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Abstract

In this note, an integro-differential equation for the current on a

thin wire arbitrarily positioned between two parallel plates is formulated.

Both the scattering and active antenna problems are considered, and the

numerical techniques for solving the equation is presented. Typical results

of the input current in the frequency domain are given, but the time domain

results and an adequate parameter study are not included. These will be

presented in a future.note after the computations are completed.
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I. Introduction

Through the use of recently developed numerical techniques, many problems

that are difficult to treat classically may be analyzed. The problem of

determining the behavior of a radiating antenna or a scattering element within

a parallel plate region is one example. By formulating an integral equation for

the current distribution on the

moments may then be employed to

plates is taken into account by

region.

antenna or scattering element, the method of

obtain the solution. The effect of the parallel

using the appropriate Greenfs function for the

Aside from the academic interest in this problem, the results of such an

analysis are helpful in the design and evaluation of EMP (electromagnetic pulse)

simulators . The parallel plates are a useful device for achieving relatively

large electromagnetic field strengths with conventional excitation techniques,

but–s-ornieinteraction between the test obstacle and the plates is to be expected.

The results of this analysis will aid in evaluating this interaction and provide

guidelines for future simulator development.

Previous investigators have considered some special cases of this problem.

Rae(’) has treated the case of a driven antenna extending perpendicularly “--

across the parallel plate region in such a way that it is shorted to the plate

at one end, and driven by a delta gap against the other plate. His results,

which include plots of the input admittance of the antenna as a function of-the

plate separation, show a discontinuity as the separation passes through the value

kh = n, but the actual effect of-the presence of the plates is somewhat masked

by the resonate behavior of-the antenna itself which occurs at roughly the same

frequency.

Taylor ( 2 ) has considered a symmetrically located thin receiving antenna

(scattering element) which again is perpendicular to the two plates. Current:

at the center of- the antenna is plotted as the plate separation is varied, but

no noticeable discontinuity or singularity in the current is observed as the

plate separation passes through the resonate values of kd = n, 2-ir,3Tr,etc.

Recently, Scheer and Neureuther
(3)

have considered an infinite array of’

parallel antennas which are inclined at some angle with respect to the axis

where the antenna centers are located. While this is not exactly the same as
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-)the present problem under consideration (see Figure 1), the special case of

the antennas being co-linear is the same as that of an antenna being perpen-

dicular to the two parallel plates.

In a recent note by Lee and Latham
(7)

the scattering from a cylinder in

a parallel plate region was studied in both the frequency and time domain.

As in the previous cases, the obstacle was perpendicular to the plates and no

resonant effects were noted as the plate separation varied.

The analysis and results presented in this note are for an antenna or

scattering body at an arbitrary inclination angle within the parallel plate

region. For this problem, some interesting interaction effects between the

plates and the thin wire are observed, especially for the wire being parallel

to the plates so that the coupling is greatest. As the wire rotates and

becomes nearly perpendicular to the plates, these effects become much weaker.

In this note, the main emphasis is in studying the radiating and scattering

properties of a thin cylinder within the parallel plates. SpecAl attention is

paid to the formulation of the appropriate integral equation for the unknown

current on the cylinder, and also to the numerical technique for solving the

equation. Some typical results in the frequency domain are presented, but

neither the time response nor an adequate parameter study is included. These

will be presented in a future note as soon as the computations have been

completed.
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II. Formulation and Solution

To develop an integral equation for the antenna current, consider the

geometry of the problem as shown in Figure la. The wire antenna of total length

L and radius a is located with its center a distance h above one plane. The

antenna is inclined at some angle 0 with the ; axis and the second plate is at

a distance d from the first;- A small.voltage source of V volts is assumed t:o

be the driving source for the antenna problem, and for the scattering problem,

a TEM wave is assumed for the incident field as in Figure 2.

Through the use of image theory, the parallel planes may be replaced hy

two infinite sets of images. One set of images remains parallel to the original

antenna, while the second set is at an angle 2f3with respect to the antenna.

The phasing of the sources of the parallel images is the same as the primary

source, but that of the non-parallel image is 180 degrees out of phase with the

primary source.

Notice that since the image currents flow in more than one direction,

it is necessary to have more than one component of the vector potential ~ to

describe the fields in this problem. Thus , the relatively straightforward

formulation for the Hal16n type integral equations used in Refs. 1, 2, and 3

is not sufficient here. For the present case, a Hal16n type integral’ equation
(4)

similar to that described by Mei for curved wires must be employed if it

is desired to treat the problem in this manner.

On the other hand, an integro-differential equation of the Pocklington

form can be developed,
(5)

much in the same manner as done by Barrington for the

arbitrary thin-wire antenna. This latrer approach has been taken for the

present problem.

Consider for the moment, the electric f-ieldat an observation point, ro,
th

produced by one of the images, say the n image. This is expressible in terms
th

of the vector and scalar potentials arising from the n image as

En(To) = - jupXn(;o) - Vo$n(Zo)

where

In(To) = J
.

In(~:)&;(Ts)G(To,zs)d&’
th

n
n image

(1)
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and

.

‘-).“<...

(3)

Here ~~(;~) is the unit vector tangent to the n
th

image at the point given by
—
rs. G(;o,;~) is the free space Green’s function denoted by

-jkl;o-;sl
e

4nlFo-;sl “
(4)

Figure lbshows the relevant quantities in these expressions.

Of special interest is the componenc of the scattered electric field which

is tangent to the primary source. This direction is denoted by ~. Taking the

~ component of Eq. (l), substituting in Eqs. (2) and (3) and making use of the

continuity equation for the total current

dIn
—=-+J@,d~‘

n

the following relation for the scattered tangential electric field results

-jwsE~ca(;o) = k2
J

In(C;)G(Xo,~s)t;(Zs) “ ;(~o)dc’
Jh

n

image

(5)

(6)

Integrating the last integral by parts and using the fact that In = O at the
th

end points of the n image, results in the following relation

The scattered tangential electric field at the point E on the antenna then

consists of a sum over all of the n terms given in Eq. (7). Denote by the
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symbol % the operator within the brackets of Eq. ‘(7). Then, the scattered field

produced by the images as well as by the primary current itself may be written as

(8)

... .
whereit is assumed that when n = O, the source and observation points are bt}th

on the physical antenna.

At this point it is convenient to separate Eq. (8) into two parts, onc of,

which arises from images parallel to the antenna, and the others which are non-

parallel. If the nth image is parallel to the physical antenna, then

and (9)

a a G.-qG=z

Hence, for these images the operator < is modified and iz is possible

to define it as a new operator ~’, where

az
z’.——— +k2 .

a.gz
(lo)

For the non parallel images, it is noted that the quantity i; ● i always

has a constant value of cos 29,

the operator % takes the form

(it=-
With these two operators,

since the antenna is not a curved wire. Hence,

a a——
a<; 2<

+ k2 COS 29
)

(11)

it is possible to write an integral equation for

the current by imposing the boundary condition that E
inc + Esca = Etot

=Oon

the surface of the conducting wire. Hence, we have from Eq. (8)

jucEinc(&)= ~ 1 I&lGd~; +
n~r ~~h lnXGdg; (12)n for ,nth

image
parallel

image
non-parallel

images images
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where the first sum accounts for all images parallel to the primary source

(including the self current) and the second sum is for all of the other, non-

parallel images.

From image theory, the values of the image currents In, are expressible

in terms of the still unknown current on the antenna. Specifically, for the

images parallel to the antenna, I = I . However, for the non-parallel images,
n o

it is found that I = - I Rearranging the orders of summation, integration
n 0’

and operation by % or %’ yields the following integral.equation for the antenna

current,

where

R(l) = [(
,2

(

2%
(L-g- &’)sin 6 - 2(h-t-nd)) + (g -~’)cose

n )]

[(R(2) = (g
2

)(

2%
- E’)sin 8 - 2nd +(&- C’)cos e

)]
n#O (14)n

n= o (a = antenna wire radius).

In determining the solution 1(s’) in Eq. (13), the method of moments as

described by Barrington (5) is used co reduce the integro-differential equation

to a system of linear algebraic equations. In order to evaluate the matrix

elements required for the solution, the two doubly infinite sums must be

evaluated efficiently, so as co reduce the computational time and effort. As
th

readily seen from the sums, the n term behaves asymptotically as

th
-j2nkd

n term-e n . (15}

As a result, the sums will converge uniformly in the limit as n approaches

infinity, provided that kd # n, 2T, 3x, etc. For these values of plate

separation, the terms behave as l/n which indicates that the sums in Eq. (13)

are divergent.

I
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‘) ~ For these plate separations, the validity of interchanging the ~, ~

and=operations in Eq. (12) is open to question. For example, consider the

antenna being perpendicular to the two image planes. If the operations are

performed in the order of Eq. (13), namely ~~~, a divergent sum results.

However, if the operations are done in the order ~~~, it is noted that the terms
?

in the sum fall off as exp(-j2nkd)/n4, since each term corresponds to the a:~ial

electric field along the axis of a radiating antenna. This sum will converge

even if kd = T, 2Tr,etc. If the antenna is tilted slightly, then the elect:ric

field contribution due to one of the images will have a I/n term, since the

observation point iS no longer along the axis of the image. This resulting

sum, will not converge either. Since all of the sums are convergent for

kd + n, 2Tr,etc., it is best to exclude the resonant values of ~late separations

so that the integral equation in Eq. (13) remains valid.

Even though the sums in Eq. (13) do converge for non-resonant values of

kd, they do so rather slowly. The technique of-using the Poisson summation
(1)

formula is employed by Rao , and is one method for summing the series rapidly.

This is useful, however, for source and observation points relatively widely

separated.
(6)

For the present problem, the summation of the series was

effected by subtracting term by term the series e
-j2kdn

/n from the original

sum, and then adding the closed form sum

m

z e-j2kdn
=-ln(l-e

-j2kd,
(16)

n
n=1

to the final result. This technique yielded an accuracy within 10
-4

in less

than 100 terms of the series for all combinations of source and observation

points.
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.’ 111. Numerical Results

The integro-differentialequation for the antenna current has been solved

using conventional numerical techniques described in the literature.(3,4,5) me

magnitude of the current distribution on a symmetrically positioned half-wave

dipole antenna is shown in Fig. 3 for various inclination angles of the antenna.

The plate separation, d = 1.49 A is very ‘nearlythat of one of the resonant

separations. It is observed that for this length of the antenna, the functional

form of the antenna current is relatively insensitive to the inclination angle.

The same insensitivity to the plate separation was also noted.

The magnitude of the current at the input of the antenna cloesvary

markedly with the plate separation and antenna location. This is seen in Figs.

4 and 5, where plots of the input admittance, Y= G+jB, are given as a function

of the plate separation d for various antenna inclinations. In Fig. 4a the

input conductance of an antenna of length L = 1/2 which is located midway

between the parallel plates is shown as a function of plate separation. Figure

4b shows the input susceptance for the same antenna. Figures 5a and 5b show

the input conductance and susceptance for the antenna located at h = d/4 within

the parallel plates. For each of these curves, the value of G or B which is

obtained as d approaches infinity (free space case) is indicated by an arrow.

As may be seen from these curves, the solution for the antenna current

remains continuous for certain antenna locations at some specific values of kd,

where the sums are infinite but for other values of the resonant. kd, the current

behaves in a discontinuous manner. For the symmetrically located quarter wave

dipole, there are no disc~ntinuities in the solution at kd = 2T, 4v, etc. and

for the dipole with center at h = d/4, the current is continuous for kd = 4~, 8~,

etc. This behavior of the current can be readily understood in terms of the

modal representation of the fields within the parallel plates. As the plate

separation increases, modes which were evanescent in nature beg<n to propagate

and carry away energy. This gives rise to the discontinuities in the antenna

current. For certain antenna positions, some modes do not coup~.e to the antenna,

due to the geometry. Hence, there are no discontinuities in the current as the

particular modes in question begin to propagate.

In obtaining the time response of the antenna or scattering body, it is
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necessary to obtain

Fourier inversion.

the

The

for the driven antenna.

have been plotted. The

frequency response

results in Figures

of the structure and then perform a

6 and 7 show the frequency response

In these curves, only the 0 = 0° and 0 = 90° cases

responses for other inclination angles lie somewhert]

within the limits provided by these curves. Figures 6a and 6b give the input

conductance and susceptance for an antenna of length L = .3d and Q = 21n(L/a) = 10

which is located at h = d/2, shown as a function of d in wavelengths. Figures

7a and 7b present the same data as in Figures 6, but with the antenna at h = d/4.

The scattering problem is treated in Figures 8a and 8b. The incident field’

is assumed to be TEM with respect to the ; axis as shown in Figure 2. For this

particular case the scattering body is assumed to lie in the x, z plane so that

the angle $ = OO. The frequency response of the current at the center of the

scattering element is presented for two different antenna inclinations. In

these cases, the scattering element is symmetrically located in the center of

the plates, at h = d/2. Notice that for 0 = 0° there is no coupling-between

the scatterer and the incident field. Hence, the wire current is

e = 90°, this coupling is maximum, but the discontinuities in the

non-existant for reasons previously explained. At 6 = 45°, these

are present, but they are not as great as in the driven case. As

time response of the scattering body will not be affected as much

plate behavior as will that of the driven antenna.

zero. When

current are

discontinuitities

a result, the

by this resonant



IV. Conclusion

An integral equation for the current on a thin-wire antenna or scatterer

arbitrarily located within a parallel plate waveguide has been formulated and

then solved numerically. For certain resonant plate separations, the Green’s

function for the problem is found to be non-summable and the interchange of

the processes of integration, summation and differentiation must be done care-

fully to ensure a physically correct solution.

In the numerical treatment of the problem, this resonance problem has

been avoided by calculating the response of the antenna or scatterer for

plate separations slightly different from the resonant values, but never for

these values exactly. The numerical results show that the currents on the

wire are, at times, discontinuous as the plate separation passes through one

of the resonant values. Sometimes, however, the wire current is not affected

by the plate resonance. This effect may be attributed to the coupling of the

wire structure to the propagating and evanescent modes within t?:eparallel

plate waveguide.

Various curves have been presented showing the behavior ~t the input

current (input admittance) of a driven half wave dipole antenna at different

locations within the plates. In addition, the frequency response of the

driven antenna and a scattering element are presented. In these cases, the

discontinuities in the current are noted. The effect of these {Iiscontinuities

on che time behavior of the wire is still undetermined. A more comprehensive

study of the scattering problem in both-the frequency and time ‘Iomainwill

be the subject of a forthcoming note.
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Figure la. Geometry of the antenna in a parallel Plate region.
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L=.5A, Q=21n(L/a)=lo, a=wire radius.
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Figure lb. Relevant quantities in defining the Green’s
function for the parallel plate.
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Figure 2. Ori,entabion of the wire scattering element
with a TEM wave incident.
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