .3972

.0578 .3426

.0524 .2928

.0349 .2059

.0082 .1341

.0283 .0753

.0504 .0504

28JIT = .85

‘1 ‘2

.0878 .4240

.0843 .3627

.0783 .3067 ~

.0589 .2093

,0293 ,.1290

.0112 .0635 {

.0358 .0358
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