CLEARED FOR PUBLIC RELEASE N. IPAIG DEC96

PL 96-0931

Sensor and Simulation Notes

Note 130

June 1971

Inductance and Current Density of a Cylindrical Shell

by

K. S. H. Lee and R. W. Latham Northrop Corporate Laboratories Pasadena, California

Abstract

The current distribution on a perfectly conducting, infinitely thin, cylindrical shell is calculated under the conditions that the current density has only an azimuthal component and that the total current is nonzero. The total inductance corresponding to this current distribution is also computed. The question of approximating this continuous current distribution by the discrete current distribution of N loops is discussed. Results are presented in graphical and/or tabular form.

I. Introduction

The figure of merit introduced by Baum is a useful quantity in the design of EM sensors.¹ It is defined as the ratio of the equivalent volume of a sensor to the smallest geometric volume inside which the sensor can be enclosed. The equivalent volume, V_{eq} , is a measure of the total energy that the sensor can extract with a resistive load from a pulsed incident wave. In the case of a B sensor, which we will discuss exclusively in this note, V_{eq} is directly proportional to the square of the equivalent area, A_{eq} , and inversely proportional to the inductance, L, of the sensor. Or, equivalently, V_{eq} is proportional to A_{eq} squared times the upper frequency response. For proof of these statements the reader is referred to Ref. 1. Thus, one can improve the response characteristics of a sensor by increasing V_{eq} .

In this note, we will fit N identical loops of radius a into a specified cylindrical volume so that the figure of merit, n, is maximum. Here, A_{eq} is roughly equal to Nma² and hence n is proportional to N²/L. Maximizing n then is tantamount to minimizing L for a fixed N. The problem at hand can now be stated precisely as follows: Given N identical loops of radius a and a cylindrical volume of radius a and half-length h, it is required to space these loops in such a volume so that the total inductance is minimum.

The approach used here is first to calculate, in a cylindrical shell of zero thickness, the current distribution that corresponds to minimum inductance and then to approximate this continuous current distribution by a given number of loops. In a forthcoming note, we will attack the problem directly without making use of this continuous current distribution.

In section II, we formulate an integral equation for the current induced in a perfectly conducting, infinitely thin, cylindrical shell by a harmonic plane wave with the magnetic field parallel to the axis of the shell. The low-frequency limit of this integral equation is then taken, and the resulting equation is the formulation of our problem and will be derived again, in section III, from the requirement of minimum inductance. The numerical method used to solve this resulting integral equation is discussed in section IV, and the numerical results are presented in section V in both graphical and tabular form.

II. Formulation via Scattering

Consider the situation depicted in Fig. 1 where a perfectly conducting cylindrical shell of total length 2h and radius a is immersed in a plane electromagnetic wave. We wish to calculate the induced current distribution in the shell, this current having only an ϕ component. We will then let ka tend to zero and obtain the static current distribution. The current distribution deduced in this way will correspond to minimum magnetostatic energy and hence minimum inductance, as will be shown in the next section. Referring to Fig. 1 and suppressing the time dependence $e^{-i\omega t}$ throughout, we write for the incident wave

$$\underline{E}^{inc} = E_{o - y} e^{ikx} = E_{o}(\underline{e}_{p} \sin \phi + \underline{e}_{\phi} \cos \phi) e^{ikp \cos \phi}$$

Expressing the scattered electric field \underline{E}^{SC} in terms of the vector potential \underline{A} as

$$\underline{\mathbf{E}}^{\mathbf{sc}} = \mathbf{i}\omega\underline{\mathbf{A}} - \frac{1}{\mathbf{i}\omega\boldsymbol{\mu}\varepsilon} \nabla\nabla \cdot \underline{\mathbf{A}}$$

and requiring that

$$E_{\phi}^{\text{inc}} + E_{\phi}^{\text{sc}} = 0$$
, for $\rho = a$, $|z| \le h$

we have

$$i\omega A_{\phi} - \frac{1}{i\omega\mu\epsilon a} \frac{\partial}{\partial\phi} \nabla \cdot \underline{A} = -E_{\rho} \cos\phi e^{ika\cos\phi}, \text{ for } \rho = a, |z| \le h$$
 (1)

Integrating (1) with respect to φ from 0 to 2π and dividing by 2π we get

$$\frac{1}{2\pi} \int_{0}^{2\pi} A_{\phi} d\phi = -\frac{1}{\omega} E_{0} J_{1}(ka)$$
⁽²⁾

Here, J_1 is the Bessel function of the first kind of order one and is defined by (Formula 9.1.21 of Ref. 2)

$$J_{1}(x) = \frac{i^{-1}}{2\pi} \int_{0}^{2\pi} \cos \phi e^{ix} \cos \phi \, d\phi$$

Now ${\rm A}_{_{\varphi}}$ and the current density ${\rm K}_{_{\varphi}}$ are related by 3*

$$A_{\phi}(\rho, z, \phi) = \mu \int_{-h}^{h} K_{\phi}(z', \phi') dz' \int_{0}^{2\pi} \cos(\phi - \phi') \frac{e^{ikR}}{4\pi R} d\phi'$$
(3)

where

$$R^{2} = (z - z')^{2} + \rho^{2} + a^{2} - 2\rho a \cos(\phi - \phi')$$

Setting $\rho = a$ in (3) and then substituting the resulting expression into (2) we obtain

$$\int_{-h}^{h} \overline{K}_{\phi}(z')dz' \int_{0}^{2\pi} \cos \phi \frac{e^{ikR}}{4\pi R} d\phi = -\frac{1}{\omega \mu a} E_{0}J_{1}(ka), |z| \leq h$$
(4)

where

$$R^{2} = (z - z')^{2} + 2a^{2} - 2a^{2} \cos \phi$$

$$\overline{K}_{\phi}(z) = \frac{1}{2\pi} \int_{0}^{2\pi} K_{\phi}(z,\phi) d\phi$$

We now go to the static limit ka $\neq 0$ in (4). Noting that $J_1(x) = x/2 + 0(x^3)$ $\sqrt{\epsilon/\mu} E_0 = H_0$ we obtain

$$\int_{-h}^{h} i_{\phi}(z')dz' \cdot \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\cos \phi d\phi}{\sqrt{(z-z')^{2}+2a^{2}-2a^{2}} \cos \phi} = -H_{0}, |z| \le h$$
(5)

where i_{ϕ} is the static limit of \overline{k}_{ϕ} . This is the integral equation for $i_{\phi}(z)$ we set out to seek at the beginning of this section and will be obtained again in the next section from the principle of minimum magnetostatic energy.

The other component of the induced current K_z in the shell does not give rise to any $A_{\dot{\phi}}$.

III. Formulation via Calculus of Variations

Given a total DC current flowing in the cylindrical shell (Fig. 1) in the azimuthal direction, the current will distribute itself along the shell in such a way that the magnetic energy is a minimum. In this section we will determine the current distribution from this minimum energy requirement and show that this current distribution must satisfy equation (5), as we have claimed in section II.

The magnetic energy is proportional to the square of the total current and the proportionality is exactly one-half the inductance L, i.e.,

$$L = \frac{\text{Total mangetic energy}}{{}^{1}_{2}(\text{Total current})^{2}} = \frac{2\pi a \int_{-h}^{h} A_{\phi} i_{\phi} dz}{\left(\int_{-h}^{h} i_{\phi} dz\right)^{2}}$$
$$= \frac{\int_{-h}^{h} \int_{-h}^{h} i_{\phi}(z)K(z,z')i_{\phi}(z')dz'dz}{\left(\int_{-h}^{h} i_{\phi}(z)dz\right)^{2}}$$
(6)

where i_{ϕ} is the current density in amperes per unit length as defined before, and K is $\pi a^2 \mu$ times the kernel in (5).

To find the $i_{\phi}(z)$ that makes L the minimum for a nonzero total current we set the variation of L equal to zero, i.e., $\delta L = 0$. After some standard manipulations in the calculus of variations we obtain from (6)

$$\int_{-h}^{h} \int_{-h}^{h} \delta i_{\phi}(z) K(z,z') i_{\phi}(z') dz' dz - \left[L \int_{-h}^{h} i_{\phi}(z) dz \right] \int_{-h}^{h} \delta i_{\phi}(z) dz = 0 \quad (7)$$

where we have used K(z,z') = K(z',z) and $\int_{-h}^{h} i_{\phi}(z)dz \neq 0$. With λ denoting the quantity in the square bracket, equation (7) can be rewritten as

$$\int_{-h}^{h} \left\{ \int_{-h}^{h} K(z,z') i_{\phi}(z') dz' - \lambda \right\} \delta i_{\phi}(z) dz = 0$$
(8)

Since equation (8) holds for arbitrary δi_{ϕ} , it follows that

$$\int_{-h}^{h} K(z,z')i_{\phi}(z')dz' = \lambda, \text{ for } |z| \le h$$
(9)

This equation could also have been obtained by constructing a functional for the magnetic energy and treating the constraint that $\int_{-h}^{h} i_{\phi} dz = \text{constant}$ by the method of Lagrange multipliers. In fact, the parameter λ in (8) and (9) is the Lagrange multiplier in this method. Equations (5) and (9) are of the same form except for a multiplicative constant which has no significance whatsoever in the current distribution.

IV. Numerical Method

We now go on to discuss, in sufficient detail, the numerical method that will be used to solve equation (5). Let us first substitute into (5) the following

z = hx

z' = hx'(10) $\alpha = a/h$ $i_{\phi}(hx) = -\frac{\alpha H_{o}}{\ln 2} \frac{F(x)}{\sqrt{1-x^{2}}}$

Then, (5) becomes

 $\int_{-1}^{1} G(\mathbf{x}, \mathbf{x}') \frac{F(\mathbf{x}')}{\sqrt{1-\mathbf{x}'^{2}}} d\mathbf{x}' = \frac{\pi \ln 2}{2}, \quad |\mathbf{x}| \le 1$ (11)

where 3

$$G(x,x') = \frac{\alpha}{4} \int_{0}^{2\pi} \frac{\cos \phi d\phi}{\sqrt{(x-x')^{2} + 4\alpha^{2} \sin^{2}(\phi/2)}} = \frac{1}{k} \left\{ (1 - \frac{1}{2} k^{2}) K(k) - E(k) \right\}$$
(12)

$$k = \frac{-2\alpha}{\sqrt{4\alpha^2 + (x - x')^2}}$$

Here, K and E are complete elliptic integrals of the first and second kind, respectively. The reason for choosing i_{ϕ} to have the form (10) is that i_{ϕ} has the square-root singularity at both ends of the shell.

Let us now examine the behavior of G when x is very near x'. As $x \to x$ ', k' = $\sqrt{1-k^2} \to 0 \mbox{ and}^4$

$$\frac{K(k) \sim \ln \frac{4}{k'} + 0(k'^2 \ln k')}{E(k) \sim 1 + 0(k'^2 \ln k')}$$

Thus, as $x \rightarrow x'$

$$G(\mathbf{x},\mathbf{x}') \sim -\frac{1}{2} \ln|\mathbf{x} - \mathbf{x}'| + \frac{1}{2} \ln(8\alpha e^{-2}) + O(k'^2 \ln k')$$
(13)

In Ref. 2, p. 590, the parameter m, instead of k, is used.

In view of (13) we rewrite (11) in the form

$$\int_{-1}^{1} \left[G(\mathbf{x}, \mathbf{x}') + \frac{1}{2} \ln |\mathbf{x} - \mathbf{x}'| \right] \frac{F(\mathbf{x}')}{\sqrt{1 - \mathbf{x}'^2}} d\mathbf{x}' + \int_{-1}^{1} \left[F(\mathbf{x}) - F(\mathbf{x}') \right] \frac{\ln |\mathbf{x} - \mathbf{x}'|}{2\sqrt{1 - \mathbf{x}'^2}} d\mathbf{x}' - \frac{1}{2} F(\mathbf{x}) \int_{-1}^{1} \frac{\ln |\mathbf{x} - \mathbf{x}'|}{\sqrt{1 - \mathbf{x}'^2}} d\mathbf{x}' = \frac{\pi \ln 2}{2}, |\mathbf{x}| \le 1$$
(14)

An application of Chebyshev-Gauss quadrature formula (Formula 25.4.38 of Ref. 2) to (14) gives

$$\frac{1}{2} \ln(8\alpha e^{-2}) w_{i}F_{i} + \sum_{j \neq i}^{n} \left\{ G_{ij} + \frac{1}{2} \ln|x_{i} - x_{j}| \right\} w_{j}F_{j}$$

$$+ \frac{1}{2} \sum_{j \neq i}^{n} (F_{i} - F_{j}) w_{j} \ln|x_{i} - x_{j}| + \frac{\pi \ln 2}{2} F_{i} = \frac{\pi \ln 2}{2}, \quad i = 1, 2, \dots n \quad (15)$$

where

$$F_{i} = F(x_{i})$$

$$G_{ij} = G(x_{i}, x_{j})$$

$$w_{i} = \frac{\pi}{n}$$

$$x_{i} = \cos\left[\frac{(2i-1)\pi}{2n}\right]$$

In arriving at (15) from (14) we have used the easily derived formula

$$\int_{-1}^{1} \frac{\ln|x-x'|}{\sqrt{1-x'^2}} dx' = -\pi \ln 2, \quad \text{for } |x| \le 1$$

Rearranging (15) we get

$$\begin{bmatrix} 1 + \frac{1}{n \ln 2} \sum_{j \neq i}^{n} \ln |x_{i} - x_{j}| + \frac{1}{n \ln 2} \ln (8\alpha e^{-2}) \end{bmatrix} F_{i} \\ + \frac{2}{n \ln 2} \sum_{j \neq i}^{n} G_{ij}F_{j} = 1, i = 1, 2, \dots n$$
(16)

The sum in the square bracket can be summed in the following way. Noting that the x_i's are the zeros of the Chebyshev polynomial T_n of order n and $T_n(x) = 2n-1 \prod_{i=1}^n (x - x_i)$, we have⁵

$$\sum_{\substack{j\neq i\\j\neq i}}^{n} \ln|x_{i} - x_{j}| = \ln \prod_{\substack{j\neq i\\j\neq i}}^{n} |x_{i} - x_{j}| = \ln \left\{ 2^{-n+1} \left| \frac{dT_{n}(x)}{dx} \right|_{x=x_{j}} \right\} = \ln \left[\frac{n2^{-n+1}}{\sqrt{1-x_{j}^{2}}} \right]$$
(17)

With (17) we can simplify (16) in the form

$$\frac{1}{n \ln 2} \ln \left[\frac{16\alpha n e^{-2}}{\sqrt{1-x_{i}^{2}}} \right] F_{i} + \frac{2}{n \ln 2} \sum_{\substack{j \neq i}}^{n} G_{ij} F_{j} = 1, \quad i = 1, 2, \dots n$$
(18)

The dimension of this matrix equation can be reduced by a factor of 2 if the following symmetry conditions are used

$$x_{i} = \cos\left[\frac{(2i-1)\pi}{2n}\right] = -x_{n-i+1}$$

 $F_{i} = F(x_{i}) = F(-x_{i}) = F(x_{n-i+1}) = F_{n-i+1}$

After some manipulations on (18) with m = n/2, we arrive at the final matrix equation

$$\begin{cases} \frac{1}{2m \ln 2} \ln \left[\frac{32\alpha m e^{-2}}{\sqrt{1-x_{i}^{2}}} \right] + \frac{1}{m \ln 2} G_{i} \\ + \frac{1}{m \ln 2} \sum_{\substack{j \neq i}}^{m} (G_{ij}^{+} + G_{ij}^{-}) F_{j} = 1, \quad i = 1, 2, \dots m \end{cases}$$
(19)

where

$$x_{i} = \cos\left[\frac{(2i-1)\pi}{4m}\right]$$

$$G_{i} = \frac{1}{k_{i}} \left[(1 - \frac{1}{2} k_{i}^{2}) K(k_{i}) - E(k_{i}) \right]$$

$$G_{ij}^{\pm} = \frac{1}{k_{ij}^{\pm}} \left[\left\{ 1 - \frac{1}{2} k_{ij}^{(\pm)2} \right\} K(k_{ij}^{\pm}) - E(k_{ij}^{\pm}) \right]$$
$$k_{i} = \frac{\alpha}{\sqrt{\alpha^{2} + x_{i}^{2}}}$$
$$k_{ij}^{\pm} = \frac{2\alpha}{\sqrt{4\alpha^{2} + (x_{i}^{\pm} x_{j}^{\pm})^{2}}}$$

Equation (19) was solved by an electronic computer and the numerical results will be presented in the next section.

V. Results

The solution of equation (19) required less than 30 seconds of CDC 6600 computation time for four-place accuracy for 13 different a/h values. In this section we present the numerical results in the normalized coordinates of the cylindrical shell (Fig. 2).

Figure 3 shows the normalized current density J, defined by

$$J(x) = \frac{i_{\phi}(x)}{\int_{0}^{1} i_{\phi}(x) dx},$$
(20)

as function of x with a/h as a parameter. These curves agree very well with those reported in Ref. 6. Figure 4 shows the total current I, defined by

$$I(x) = \int_{0}^{x} J(x')dx', \qquad (21)$$

as function of x with a/h as a parameter. These curves give some idea about the locations of the division points when one tries to approximate the current density in Fig. 3 by a given number of current loops. We will return to this point shortly and discuss the division points in great detail.

In the limiting case where $a/h \rightarrow \infty$ (i.e., $\alpha \rightarrow \infty$) one can easily show from (12) and (11) that F(x) is a constant for $|x| \leq 1$. Hence, as $\alpha \rightarrow \infty$

$$J(x) \rightarrow \frac{(1-x^2)^{-\frac{1}{2}}}{\int_{0}^{1} (1-x^2)^{-\frac{1}{2}} dx} = \frac{2}{\pi} \frac{1}{\sqrt{1-x^2}}$$

$$I(x) \rightarrow \frac{2}{\pi} \int_{0}^{x} (1 - x'^{2})^{-\frac{1}{2}} dx' = \frac{2}{\pi} \sin^{-1} x$$

These asymptotic forms are shown as dashed curves in Figs. 3 and 4. In the other limiting case where $a/h \neq 0$ (i.e., $\alpha \neq 0$) one has, as expected from the curves in Figs. 3 and 4,

$$J(x) \rightarrow 1$$
 {almost everywhere except at $x = 1$ where $J(x)$ has a square-root singularity.

 $I(x) \rightarrow x$

These asymptotic forms are shown as dashed curves in Figs. 3 and 4.

The relative (or normalized) inductance L_r is shown in Fig. 5 as function of h/a and also tabulated in Table I. L_r is defined by the right-hand side of equation (6) divided by $\mu \pi a^2/(2h)$; that is,

$$L_{r} = \frac{L}{\mu\pi a^{2}/(2h)} = \frac{2h}{\mu\pi a^{2}} \cdot \frac{2\pi a \int_{-h}^{h} A_{\phi} i_{\phi} dz}{\left(\int_{-h}^{h} i_{\phi} dz\right)^{2}} = \frac{(h/a)\ln 2}{\int_{0}^{1} F(x)(1-x^{2})^{-\frac{1}{2}} dx}$$
(22)

where equations (3), (5) and (10) have been used.

We now return to the question of approximating the continuous current density distribution given in Fig. 3 by a discrete current distribution of N current loops, each loop having the same total current. To do this we divide the shell into N intervals (see Fig. 2) so that the total current within each interval is the same. More precisely, the division points, x_i , are determined from the equation

$$\int_{0}^{N_{i}} J(x) dx = \frac{2i}{N}, \quad i = 1, 2, \dots, \frac{N}{2} \quad \text{for N even}$$

$$= \frac{2i-1}{N}, \quad i = 1, 2, \dots, \frac{N+1}{2} \quad \text{for N odd}$$
(23)

Due to the symmetry of the problem (Fig. 2) we have

 $x_{i} = x_{-i}$ $x_{N/2} = 1 \qquad (N \text{ even})$ $x_{N+1/2} = 1 \qquad (N \text{ odd})$ $x_{0} = 0$

Tables II through V give the division points, x_i , for even N with x_o and $x_{N/2}$ omitted. For instance, when N = 4 one loop should be placed between x_o (=0) and x_1 , one between x_1 and x_2 (=1), and of course the other two between x_o and $-x_1$, $-x_1$ and $-x_2$. In Tables VI through IX the division points, x_i , are given for odd N. In this case one loop is at x_o (=0), but there is no loop between x_o and x_1 .

Figure 1. A cylindrical shell in a plane wave.

Figure 3. Current density as function of x.

Figure 4. Integral of current density as function of x.

• 5

х

.6

.7

.8

.9

1.0

17

0

0

.2

.3

.4

.1

Figure 5. Normalized inductance as function of h/a.

Table I. Normalized Inductance

a/h	^L r	L _r ^(o)	Δ
.1	.9433	.9588	1.6%
• 2	.8943	.9200	2.8%
.3	.8514	.8839	3.7%
• 4	.8133	.8498	4.3%
.5	.7792	.8181	4.8%
.6	.7484	.7884	5.1%
.7	.7205	.7609	5.3%
.8	.6949	.7351	5.5%
.9	.6713	.7109	5.6%
1.0	.6496	.6884	5.6%
2.0	.4972	.5255	5.4%
5.0	.3062	.3198	4.3%
10.0	.1962	.2034	3.5%

In Table I, $L_r^{(o)}$ is computed by assuming a uniform current distribution in the shell, and Δ is defined by

$$\Delta = \frac{L_r^{(o)} - L_r}{L_r^{(o)}} \times 100\%$$

A more extensive table for $L_r^{(o)}$ can be found in Ref. 7.

x (no loop at the center)	its x	m Poin	ivisio	II. D	Table			
5.7.8.912510	.6	.5	.4	.3	.2	.1	a/h i	N
12 .622 .631 .639 .646 .680 .700 .705	.612	.599	.585	.569	.550	.527	I	4
13.421.428.435.441.473.493.49895.805.812.819.824.849.862.865	.413 .795	.403 .784	.392 .770	.381 .752	.367 .729	.352	1 2	6
10 .317 .323 .328 .333 .360 .377 .381 12 .622 .631 .639 .646 .680 .700 .705 75 .882 .888 .893 .896 .913 .921 .923	.310 .612 .875	.303 .599 866	.295 .585 .854	.286 .569	.276	.264	1 2 2	8
5 1002 1000 1055 1050 1515 1521 1525	.075	.000	.054	.050	.017	.788	,	
19.254.259.263.267.289.304.30733.503.511.519.525.560.581.58525.735.744.751.757.787.804.807.7.922.926.929.932.944.949.951	.249 .493 .725 .917	.243 .482 .712 .910	.236 .470 .697 .900	.229 .456 .679 .887	.220 .440 .658 .868	.211 .422 .632 .840	1 2 3 4	10
.127 .130 .132 .134 .146 .154 .156 .9 .254 .259 .263 .267 .289 .304 .307 .2 .380 .387 .393 .398 .428 .447 .452 .3 .503 .511 .519 .525 .560 .581 .585 .2 .622 .631 .639 .646 .680 .700 .705 .5 .735 .744 .751 .757 .787 .804 .807 .9 .837 .844 .850 .855 .876 .887 .890 .7 .922 .926 .929 .932 .944 .949 .951	.125 .249 .372 .493 .612 .725 .829 .917	.121 .243 .363 .482 .599 .712 .818 .910	.118 .236 .353 .470 .585 .697 .804 .900	.114 .229 .343 .456 .569 .679 .787 .887	.110 .220 .331 .440 .550 .658 .765 .868	.106 .211 .317 .422 .527 .632 .737 .840	1 2 3 4 5 6 7 8	20
9 .254 .259 .263 .267 .289 93 .503 .511 .519 .525 .560 25 .735 .744 .751 .757 .787 .7 .922 .926 .929 .932 .944 .7 .922 .926 .929 .932 .944 .7 .922 .926 .929 .932 .944 .9 .254 .259 .263 .267 .289 .2 .380 .387 .393 .398 .428 .9 .503 .511 .519 .525 .560 .2 .622 .631 .639 .646 .680 .9 .837 .844 .850 .855 .876 .7 .922 .926 .929 .932 .944 .	.249 .493 .725 .917 .125 .249 .372 .493 .612 .725 .829 .917 .978	.243 .482 .712 .910 .121 .243 .363 .482 .599 .712 .818 .910 .975	.236 .470 .697 .900 .900 .118 .236 .353 .470 .585 .697 .804 .900 .972	.229 .456 .679 .887 .887 .114 .229 .343 .456 .569 .679 .787 .887 .967	.220 .440 .658 .868 .868 .110 .220 .331 .440 .550 .658 .765 .868 .957	.211 .422 .632 .840 .106 .211 .317 .422 .527 .632 .737 .840 .939	1 2 3 4 1 2 3 4 5 6 7 8 9	20

, . 에 있는 것이 있는 것이가 <u>가장 방법을</u> 하는 것이 있는 것이 있다. 것이 같은 것이 가지 않는 것이 가지 않는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 같은 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 않는 것이 없는 것이 않는 것이 없는 것이 않이 않는 것이 않는 것이 없는 것이 없는 것이 없는 것이 없는 것이 않는 것이 않이 않이 같이 않아, 것이 것이 않아, 것이 않 않아, 것이 않아, 것이 않아, 않아, 것이 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않이 않아, 않아, 않아, 않아, 않아, 않이 않아, 않이 않아, 않아, 않아, 않이 않아, 않아, 않아,

and an and a second second

Table III. Division Points x_i (no loop at the center)

<u>N</u>	a/h i	.1	.2	.3	.4	.5	.6	.7	.8	.9	1	2	5	10
		0.50	055	0.57	050	0.01	060	061	0.65	044	047			
		.053	.055	.057	.059	.061	.062	.064	.065	.066	.067	.073	.0//	.078
	2	.106	.110	.114	.118	.121	.125	.12/	.130	.132	.134	.146	.154	.156
	3	.158	.165	.1/2	.1//	.182	.18/	.191	.195	.198	.201	.218	.229	.232
	4	.211	.220	.229	.236	.243	.249	.254	.259	.263	.267	.289	.304	.307
	5	.264	.276	.286	.295	.303	.310	.31/	.323	.328	.333	.360	.377	.381
	6	.31/	.331	.343	.353	.363	.372	.380	.387	.393	.398	.428	.447	•452
4Ó		.369	.385	.399	.412	.423	.433	.442	.449	.456	.462	.495	.515	.520
	8	.422	.440	.456	.470	.482	.493	.503	.511	.519	.525	.560	.581	.585
	9	.4/5	.495	.512	.528	.541	.553	.563	.572	.580	.586	.622	.642	.647
	10	.527	.550	.569	.585	.599	.612	.622	.631	.639	.646	.680	.700	.705
		.580	.604	.624	.642	.030	.009	.080	.089	.090	./03	./30	./54	./58
	12	.032	.658	.6/9	.09/	./12	./20	./33	.744	./51	./5/	./8/	.804	.807
	1.5	.084	./12	./34	./52	./00	6//0	./00	./90	.802	.808	.834	.848	.851
	14	./3/	./05	./0/	.004	.010	•029 075	.03/	.044	.020	.000	.0/0	.88/	.890
	15	./00	.817	•030 •07	.004	.000	.0/2	.002	.000	•893	.895	.913	.921	.923
	17	.040	.000	.00/	.900	.910	° 917 051	.922	.920	.929	.932	.944	.949	.951
	19	.090	.915	.931	.940	. 247	079 079	.900	.957	•909 000	.901	.900	.9/1	.9/2
	10	.939	.727	.90/	.972	.975	.970	.9/9	.901	.904	.902	.900	.987	.988
	19	.901	• 900		. 775	• 754	• 994		. 795	• 990	.990	.990	. 997	.997
	1	.035	.037	.038	.039	.041	.042	.042	.043	.044	.045	.049	.051	.052
	2	.070	.074	.076	.079	.081	.083	.085	.087	.088	.089	.097	.103	.104
	3	.106	.110	.114	.118	.121	.125	.127	.130	.132	.134	.146	.154	.156
	4	.141	.147	.153	.157	.162	.166	.170	.173	.176	.179	.194	.204	.207
	5	.176	.184	.191	.197	.202	.207	.212	.216	.220	.223	.242	.254	.257
[6	.211	.220	.229	.236	.243	.249	.254	.259	.263	.267	.289	.304	.307
	7	.246	.257	.267	.275	.283	.290	.296	.302	.307	.311	.336	.353	.356
	8	.281	.294	.305	.314	.323	.331	.338	.344	.350	.355	.383	.400	.405
	9	.317	.331	.343	.353	.363	.372	.380	.387	.393	.398	.428	.447	.452
	10	.352	.367	.381	.392	.403	.413	.421	.428	.435	.441	.473	.493	.498
	11	.387	•404	.418	.431	.443	,453	.462	.470	.477	.483	.517	.537	.542
	12	.422	.440	.456	.470	.482	.493	.503	.511	.519	.525	.560	.581	.585
	13	.457	.477	.494	.509	.522	.533	.543	.552	.559	.566	.601	.622	.627
	14	.492	.513	.531	.547	.561	.573	.583	.592	.600	.606	.642	.662	.667
60	15	.527	.550	.569	.585	.599	.612	.622	.631	.639	.646	.680	.700	.705
	16	.562	.586	.606	.623	.638	.650	.661	.670	.678	.684	.718	.737	.741
	17	.597	.622	.643	.660	.675	.688	.698	.707	.715	.721	.754	.771	.775
	18	.632	.658	.679	.697	.712	.725	.735	.744	.751	.757	.787	.804	.807
1	19	.667	.694	.716	.734	.749	.761	.771	.779	.786	.792	.819	.834	.837
}	20	.702	.729	.752	.770	.784	.795	.805	.812	.819	.824	.849	.862	.865
	21	.737	.765	.787	.804	.818	.829	.837	.844	.850	.855	.876	.887	.890
	22	.771	.800	.821	.838	.851	.860	.868	.874	.879	.883	.901	.911	.913
	23	.806	.834	.855	.870	.881	.890	.896	.901	.905	.909	.924	.931	.933
	24	.840	.868	.887	.900	.910	.917	.922	.926	.929	.932	.944	.949	.951
	25	.874	.900	.917	.928	.935	.941	.945	.948	.950	.952	.961	.965	.966
	26	.907	.930	.944	.952	.957	.961	.964	.966	.968	.969	.975	.977	.978
	27	.939	.957	.967	.972	.975	.978	.979	.981	.982	.982	.986	.987	.988
	28	.968	.980	.985	.987	.989	.990	.991	.991	.992	.992	.994	.994	.994
- 1	29	.991	.995	.996	.997	.997	.997	.998	•998	.998	•998	•998	.999	.999

			TADIE	TÅ* 1	1141210	JIL FOIL	ills x	(10 10	Jop at	the ce	enter)			
N	a/h i	.1	.2	.3	.4	.5	.6	.7	.8	.9	1	2	5	10
N 80	i 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 5 6 7 8 9 10 11 12 33 4 5 6 7 8 9 10 11 12 33 4 5 6 7 8 9 10 11 12 33 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 7 8 9 30 31 20 33 34 5 6 7 8 9 10 11 22 23 24 25 26 7 8 9 30 31 32 33 34 5 36 37 37 37 37 37 37 37 37 37 37	.1 .026 .053 .079 .106 .132 .158 .185 .211 .237 .264 .290 .317 .343 .369 .396 .422 .448 .475 .501 .527 .553 .580 .606 .632 .658 .684 .711 .737 .763 .788 .814 .840 .865 .890 .915 .939 .961	.2 .028 .055 .083 .110 .138 .165 .193 .220 .248 .276 .303 .331 .358 .385 .413 .440 .468 .495 .522 .550 .577 .604 .631 .658 .685 .712 .738 .765 .791 .817 .842 .868 .892 .915 .937 .957 .975	.3 .029 .057 .086 .114 .143 .172 .200 .229 .257 .286 .314 .343 .371 .399 .428 .456 .484 .512 .541 .569 .596 .624 .652 .541 .569 .596 .624 .652 .707 .734 .761 .787 .813 .838 .887 .909 .931 .950 .967 .981	.4 .030 .059 .089 .118 .148 .177 .207 .236 .265 .295 .324 .353 .383 .412 .441 .470 .528 .556 .585 .613 .642 .585 .613 .642 .670 .725 .752 .778 .804 .830 .854 .878 .900 .921 .940 .957 .972 .984	.5 .030 .061 .091 .121 .152 .182 .212 .243 .273 .303 .333 .363 .393 .423 .453 .453 .453 .453 .453 .453 .453 .45	.6 .031 .062 .093 .125 .156 .187 .218 .249 .280 .310 .341 .372 .402 .433 .463 .403 .523 .553 .582 .612 .641 .669 .553 .582 .612 .641 .669 .725 .752 .778 .804 .829 .853 .875 .917 .935 .951 .966 .978 .987	.7 .032 .064 .096 .127 .159 .191 .223 .254 .286 .317 .348 .380 .411 .442 .472 .503 .533 .593 .563 .593 .622 .651 .680 .708 .735 .762 .788 .813 .837 .860 .882 .903 .922 .939 .955 .968 .979 .988	.8 .032 .065 .097 .130 .162 .195 .227 .259 .291 .323 .355 .387 .418 .449 .480 .511 .542 .572 .602 .631 .660 .689 .717 .744 .770 .660 .689 .717 .744 .770 .796 .821 .844 .867 .888 .908 .926 .943 .957 .970 .981 .989	.9 .033 .066 .099 .132 .165 .198 .231 .263 .296 .328 .361 .393 .425 .456 .488 .519 .549 .549 .549 .549 .549 .549 .610 .639 .668 .696 .724 .751 .777 .802 .827 .850 .872 .850 .872 .929 .945 .929 .945 .929	1 .034 .067 .101 .134 .168 .201 .234 .267 .300 .333 .366 .398 .430 .462 .494 .525 .556 .616 .646 .675 .703 .757 .783 .808 .832 .855 .876 .896 .915 .932 .947 .973 .982 .990	2 .037 .073 .109 .146 .182 .218 .254 .289 .325 .360 .394 .428 .462 .495 .528 .560 .591 .622 .651 .622 .651 .680 .709 .736 .787 .811 .834 .856 .895 .913 .929 .944 .957 .968 .978 .986 .992	5 .039 .077 .115 .154 .192 .229 .267 .304 .340 .377 .412 .447 .482 .515 .548 .581 .612 .642 .548 .581 .612 .642 .700 .728 .754 .780 .804 .827 .848 .868 .887 .905 .921 .936 .949 .949 .971 .980 .987 .993	10 .039 .078 .117 .156 .194 .232 .270 .307 .344 .381 .417 .452 .486 .520 .553 .585 .617 .647 .705 .732 .758 .783 .807 .830 .851 .871 .890 .907 .923 .938 .951 .923 .923 .923 .923 .923 .923 .923 .923
	38 39	.981 .995	.988 .997	.991 .998	.993 .998	.994 .998	.994 .999	.995 .999	.995 .999	.995 .999	.996 .999	.996 .999	.997 .999	.997

Divici 1 T_{α} с. **1** Table V. Division Points x_i (no loop at the center)

	Ν.,	1 .		0	,	-	-	_	•		-		_	
Ν	a/h	.1	• 2	• 3	• 4	.5	• 6	• /	.8	.9	Ţ	2	5	10
14	\downarrow^{\perp}	×				·····						<u></u>		
	1	.021	.022	.023	.024	.024	.025	.025	.026	.026	.027	.029	.031	.031
	2	.042	.044	.046	.047	.049	.050	.051	.052	.053	.054	.058	.062	.062
	3	.063	.066	.069	.071	.073	.075	.076	.078	.079	.081	.088	.092	.094
	4	.084	.088	.092	.095	.097	.100	.102	.104	.106	.107	.117	.123	.125
	5	.106	,110	.114	.118	.121	.125	.127	.130	.132	.134	.146	.154	.156
	6	.127	.132	.137	.142	.146	.149	.153	.156	.158	.161	.175	.184	.186
	7	.148	.154	.160	.165	.170	.174	.178	.182	.185	.188	.204	.214	.217
	8	.169	.176	.183	.189	.194	.199	.204	.207	.211	.214	.232	.244	.247
	9	.190	.198	.206	.212	.218	.224	.229	.233	.237	.241	.261	.274	.277
	10	.211	.220	.229	.236	.243	.249	.254	.259	.263	.267	.289	.304	.307
	11	.232	.243	.252	.260	.267	.273	.279	.285	.289	.294	.318	.333	.337
	12	.253	.265	.274	.283	.291	.298	.305	.310	.315	.320	.346	.362	.366
	13	.274	.287	.297	.307	.315	.323	.330	.336	.341	.346	.373	.391	.395
	14	.296	.309	.320	.330	.339	.347	.355	.361	.367	.372	.401	.419	.424
	15	.317	.331	.343	.353	.363	.372	.380	.387	.393	.398	.428	.447	.452
	16	.338	.352	.365	.377	.387	.396	.404	.412	.418	.424	.455	.475	.480
	17	.359	.374	.388	.400	.411	.421	.429	.437	.444	.449	.482	.502	.507
	18	.380	.396	.411	.424	.435	.445	.454	.462	.469	.475	.508	.529	.534
	19	.401	.418	.433	.447	.459	.469	.478	.487	.494	.500	.534	.555	.560
	20	.422	.440	.456	.470	.482	.493	.503	.511	.519	.525	.560	.581	,585
	21	.443	.462	.479	.493	.506	.517	.527	.536	.543	.550	.585	.606	.611
	22	.464	.484	.501	.516	.529	.541	.551	.560	.568	.574	.609	.630	.635
	23	.485	.506	.524	.539	.553	.565	.575	.584	.592	.598	.634	.654	.659
100	24	.506	.528	.546	.562	.576	.588	.599	.608	.616	.622	.657	.678	.682
	25 ·	.527	.550	.569	.585	.599	.612	.622	.631	.639	.646	.680	.700	.705
	26	.548	.571	.591	.608	.622	.635	.645	.654	.662	.669	.703	.722	.727
	27	.569	.593	.613	.630	.645	.658	.668	.677	.685	.692	.725	.744	.748
	28	.590	.615	.635	.653	.668	.680	.691	.700	.708	.714	.747	.765	.769
	29	.611	.636	.657	.675	.690	.703	.713	.722	.730	.736	.767	.784	.788
ļ	30	.632	.658	.679	.697	.712	.725	.735	.744	.751	.757	.787	.804	.807
	31	.653	.679	.701	.719	.734	.746	.757	.765	.772	.778	.807	.822	.825
ļ	32	.674	.701	.723	.741	.756	.768	.778	.786	.792	.798	.825	.840	.843
	33	.695	.722	.744	.762	.777	.789	.798	.806	.812	.818	.843	.856	.859
	34	.716	.744	.766	.784	.798	.809	.818	.825	.831	.837	.860	.872	.875
1	35	.737	.765	.787	.804	.818	.829	.837	.844	.850	.855	.876	.887	.890
	36	.757	.786	.808	.825	.838	.848	.856	.862	.868	.872	.892	.902	.904
	37	.778	.807	.828	.845	.85/	.866	.8/4	.880	.884	.888	.906	.915	.91/
	38	.799	.827	.848	.864	.8/5	.884	.891	.896	.900	.904	.920	.927	.929
	39	.819	.848	.808	•882	.893	.901	.907	.912	.915	.918	.932	.939	.940
	40	.840	.868	.88/	.900	.910	.91/	.922	.920	.929	.932	.944	.949	.951
	41	.860	.887	.905	.91/	.925	.931	.930	.939	.942	.944	.954	.959	.960
	42	.880	.906	.922	.933	.940	.945	.949	• 952	.954	.950	.964	.967	.968
	43	.900	.924	.939	.947	.905	.957	.900	.903	.904	.900	.972	.9/5	.970
1	44	.920	.942	.903	.900	.705 170	070. 070	.7/1	. 7/4	•7/4	•7/5 000	. 7/7	.782	.982
	45	.737 057	. 72/	. 70/	.9/2	•7/2 00/	. 7/ð	•7/7 700	.70T	.784	.704	.980	.98/	.700
	40	.93/	.9/2	•7/8 007	.982	. 784	909.	.70/	•700 002	, 700 002	•707 •707	.991	.992	.992
	4/	.9/3	.983	.98/	.990	.991	.992	•777 •007	.777 200	.773 700	• 774 007	.772	.772	.996
	40	.98/	.992	.994	.772	.770	.770	, 77/ 000	.72/ 000	.77/	•77/ 000	,770 000	•778 •000	.998
	49	.997	.998	• 999	.999	. 999	• 999	. 779	• 777	• 777	• 777	.999	.999	.999

							<u>1</u>	•••••			,			
<u>N</u>	a/h i	.1	.2	.3	.4	.5	.6	.7	.8	.9	1	2	5	10
5	1 2	.211	.220 .658	.229 .679	.236 .697	.243 .712	.249 .725	.254 .735	.259 .744	.263 .751	.267 .757	.289 .787	.304 .804	.307 .807
7	1	.151	.158	.163	.169	.173	.178	.182	.185	.189	.191	.208	.219	.221
	2	.452	.472	.488	.503	.516	.527	.537	.546	.554	.560	.595	.616	.621
	3	.751	.780	.802	.819	.832	.842	.851	.857	.863	.867	.887	.898	.900
9	1	.117	.123	.127	.131	.135	.138	.141	.144	.147	.149	.162	.171	.173
	2	.352	.367	.381	.392	.403	.413	.421	.428	.435	.441	.473	.493	.498
	3	.586	.610	.630	.648	.663	.675	.686	.695	.703	.709	.742	.760	.764
	4	.817	.845	.866	.880	.891	.899	.905	.910	.914	.917	.931	.938	.939
19	1	.056	.058	.060	.062	.064	.066	.067	.068	.070	.071	.077	.081	.082
	2	.167	.174	.181	.186	.192	.197	.201	.205	.208	.211	.229	.241	.244
	3	.278	.290	.301	.310	.319	.327	.334	.340	.345	.350	.378	.395	.400
	4	.389	.406	.420	.433	.445	.455	.646	.472	.479	.485	.519	.540	.545
	5	.500	.521	.539	.555	.569	.581	.591	.600	.608	.615	.650	.670	.675
	6	.610	.635	.656	.674	.689	.702	.712	.721	.728	.735	.766	.783	.787
	7	.720	.748	.770	.788	.802	.813	.822	.829	.835	.840	.864	.876	.878
	8	.829	.857	.877	.891	.901	.908	.914	.919	.922	.925	.938	.944	.945
	9	.934	.953	.963	.969	.973	.975	.977	.979	.980	.981	.984	.986	.986
39	1	.027	.028	.029	.030	.031	.032	.033	.033	.034	.034	.037	.040	.040
	2	.081	.085	.088	.091	.093	.096	.098	.100	.102	.103	.112	.118	.120
	3	.135	.141	.147	.151	.156	.160	.163	.166	.169	.172	.187	.196	.199
	4	.189	.198	.205	.212	.218	.223	.228	.232	.237	.240	.260	.273	.277
	5	.244	.254	.264	.272	.280	.287	.293	.298	.303	.308	.333	.349	.353
	6	.298	.311	.322	.332	.342	.350	.357	.364	.370	.375	.404	.422	.427
	7	.352	.367	.381	.392	.403	.413	.421	.428	.435	.441	.473	.493	.498
	8	.406	.423	.439	.452	.464	.475	.484	.492	.499	.506	.540	.561	.566
	9	.460	.480	.497	.512	.525	.536	.546	.555	.563	.569	.604	.625	.630
	10	.514	.536	.554	.570	.584	.597	.607	.616	.624	.631	.666	.686	.691
	11	.568	.591	.611	.629	.643	.656	.667	.676	.683	.690	.723	.742	.747
	12	.621	.647	.668	.686	.701	.714	.724	.733	.740	.746	.777	.794	.798
	13	.675	.702	.724	.742	.757	.769	.779	.787	.794	.799	.826	.841	.844
	14	.729	.757	.779	.796	.810	.821	.830	.837	.843	.848	.870	.882	.884
	15	.782	.810	.832	.848	.860	.870	.877	.883	.887	.891	.909	.917	.919
	16	.835	.862	.882	.896	.905	.913	.918	.922	.926	.929	.941	.947	.948
	17	.886	.912	.927	.937	.944	.949	.952	.955	.957	.959	.966	.970	.971
	18	.936	.955	.965	.971	.974	.977	.978	.980	.981	.981	.985	.987	.987
	19	.980	.988	.991	.992	.993	.994	.994	.995	.995	.995	.996	.997	.997

Table VI. Division Points x, (one loop at the center)

•

Table VII. Division Points x_i (one loop at the center)

N	a/h i	.1	.2	.3	• 4	.5	.6	.7	.8	.9	1	2	5	10
59	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	.018 .054 .089 .125 .161 .197 .233 .268 .304 .340 .376 .411 .447 .483 .518 .554 .590 .625 .661 .696 .731 .767 .802 .836 .871 .905 .937 .967 .990	.019 .056 .093 .131 .168 .206 .243 .280 .317 .355 .392 .429 .466 .503 .540 .577 .614 .651 .687 .723 .759 .795 .830 .864 .897 .928 .956 .979 .994	.019 .058 .097 .136 .174 .213 .252 .291 .329 .368 .406 .445 .483 .521 .559 .597 .635 .672 .709 .746 .782 .817 .851 .884 .914 .942 .966 .984 .996	.020 .060 .100 .140 .180 .220 .260 .300 .340 .379 .419 .458 .497 .537 .575 .614 .652 .690 .727 .764 .799 .833 .866 .897 .925 .950 .971 .987 .997	.021 .062 .103 .144 .185 .226 .267 .308 .349 .390 .430 .470 .510 .550 .590 .629 .667 .705 .742 .778 .813 .846 .878 .907 .933 .956 .975 .988 .997	.021 .063 .106 .148 .190 .232 .274 .316 .357 .399 .440 .481 .522 .602 .641 .680 .717 .754 .790 .824 .856 .886 .914 .939 .960 .977 .990 .997	.022 .065 .108 .151 .194 .237 .280 .322 .365 .407 .449 .490 .532 .572 .612 .652 .690 .728 .764 .799 .832 .864 .893 .919 .943 .963 .979 .990 .998	.022 .066 .110 .154 .198 .242 .285 .328 .372 .414 .457 .499 .540 .581 .621 .661 .699 .736 .772 .807 .840 .870 .840 .878 .924 .946 .965 .980 .991 .998	.022 .067 .112 .157 .201 .246 .290 .334 .377 .421 .464 .506 .548 .589 .629 .669 .707 .744 .779 .813 .845 .875 .902 .927 .949 .967 .981 .991 .998	.023 .068 .114 .159 .204 .294 .294 .339 .383 .426 .470 .512 .554 .554 .636 .675 .713 .750 .785 .819 .850 .879 .906 .930 .951 .968 .982 .992 .998	.025 .074 .124 .173 .222 .270 .318 .365 .412 .458 .503 .547 .589 .631 .671 .709 .746 .781 .813 .844 .872 .898 .921 .942 .959 .974 .985 .993 .998	.026 .078 .130 .182 .233 .284 .334 .383 .431 .478 .523 .568 .610 .651 .691 .728 .764 .797 .828 .857 .884 .908 .929 .948 .963 .977 .987 .994 .999	.026 .079 .132 .184 .236 .287 .337 .387 .435 .482 .528 .572 .615 .656 .695 .733 .768 .801 .832 .860 .886 .910 .949 .949 .949 .949 .999

Table VIII. Divísion Points x_i (one loop at the center)

<u>N</u>	a/h i	.1	.2	.3	.4	.5	.6	.7	.8	.9	1	2	5	10
N 79	1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	.1 .013 .040 .067 .094 .120 .147 .174 .200 .227 .254 .281 .307 .334 .361 .387 .414 .441 .467 .494 .521 .547 .574 .600 .627 .653 .680 .706 .733 .759 .785 .811 .837 .863 .888	.2 .014 .042 .070 .098 .126 .154 .181 .209 .237 .265 .293 .321 .349 .376 .404 .432 .460 .487 .515 .543 .570 .598 .625 .652 .680 .707 .734 .761 .787 .814 .840 .865 .890 .914	.3 .014 .043 .072 .101 .130 .159 .188 .217 .246 .275 .304 .333 .361 .390 .419 .447 .476 .505 .533 .361 .390 .419 .447 .476 .505 .533 .561 .590 .618 .646 .674 .729 .756 .783 .809 .835 .860 .884 .907 .929	.4 .015 .045 .075 .105 .135 .164 .224 .254 .284 .313 .343 .373 .402 .432 .461 .491 .520 .549 .578 .607 .635 .664 .692 .720 .747 .774 .800 .826 .851 .875 .898 .919 .939	.5 .015 .046 .077 .108 .138 .138 .169 .200 .230 .261 .292 .322 .322 .353 .413 .443 .443 .473 .503 .533 .503 .503 .592 .621 .650 .679 .707 .734 .762 .788 .814 .839 .863 .886 .908 .927 .945	.6 .016 .047 .079 .110 .142 .173 .205 .236 .267 .299 .330 .361 .392 .423 .454 .484 .514 .575 .604 .633 .691 .719 .747 .774 .800 .825 .849 .872 .894 .915 .933 .950	.7 .016 .048 .081 .113 .145 .177 .209 .241 .273 .305 .337 .369 .400 .431 .463 .494 .524 .555 .585 .615 .644 .555 .585 .615 .644 .555 .585 .615 .644 .555 .585 .615 .644 .555 .585 .615 .644 .555 .585 .644 .730 .757 .783 .809 .834 .857 .880 .901 .920 .938 .954	.8 .016 .049 .082 .115 .148 .181 .213 .246 .278 .311 .343 .246 .278 .311 .343 .375 .407 .439 .471 .502 .533 .564 .594 .624 .653 .564 .682 .711 .738 .765 .791 .817 .841 .864 .885 .906 .924 .956	.9 .017 .050 .084 .117 .150 .184 .217 .250 .283 .316 .349 .381 .414 .446 .478 .509 .540 .571 .602 .632 .661 .571 .602 .632 .661 .718 .746 .772 .798 .823 .846 .869 .910 .928 .944 .958	1 .017 .051 .085 .119 .153 .187 .220 .254 .287 .321 .354 .387 .419 .452 .484 .516 .547 .578 .608 .638 .668 .697 .725 .752 .752 .778 .804 .828 .851 .873 .894 .913 .930 .946 .960	2 .019 .055 .092 .129 .166 .203 .239 .275 .311 .346 .381 .416 .450 .484 .517 .550 .582 .613 .644 .673 .730 .757 .782 .807 .757 .782 .807 .830 .853 .873 .893 .911 .927 .942 .956 .967	5 .020 .059 .097 .136 .175 .213 .251 .289 .326 .363 .399 .435 .470 .504 .538 .571 .603 .634 .664 .693 .721 .748 .774 .603 .634 .664 .693 .721 .748 .774 .822 .844 .865 .885 .903 .919 .934 .948 .960 .971	10 .020 .059 .099 .138 .177 .216 .254 .292 .330 .367 .403 .439 .475 .509 .543 .576 .608 .639 .669 .698 .726 .753 .778 .803 .826 .848 .887 .905 .921 .936 .949 .971
	32 33 34 35 36 37 38 39	.837 .863 .888 .913 .938 .960 .980 .995	.865 .890 .914 .936 .956 .974 .988 .997	.884 .907 .929 .949 .966 .980 .991 .998	.898 .919 .939 .956 .971 .984 .993 .998	.908 .927 .945 .961 .975 .986 .994 .998	.915 .933 .950 .965 .977 .987 .994 .999	.920 .938 .954 .967 .979 .988 .995 .999	.924 .941 .956 .969 .980 .989 .985 .995	.928 .944 .958 .971 .981 .989 .995 .999	.930 .946 .960 .972 .982 .990 .995 .999	.942 .956 .967 .977 .985 .992 .996 .999	.948 .960 .971 .980 .987 .993 .997 .999	.949 .961 .971 .980 .987 .993 .993 .997

Table IX. Division Points \mathbf{x}_{i} (one loop at the center)

-----Nelschaument - La Planead 1

4.

•

N	a/h i	.1	.2	.3	.4	.5	.6	.7	.8	.9	1	2	5	10
	1	.011	.011	.012	.012	.012	.013	.013	.013	.013	.014	.015	.016	.016
	2	.032	.033	.035	.036	.037	.038	.039	.039	.040	.041	.044	.047	.047
	3	.053	.056	.058	.060	.061	.063	.064	.066	.067	.068	.074	.078	.079
	4	.075	.078	.081	.084	.086	.088	.090	.092	.093	.095	.103	.109	.110
	5	.096	.100	.104	.107	.110	.113	.116	.118	.120	.122	.133	.140	.141
	6	.117	.123	.127	.131	.135	.138	.141	.144	.147	.149	.162	.171	.173
	7	.138	.145	.150	.155	.159	.164	.167	.170	.173	.176	.191	.201	.204
	8	.160	.167	.173	.179	.184	.189	.193	.197	.200	.203	.220	.232	.234
	9	.181	.189	.196	.203	.208	.214	.218	.223	.226	.230	.249	.262	.265
	10	.203	.212	.219	.227	.233	.239	.244	.249	.253	.257	.278	.292	.295
	11	.224	.234	.243	.250	.257	.264	.269	.275	.279	.283	.306	.322	.325
	12	.245	.256	.266	.274	.282	.289	.295	.300	.305	.310	.335	.351	.355
	13	.267	.278	.289	.298	.306	.314	.320	.326	.332	.336	.363	.380	.384
	14	.288	.301	.312	.321	.330	.338	.346	.352	.358	.363	.391	.409	.413
	15	.309	.323	.335	.345	.355	.363	.371	.378	.384	.389	.419	.437	.442
	16	.330	.345	.358	.369	.379	.388	.396	.403	.409	.415	.446	.465	.470
	17	.352	.367	.381	.392	.403	.413	.421	.428	.435	.441	.473	.493	.498
	18	.373	.389	.403	.416	.427	.437	.446	.454	.461	.467	.500	.520	.525
	19	.394	.411	.426	.439	.451	.462	.471	.479	.486	.492	.526	.547	.552
	20	.416	.434	.449	.463	.475	.486	.495	.504	.511	.517	.552	.573	.578
	21	.437	.456	.472	.486	.499	.510	.520	.529	.536	.543	.577	.598	.603
	22	.458	.478	.495	.510	.523	.534	.544	.553	.561	.56/	.602	.623	.628
	23	.4/9	.500	.518	.533	.54/	.558	.569	.5//	.585	.592	.62/	.648	.653
99	24	.501	.522	.540	.556	.570	.582	.593	.602	.609	.616	.651	.6/2	.6/6
	25	.522	.544	.563	.5/9	.593	.000	.010	.025	.033	.640	.6/5	.695 717	.699
	20	.543	.200	.202	.002	.017	.029	.040	•049 670	.057	.003	.090	•/1/	•122
	27	- 584 586	. 500	.000	6/8	.040	675	-005 686	.072	-000	.000 7/19	.720	.739	•745
	29	607	632	.050	670	685	698	709	717	725	731	763	780	784
	30	628	654	675	693	.708	.720	.731	.739	.747	.753	.783	800	804
	31	.649	.675	.697	.715	.730	.742	.753	.761	.768	.774	.803	.819	.822
	32	.670	.697	.719	.737	.752	.764	.774	.782	.789	.795	-822	.837	.840
	33	.691	.719	.741	.759	.773	.785	.795	.802	.809	.814	.840	.854	.857
	34	.712	.740	.762	.780	.794	.806	.815	.822	.828	.834	.858	.870	.873
	35	.733	.761	.784	.801	.815	.826	.834	.841	.847	.852	.874	.885	.888
	36	.754	.783	.805	.822	.835	.845	.853	.860	.865	.870	.890	.900	.902
	37	.775	.804	.826	.842	.854	.864	.871	.877	.882	.886	.904	.913	.915
	38	.796	.825	.846	.861	.873	.882	.889	.894	.898	.902	.918	.926	.928
	39	.817	.845	.866	.880	.891	.899	.905	.910	.914	.917	.931	.938	.939
	40	.838	.866	.885	.898	.908	.91.5	.920	.925	.928	.931	.943	.948	.950
	41	.858	.885	.903	.915	.924	.930	.935	.938	.941	.943	.953	.958	.959
	42	.879	.905	.921	.932	.939	.944	.948	.951	.953	.955	.963	.967	.968
	43	.899	.923	.937	.946	.952	.956	.960	.962	.964	.965	.972	.975	.975
	44	.919	.941	.953	.960	.964	.968	.970	.972	.973	.974	.979	.981	.982
	45	.938	.957	.966	.971	.975	.977	.979	.980	.981	.982	.985	. 87	.987
	40	.956	.971	.978	.981	.984	.985	.986	.98/	.988	.988	.991	.992	,992
	4/	.9/3	.983	.98/	.989	.991	.992	.992	.773	.993	.993	.772	.995	,995
	48	.98/	.992	.994	.995	.990	.990 000	.77/ 000	.77/ 000	.77/	.77/	.778	.778	,998
	47	. 770	• 770	. 999	• 777	• 777	• 777	• 777	. ,,,,	• 777	• 777	• 777	• 777	. 777

•

.

~

Acknowledgement

We thank Dr. C. E. Baum for his interest and helpful suggestions in this work, Mr. R. W. Sassman for his assistance in the numerical computation, and Mrs. G. Peralta for typing the manuscript.

References

- 1. C. E. Baum, Sensor and Simulation Note 38, "Parameters for Some Electrically-Small Electromagnetic Sensors," March 1967.
- M. Abramowitz and I. A. Stegun, <u>Handbook of Mathematical Functions</u>, NBS, 1964.
- W. R. Smythe, <u>Static and Dynamic Electricity</u>, McGraw-Hill, 1950, pp. 270-271.
- 4. E. Jahnke and F. Emde, Tables of Functions, Dover, 1945, p. 73.
- 5. W. Magnus, F. Oberhettinger, and R. P. Soni, <u>Formulas and Theorems</u> for the Special Functions of Mathematical Physics, Springer-Verlag, 1966, pp. 256-258.
 - 6. G. Bardotti, B. Bertotti, and L. Gianolio, "Magnetic Configuration of a Cylinder With Infinite Conductivity," J. Math. Phys., Vol. 5, No. 10, p. 1387, 1964.
- 7. C. E. Baum, Sensor and Simulation Note 127, "Further Considerations for Multiturn Cylindrical Loops," April 1971.