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This note presents a

currents and charges

Abstract

numerical technique for determining the behavior

on a perfectly conducting thin-wire scattering

element which is arbitrarily located above a perfectly conducting ground plane.

From the parallel plate problem as presented in SSN 135, an integro-differential

equation for the wire current is deduced from the limiting case of one of the

plates receding to infinity. After a brief discussion of the method of solution,

the frequency and time domain behavior of the current at three points on the

wire and the linear charge density at both ends of the wire are presented for

an assumed incident step wave. The variation of these quantities as a function

of the angle of inclination and height above the ground plane of the scattering

element is studied. Summary curves showing the variation of the fundamental

resonant frequency and the corresponding damping constant are plotted along

with curves of the late time (static) charge densities and the field enhancement

factor.
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1. Introduction.—-...——

In this note, the behavior OF a thin, perfectly conducting wire scatterer

located arbitrarily above a perfectly conducting plane is studied in both the

frequency and time domain. This idealized model can be thought of as repre-

senting a missile located in a parallel plate simulator in such a manner that

the effect of one of the plates may be neglected. On the other hand, this model

might represent the interaction problem of an EMP incident on a missile which

is located above a conducting ground plane. In both cases, it is desirable to

know the time history of the currents and charges induced on the structure by

the EMP, and to evaluate the effect of the conducting ground plane on these

quantities,
(U)

In a previous note in this series , an integral equation for the

current on a thin-wire scattering element which is arbitrarily located within

two perfectly conducting parallel plates is formulated and solved. Typical

results in the frequency domain are presented. The effect of both parallel

plates is taken into account by using the Green’s function for the region between

the plates. It is noted that the problem of studying a thin-wire antenna or

scattering element above a single conducting plate is simply a special case of

the more general parallel plate problem. By keeping the positions of one plate

and the wire fixed and letting the other plate recede to infinity, the resulting

geometry of the problem is then equivalent to that under consideration in this

note.

After a brief discussion of the integral equation for the wire current

and the numerical method for its solution, results of the numerical computation

are presented. Of special interest is the behavior of the induced current at

the midpoint and at two points located one quarter of the way from the ends of

the wire. In addition, the behavior of the charge density at both ends of the

wire is investigated. From these results, summary curves are presented which

show the behavior of the damping constant for the fundamental mode and the shift

of the first resonant frequency as a function of the position of the scatterer.

The static (late time) behavior of the charge at the ends of the scattering

element is presented as a function of the wire position and inclination, and the

field enhancement factor at the wire ends is defined and plotted. .
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It should be pointed out that by assuming one of the two parallel.plates

in the analysis in Note 135 to be infinitely far away from the other plate and

scatterer, no singularities or resonances are expected in the Green’s function

as the frequency is increased. The more general problem which takes into account

both plates will be considered in a future note.



II. Formulation of the Integral Equation

Consider for a moment the case of a thin-wire scattering element located

between two parallel plates, as shown in Figure 1. The total length of the c

wire is denoted by L, its radius by a, and the distance from the plate at

x = O to the center of the wire element is denoted by h. The second piate is

located at x = d. The ansles 0 and ~ describe the inclination of the wire in

the usual spherical coordinate system. The symbol ~ represents the unit vector

in the direction of the wire.

In Note 135, an integral equation for the induced current on the wire is

derived for the special case of $ = 0, In this manner, the angle 0 is contained

in a plane perpendicular to the two parallel plates. For this case, the integral

equation is of the following form

L
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In this equation, Elnc(t) is the tangential component of the incident electric
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field falling on the wire, either from an incident wave or from a driving

“sourcefor the active antenna problem. For a TEM wave propagating in the

+ ~ direction and for the special case of $ = O, the incident field is given

by

E‘nC(&) = E. sin Ge
-jk< cos 0

9 (7)

where the phase of the incident field has been chosen as zero at the point

c O* The time variation in this problem is e
jut= and is suppressed.

For the more general case of $ # O, the integral equation above must

be modified slightly. Assuming that 6, @ ~ O, it is possible to pass a

plane through the scatterer which is perpendicular to the two parallel plates.

The resulting geometry,as seen in that plane, is shown in Figure 2. N~te

that the angle y, which is that between the wire and the ~ axis, is given by

and the angle

From Figure 2

complementary

Cos y = sin 6 cos

to y is given by

f

a )

(8)

$:=—- cos-l(sin 6 cos $) (9)
L

it is seen thar the wire scatterer has the same position relative

to the parallel plates as in the $ = O case, except that the angle 8 has been

replaced by B. Hence, by substituting 2 as calculated from equation 9 into

the equations (2), (3), (4), (5), and (6), the correct integral equation

results for t’necase of the scatterer hzvi=g an arbi~rsry orientation.

The incident electric field for the scattering case must also be slightly

charged for b Y 0, Looking at Figure 1, it is noted that the tangential
-it).:

component of - is given by

~inc
(e) = Ea cos ye

-jk& cos 6
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E‘*C(E) = E. sin 8 cos ~e
-jkg cos 0

. (11)

To treat the case of the wire scatterer near just one plane, it is now

possible to let d go to infinity so that

reduce to a single term. By doing this,

Figure 3 and the integral equation talces

the infinite summations in Eq. (1)

the resulting structure is shown in

the form

L
-j~~(l)

~[

-jk~~z)

- jucEo sin 0 cos $e
-jkc cos e =

Io(d) -x e
4nR:)

+ Z’e
4VR(2)

1

d~’ (12)
o

0 0

with

(13)

[ 1
1

~(z) 5

0
= (g - g’)z+az (14)

and the Z and X’ operators are defined in terms of the angle B. The first
&-..—. /7m\ .2----L7.-
LCL1ll ~il tk ‘k~ild ~f ~~o \L.L) ~LVCa LLLC ~ff~~t ~f tli~ hudgts VI L;te wi~e and

the second term gives the effect of the wire itself.

It should be pointed out–that in deriving the integral equation for the

current on the scatterer, the thin-wire approximation has been used. That is

to say, the current on the surface of the wire is assumed to be represented

by a line current flowing along the axis of the wire. For source and observation

points well separated, the difference in effects between the actual current

and the filamentary currezt is negligible. As the source and observation points

become closer, the thin-wire approximation becomes less and less correct, and

in some cases, it breaks down completely. This effect has been discussed in

the Iiterature(’$g) and it is found that if A represents the size of one zone

or cell on the antenna over which the current is assu~,edconstant for the

numerical solution, the thin-wire approximation is then va}id for

A> 5a. (15)

o

For the case A = 5a, it can be shown that the error in the kernel in the thin-

wire approximation is of the order of 1.8%.
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Assuming that the nominal figure of 10 cells per wavelength is used, it can

be shown that for a scattering body having a diameter-to-length ratio of ● J

2a/L = .01, the maximum frequency that can be treated by the thin-wire method

is given by kL- 18. It might be that for some cases the response of the

scatterer above this value of kL is negligible so that the thin-wire approxi-

mation is adequate. In the most general case, however, it is necessary to

use the exact Green’s function at higher frequencies. This point is discussed

further in the

To solve

to replace the

exact kernel.

Appendix 1.

the integral equation (12) at high frequencies, it is necessary

portion of the kernel that has the singularity in it by the

For the other part which accounts for the image of the wire,

the thin-wire kernel is still valid. The exact Pocklington equation for a
(6)

single wire in free space is

(16)

where

[ 1
+

R= (g - ~’)2+4a2sin2($/2)
● ‘1

(17)

The free space kernel, denoted by Kfs, may be defined as the integral over 6

in the above expression, Thus,

1.

/

2T e-jkR
K
fs=~o 4wR ‘4

(18)

Replacing the free space portion of Ehe kernel in Eq. (12} by this last equation

results in the integro-differential equation for the present problem.

L

1[

-jkR(ti -

- ju&,Eosin 0 cos @e
-jk< cos 0 =

I(g)
-Xe 0

4mR~’~ 1+~’Kfs(~,5’) d<’ (19)
o

0

The solution to this integral equation, which is valid for frequencies such that

kL > 18, can then be used to determine the time response of the thin-wire scatterer

over the ground plane.
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111. Numerical Solution of–the Integro-Differential Equation

The technique of solving the integro-differential equation in (19) is

described by Barrington
(3) and is often referred to as the method of moments.

Basically this involves expanding the unknown current on the wire in a set of

basis functions, and then, with a similar set of testing functions, forming a

set of non-singular linear algebraic equations for the unknown constants

multiplying each of the basis functions. The effect of the operators X? and

g’ are accounted

This method

be represented as

for by defining them to be finite difference operators.

is briefly illustrated as follows. Let the integral equation

Y= (7X (20)

where y(g) is a known function defined over the domain 0$ C S L and & is the

integral operator defined over the same domain. x(~’) is an unknown function

to be determined.

(21)

Substituting this relation into Eq. (20) and using the assumed linearity of the

operator ~, Eq. (20) may be written as

By defining q set of testing functions Wj(<), and a suitable inner product

(Wj (<), f(g)), where f(C) can be any function defined over the same domain

y and x, the operation of this inner product on Eq. (22) yields
●

(Wj,y) = ~ .i(wj,dq).
i

(22)

as

(23)

Denoting the inner products (Wj,y) by Vj, and (wj,@Oi) by Z.., Eq. (23) then

●
J1



represents a matrix equation of the form

v. = Z..ci.
2 J1 1

or equivalently

[v] = EZ-J[CY).

.

.

●

e,)

(24)

(25)

By inverting the matrix Z by standard numerical algorithms, the coefficients

ai can be determined as

[al = [z]-%] (26)

and then substituted into Eq. (21) to obtain the function x(~).

In any practical problem only a finite number of basis functions can be

used to approximate the function .<(c). Moreover, the choice of the functional

forms of the basis and testing functions is arbitrary. In this study, the

basis functions are chosen to be pulses. This imp~ies that if the scac~erer

were divided into N zones or cells, the current would be constant within each

cell. The testing functions are defined as impulse functions, which is equivalent

to the point-matching method of solution. For a more concise description of this

technique, with special emphasis on the treatment’of the differential operators

#and X’, the reader is referred to Refs. (3, 8, and 9).

After the current distribution on che wire has been determined via the

solution of Eq. (19), the linear charge density on the wire may be evaluated

through the use of the continuity ea-uation

Of special interest is the charge density at the ends of the wire at

c = O and L, Note that in the thin-wire scattering problem, there is some

ambiguity in defining the total charge at the ends of the scatterer. This

(27)

o I

arises from the fact that it is assumed that the effect of charges on the end-

10
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-%e caps of the wire can be neglected, or equivalently, that the wire is really a

hollow, open cylinder. King
(4)

briefly considers this problem in defining the

charge at the ends of a driven antenna. In this note, the quantity to be

presented will be the normalized line charge density evaluated at the wire.ends.

The normalization factor will be the late time line charge density occurring on

the same wire and with the wire in free space and the incident electric field

being parallel to the wire element. This quantity is denoted by am. Note that

this is the charge density occurring on the wire in the static limit.

-.

11



IV. Construction of the Time Response

.

To obtain the response of the thin-wire structure with a step wave
(1,2)

incident, the Fast Fourier Transform technique is employed. By solving

Eq. (19) With E. = 1 at a number of different frequencies, the Fourier

transform of the delta function time response of the current can be defined.

This spectrum, referred to as the transfer function of the system, can then be

used to find the response due to an arbitrary incident waveform. This is done

by multiplying the Fourier spectrum of the incident waveform by the transfer

function and then taking the inverse Fourier transform.

In treating the scattering problem, it was observed that by taking the

frequency spectrum between kL = O and kL = 40, adequate representation of the

time response is obtained. There are some slight oscillations in the early

portion of the time response curve due to truncating the frequency spectrum.

These oscillations were found to be less than .5% of the peak value in a

typical case, and have been suppressed in the final plots of the time domain

results. By increasing the maximum frequency from kL = 40 to kL = 80, these

~~cj.]]ations virtually dlssapeared wicn no OLht+~ chaLLge i~; Ch~ r5S-ii~LiTLg ci?iie

o
)plots.
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P
v. Numerical Results and Discussion

Using the previously described numerical techniques, the behavior of a

thin cylinder having a diameter to length ratio of-.01 (corresponding to

f-l=2 In(L/a) = 10.597) was studied.

a CDC 6600 computer. With 256 unique

and 10 cells per wavelength along the

around four minutes per case.

In presenting the frequency ancl

The numerical computation was done on

sample points in the frequency domain

wire, the total computation time was

time history of the currents and charges

on the wire, two basic cases have been considered. Case 1, which is presented

in Figures 4 through 7, is for 9 = 90° and variable $ and h/L. In this manner,
—

the wave vector k is always perpendicular to the wire. The incident plane

wave pulse hits,every point on the wire at the same time.

The other case for which time and frequency plots are given is for @ = O

and various 0 and h/L. This is presented in Figures 8 through 11. In this
—

case, k has a component parallel to the wire, indicating that there are possible

phase variations of the incident field along the wire. In both cases, the

reference time t = O is taken to be when the incident pulse first hits the wire.

It should be noted that each numberetifigure actuaiiy contains ten graphs,

labled a through j. The first five (a through e) show the magnitude of the

currents and charges in the frequency domain at various points of the structure

for three different inclination angles. This is the transfer function or

Fourier transform of the delta function time response of the wire, The next

five curves (f through j) give the time domain behavior of the currents and

charges at the same points on the wire as in the preceding five plots. The

time domain analysis assumes a step wave incident.

In presenting the current and charge data, it is convenient–to normalize

these quantities by suitable factors. To this end, the following quantities

are defined. 10 is the magnitude of the maximum time domain current flowing

at the midpoint of the scattering element which is located in free space with

the incident step electric field perpendicular to the wire.element. u= is the

magnitude of the linear charge density at either end of the wire in free space

which is obtained in the limit as t + CO. As in the definition of I it is
o’

assumed that the incident step E field is perpendicular to the wire. In this
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way, the reierence case for normalizing all frequency and time plots is given

by the problem defined by the parameters h = =, 8 = 90°, and $ = OO.
● )

If the incident pulse electric field has a magnitude of E. volts/meter,

the previously defined normalizing quantities have the following values

10 = 1.78 x (EOL) milliamps

Om = 0.95 x (SOEOL) Coulombs/meter

for the scatterer of length L and 2a/L = .01.

From these time and frequency plots it is easy to get an idea of the

effect of the ground plane on the behavior of the induced charges and currents.

For the wire located at h/L = 1, it is noted that there is very little apparent

effect of the ground plane an the currents. A much more noticeable effect is

due to the scatterer being tilted with respect to “the~ vector giving rise to

phase variations in the incident electric field. Notice that the curves of

the time behavior of the charges and currents eventually settle down to the
-t/T

function that is of the form c1 cos(mot +@)e . For late time, it is then

passi~lc to A--.-.iknm~.e fil=~h.e,-L5Y=OCSndUGOG.AU- ,L.”q. w. ----- ~-- ---- C;2HMIXS by the knnwledge of the o
1

fundamental resonant frequency u and corresponding damping constant T. A
o

study of these Ewo parameters as a function of scatterer location and inclination

will aid in assessing the interaction of the ground plane with the thin wire.

,Figure 12 portrays the percentage change of the resonant frequency of the

wire relative to the free-space case as a function of h/L for three values of

the inclination angle 6. This is defined as (koL - komL)/komL x 100%. It

should be noted that the shift of the resonant frequency is a function only of

8, not of its constitutive parts, 6 an6 q. Ffgure 13 shows the normalized

damping constant ~/T~ for the fundamental node as a function of h/L for various

values of 8. As in Figure 12, the dam?ing constant for the wire in free space,

T~, is the normalizing factor. These reference values are calculated to be
.

(wo)f~ = 2.939 x (c/L) rad/sec

and

Ta = 3.868 x (c/L) seconds

14
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Notice that this value of Tm, when defir.edin terms of the half-length of the

thin-wire scatterer, becomes Tm = 7.737 x (c/(L/2)) which compares favorably

with the free-space damping constant presented in a previous note where the
(5)H-field formulation is employed ,

Figure 14 presents the damping constants as a function of the angle e

for various h/L values, normalized to the damping constant at B = 50° for the

same h/L value. In this manner, all of the normalized damping constants go

to 1 as 6 approaches 90°. A table of the normalized values of the damping

constants is presented along with the curves.

In looking at the behavior of the charge densities at the ends of the

scatterer, one quantity of interest is the late time (static) charge, o , and
s

how it varies as a function of h/L. Figure 15 presents plots of os/om vs. h/L

for various values of the angle 6. As in the cases of the resonant frequency

and damping constant, the static charge depends only on 9, not on t?and ~.

The solid curve represents the behavior of the charge density at ! = O which

is the end nearest the ground plane. The dotted curve is for the charge at

5 = L which is farther away. As expected, the charge at the end near the

gr~l~~d.pl.an~i.sm~r~.afiected by its presence than 1s c’necharge ac L{I~ Ltir

end. Notice that for each value of the angle 6 considered, there is a minimum

value of h/L which can be considered. At this point, the end of the wire

touches the ground plane and the boundary condition that I = O at that end is

no longer correct.

For the present problem, the condition that I = O at the wire ends is
(3)assured by the numerical technique used to solve for the current distribution .

Hence, it is assumed that the thin-wire never comes into contact with the

ground plane. In Figures 7 and 11 where h/L = .5 and 3 = 90°, it is to be

assumed that the wire does not quite touch the ground plane. In the physical

problem, the current at this wire end is not exactly zero due to the finite

capacitance between the end-cap of the wire and its image. As the wire end

gets very close to the ground plane, this end-cap effect may give rise to

substantial errors. A more rigorous account of this effect can be made in

a manner similar to that used in reference (6).

Another quantity of interest involving the charge density is the ratio

of the maximum charge density in the time domain for the wire near the ground

15



plane, relative to the same quantity for the wire in free space with the

incident E field parallel to the wire. This quantity is ofter referred to

as the field enhancement factor at the ends of the wire. In figure 16, this

ratio am/am(900,~) is plotted as a function of h/L for various combinations

of 0 and4. Note that this plot is for the end of the scatterer nearest the

ground plane (C = 0). The variation of the charge at the opposite end with

h/L was so small that the results were not plotted. For reference, it is

noted that the normalizing factor in

(Ym(900,@)= 1.72 X

From the data presented in the

these curves has the value

(SOEOL) Coulombs/meter.

previously described curves, it is seen

that for this thin scatterer, the effect of the perfectly conducting ground

plane on the charge densities is almost negligible if the height is such chat

h/L > 1. The variation in the resonant frequency and damping constant, however>

is more pronounced.

It is interesting to compare the results presented here with those given
(6)

in another reference’ where c-hescati~eringprope~cies G2 z thtcTksr--’‘-J-vLy J-.LA,uL&

are considered. In that note, the thick cylinder was located at 6 = 90°,

4 = 0° above a perfectly conducting ground plane and studies of its behavior

as a function of height above the ground were made. In that case, the effects

of the end-caps of the cylinder are not neglected as in the present analysis,

Indeed, they are quite important in accounting for the coupling between the

cylinder and its image. It is seen from that analysis that the general trends

in the damping constants, field enhancement factors, etc., are roughly similar

to those presented here for the 6 = 90U case-.
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VI. Summary

Using the electric field Pocklington integro-differential equation for

the induced currents on a thin wire scatterer between two parallel plates, the .

special case of one plate being at infinity is considered. In this way, the

two doubly infinite summations occurring in the Green’s function for the parallel

plate case reduce to simply two terms. The resulting equation is then solved

numerically and plots of the frequency and time domain behavior of the induced

currents at three points on the wire are presented for varying wire orientations.

Similarly, plots of the charge densi~ies at both ends of the wire are presented.

Summary curves showing the behavior of the fundamental resonant frequency and

corresponding damping constant as functions of the wire orientation are given,

and a study of the late time behavior of the charge density is carried out.

The field enhancement factor at the wire end nearest the ground plane is also

studied. For practical purposes, it is seen that for h/L > 1, the thin-wire

structure can be regarded as being located in free space, since the interaction

between the wire and the plane is small.

17
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X=(I X=d .— -.

Figure 1. Geometry of the general scattering problem involving a
thin-wire element within a parallel plate region. The
wire radius is a.
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x =0 x = d

Figure 2. View of the scattering element from a plane

perpendicular to the two parallel plate; and
containing the thin-wire element of radius a.
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X=o

Figure 3, The resulting scattering problem obtained by

lettingd approach infinity,
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In order to summarize the different combinations of~arameters for

which numerical data are presented i.nFigures 4 - 11, the following table is

provided.

FIGURE

4

5

6

7

8

9

10

li

h/L e @

100.0 90° 0°, 30°, 60°

1.0 90° 0°, 30°, 60°

.75 90° 0°, 30°, 60°

.50 90° 0°, 30°, 60°

100.0 90°, 60°, 30° 0°

1.0 90°, 60°, 30° 0°

.75 90°, 60°, 30° 0°

.5U
i

$Nr, C)UG, 30C I
Iti
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Figure 4b. Magnitude of the impuiw swctrum of the current observed atthepint $ = .5L.

*

.0
J/

o



6

5

4

lI(k)l/Io

3

2

1

h/L = 100.0
g = 90.

0

kL

Figure 4c. Magnitude of the impulse s[wctrum of the current observed atthe point ~ = . 75L,
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Figure 4d. Alagnitude of the impulse spectrum of the linear charge density observed at the point < = O.
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Figure 4c. Magnitude of the impulse s~.ctrum of the linear char~c density observed at the poiti f = L,
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Figure 4f. Time response of the current at ~ = . 25L foranincident step wave,
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Figure 4g. Time response of the current at ( = . 5L for an incident step wave.

1.C

.75

.50

.25

I(t)/10

o

-.25

-.50

-.75

h/L = 100.0
8: 90.

u z 4 6 8 10 12 14 16
et/L

Figu-e %. Time respnse of the current at [ = . 75L for an ~cident step ~a.{e.

25



.

(

-. !

-1.0

a(t)lua

-1.5

-2.0

-2.5

hlL = 100.0
e = 90”

1 1 I I f t 1
2 4 6 8 10 12 14

2.5

2.0

L 5

u(t)i%

1.0

.s

o

et/L

Figure 4i. Time res~nse of the charge density at ~ = O for an incident step wave.

h/L = 100.0
e = 90”

ctif-

Figure 4j. Time response of the charge density at ( = L for an incident step wan.



6

5

4

lI(k)l/1,

3

2

1

0
0 4 8 12 16 20 24 28 32

kL

Figure 5;, Magnitude of the impulse spectrum of the current observed at the pointf = .25L.

6

5

4

lI(k)l/Ie

3

2

1

0

h/L = 1.0
8. go.

+=09

,$, 30*

h

/“-. —.—

kL

Figure 5b. JMagnitude of the impulse spectrum of the current observed at the point < = , 5L,

27



..=1

6

5

4

lI(k)l/Ie

3

2

1

hlL = 1.0
@= 90”

4

0

0 —.-=. — “
o 4 8 12 16 20 24 28 32

ICL

Figure 5c. Magnitude of the impulse spectrum of the current observed at the point ~ = . 75L.

-.. .-— .— --

5.2:
ts/L = 1.0
e = SO*

I
f

o 4 8 12 16 20 24 28 32
kL

O ,)

o
Figure 5d. Magnitude of the impulse spectrum of the linear charge density observed at the point ( x O.

28



5

4

3

lu(k)l/u@

2

1

0

hfL = 1.0
6 = 90”

0 4 8 12 16 20 24 28 32

kL

Figure 5e. Magnitude of the impulse spectrum of the linear charge density observed at the point ~ = L.

1.0

.75

.50

.25

I[d/1,

o

-.25

-.50

-.75

htL = 1.0
@ = 909

0 2 4 6 8 10 12 14 16

et/L

Figure 5f. Time response of the current at ~ = . 25L foranincidentstepwave,

29



.

1.0

.75

.50

.25

I(t)fl.

o

-.25

-,50

-,75
0 2 4 6 8 10 12 14 16

et/L

Figure 5g. Time respomse of the current at ( = . 5L for an incident step wave.

1.0

t

h/L s 1.0
@* 90=

.75t

.50 “

I(t)/Ie

o

“u

-.25

-.50 -

-.751- 1 1 1 f t I I ‘J
0 2 4 6 8 10 12 14 16

ct[L

Figure 5h. Time response of the current at f = . 75L for an incident step wave.

30



.

.

0

-. 5

-1.0

CT(t)/um

-1.5

-2.0

-2, 5

h/L = 1.0
e = 90”

I
1

~, _. —___ .—. —..

#.I).
7

0 2 4 6 8 10 12 14 16
ctJL

Figure 5i, Time rcs~nfie of the clmrge density at / = O for an incident step wave.

0’
$

X_ 2.5

2.0

1.5

u(t)/dm

1.0

.5

0

h/L= 1.0
e = 90”

0 2 4 6

Figure 5j. Time respnse of the

8 10 12 14 16
ctl L

charge density at < = L for ar. incident step wave.

31



4

3

lI(k)i/le

2

1

a

6

5

4

lI(k)l/Ie

3

2

1

0

r’ 4’0”

k‘i” L/ \\\-
&

–-——
““~~.y’ ‘“-”—-=

1 .= .—.—. —. .—. —._

0 4 8 12 16 20 24 28 32
kL

Figdre 6a. Magnitude of the impulse spectrum of the current observed at the point ~ = . 25.Li

till.?= .75
e = 90”

.

c1 4 8 12 16 20 24 28 32

.

0

kL

Figure 6b. hlagnitucle of the impulse spectrum of the current observed at the petit ~ . . 5L.

32



t

5

4

lI(k)l/I@

3

2

1

0

5

4

3

lu(kU/u@

2

1

I I I I i i I

tLIL = .75
8 = 90”

0 4 8 12 16 20 24 28 32
kL

Figure 6c.’ Jfagnitude of the impulse spectrum of the current observed at the point < = , 75L,

h/L = .75
e = 90”

0
0 4 8 12 . . 20 24 28

kL

Figure 6d. kfagnitude of the impulse spectrum of the linear charge density observed at the pint / s O.

33



4

3

lc(k}I/d=

2

1

Q
o 4 8 12 16 20 24 28 32

kL

Figure 6e. Magnitude of the impulse spectrum of the linear charge density observed at the point $ = L,

1.0

.75

.50

-.25

-.50

h/L = .75
@= 90”

4=0’

\ d =30’

4= 60”

< .

\

.

o 2 4 6 8 10 12 14 16
cti L

Figure 6f, Time res~nse of the current at ~ = . 25L for an incident step wave,

34



1.0

.75

.50

.25

I(t)/10

o

-.25

-.50

-.75

a
.’

1.0

.75

.50

.25

I(t)/Io

o

-.25

-.50

-.’75

h/L = .75
g . 91)*

1

I

il
\,
\

o 2 4 6 8 10 12 14 16
et/L

Figure 6g. Time response of the current at .$ = . 5L fOr an incident step wave.

--——

h/L = .75
e = 90”

*

2 4 6 8 10 12 14 16
cr/L

Figure 6h. Time respense of the current at + = , 75L for an incident step wave.



.,.
~!

0

-. 5

-1.0

u(t) /a*

-1. .5

-2.0

-2.5

2.5

2.0

1.5

a(tl Jam

1.0

.5

0

:t=y; 75

t ) t i ! 1 }
2 4 6 8 10 12 14

et/L

Figure 6i. Time response of the charge density at ~ = 0 for an incident step wave.

h/L = .75
t?= 90’.

.

*

o 2 4 6 8 10 12 14 16
cti L

Figure 6j, Time response of the charge density at C = L for an incident step wave.

36



.

6

5

4

lI(k)l/1,

6 -

5 “

4

lI(!i)l/10

2

1

0

hlL = .50
e = 90”

0 4 8 12 16 20 24 28 32

kL .

Figure 7a. Magnitude of the impulse spectrum of the current observed at the point ~ ~ . 25L,

h/L= .50
e . 91J*

0 4 8 12 16 20 24 28 32
kL

Figure 7b. Magnitude of the impulse spectrum of the current observed at tfie pint / = , 5L,

37



6

5

4

ll(k)l/Ie

3

2

0

IIIL = .50
$ = 90”

6
#*g*
4$= -30”

--- .-

0 4 8 12 16 20 24 28 32
kL

Figure 7c. Magnitude of the impulse spactrurn of the current observed at the pint { = . 75L,

5

4

3

lu{k)l/u@

2

1

0
0 4 8 12 16 20 24 2a 32

kf.

Figure 7d. Magnitude of the impulse spectrum of the Linear charge density observed at the point ~ z O.

38



:

4

3

lu(k)l/u@

2

1

0
o 4 8 12 16 20 24 28 32

\ kL

Figure 7e. Magnitude of tllc impulse spectrum of the linear charge density observed at the point ~ = L,

1.0

.75

.50

.25

I(t)/10

o

-,25

-.50

-,75 I 1 1 ! I I ! I 1
0 2 4 6 8 10 12 14 16

et/L

Figure 7S. Time respense of the current at ~ = . 25L for an incident step wave,

39



,,,
-.$;

,.

1.0

.75

.50

.25

I(t)/1*

Cl

-.25

-.50:

I I I 1 ! I I-. ?5 ‘
o 2 4 6 8 10 12 14 16

ctl L

Figure 7g. Time resp&se of the current at ( = , 5L for an incident step wave.

1=0

.75

.50

.25

I(t)/Ie

o

-.25

-.50

-.75

ML = .50
e = 90”

o 2 4 6 8 10 12 14 16

ct IL

Figure 7h. Time response of the current at ( = . 75L for an incident step wave,

40



‘1 h/L = ,50

0 6= 90”

-. 5

u (t) /0=

-1.0

-1.5

-2.0

\./. —,_.#...

I

I

2.5

2.0

1.5

u(t)/oa

1.0

.5

0

0 2 4 6 8 10 12 14 16
et/L

Fij,mre 7i. Time rcsp?mse of the charge density at 4 = O for an incident step wave,

hlL = .50
e= 90”

o 2 4 6 8 10 12 14 16

et/L

Figure ?j. Time response of the charge density at $ = L for an incident step wave,

41



h/L s 100.0
#=()*

o 4 8 12 16 20 24 28 32
kL

Figuxw Ea. Magnitude of the impulse spectrum of the current observed at the point ( = . 25L.

.

h/L = 100,0
&.o*

re=90”

9 = 60”

/

i
[
f

/
t #e = 30”

~<.>l>

4 a 12 16 20 24 28 32
kL

Figure 8b. Magnitude of the impulse spectrum of the current observed & the point < = . 5L.

1

42



R.-
(

~

4

lwl/1,

3

2

1

0

5

4

3

huwam

2

1

0

h/L = 100,0
q!l. (lo

(’
e = 90”

0 4 8 12 16 20 24 28 32
kL

?-! . ..-. ,0..
- -e,J. -. ,. ?.Ll-yItude of +hp imnulse SDe CtrUm of the current observed at the point < = . 75L.

h/L = 100.0
pi).

o 4 8 12 16 20 24 28 32
kL

Figure 8d, hlagniiudc of the impulse spectrum of the linear charge density observed at the point <. 0,

43



5

4

1

[

.

(1
o 4 8 12 16 20 24 28 32

. kL

Figure 8e. Magnitude of the impulse spectrum of the linear charge density observed at the point ~ = L.

1. c

.50

,25

I(t)/1#

o

-.25

-,50

-.75

h/L = 100.0
4=()*

●

1

0 2 4 6 8 10 12 14 16
et/L

Fi~rc 8f, Time response of the current at ( : . 25L for an incident step %eave.



1.0

.75

.50

.25

I(t)/10

o

-.25

-,50

h/L = 100.0

/
e = 90” $$= 00.

-.75
0 2 4 6 3 10 12 14 IG

et/L

Fig-iIre fig. Time rcspcmse of the current at < = . 5L for an incident step wave.

1.C

.75

.50

.25

I(t)/1,

o

-.25

-.50

h/L = 100.0
#.oo

-.75
0 2 4 6 8 10 12 14 16

et/L

Figure 8h. Time res,pa~se of the current at ~ = . 75L for an incident Step~va~eo

45



“c

-. 5

-1.0

a(t)/am

-1.5

-2.0

-2.5

2.5

2.0

1.5

u(t) /am

1.0

.5

h/L = 100.0
#’. Q.

0 2 4 6 8 10 12 14 16
ct!L

Figure 8i. Time response of the chargcdcnsityat $ = Ofor an incident step wave.

h/L = 100.0
$.Q*

o 2 4 6 8 10 12 14 16

ctiL

Figure Elj. Time response of the charge density at 4 = L for an incident step wave.

46



.

4

lI(k)l/i.

3

1

0
0 4 8 12 16 20 24 28 32

kL

Figure 9a. hlagnitudc of the impulse spectrum of the current ohscrved at the pint $ = . 25L.

6

5

4

lI(k)l/10

3

2

1

0

h/L= I.CI
‘$.0.

h/L= 1.0
@=()*

0 4 8 12 15 20 24 28 32

kL

Figure 5b. hlagnitude of the impulse spactrum of the current observed at the point { = . 5L,

47



,

6

5

4

Ii(k)! /I@

3

2

1

0

h/L s 1.0
4=0”

(’
@. 91)*

.- -. . . -.

4

3

Iu(k)b’ue

2

1

0
0

kL

Fi@re 9c. Ma~nitude of. the impulse spectrum of the current observed at the point ~ = . 75L.

5.25

i

/ 0=90”

, 0=60”

h/L s 1.0
@.Qe

4 8 12 16 20 24 26 32
kL

Figure 9ci. Magnitude of the impulse s~ctrum of the linear charge density observed at the point ~= 0.

48

0



.

5

4

1

0

5.35
l’”

~= 909

o 4 8. 12 16 20 24 28
kL

Figvre 9e. h.h~nitudc of the impulse spectrum of the linear charge density observed at the paint ~ = L,

1.C

.75

.50

.25

o

-.25

-.50

-.75

ilf Ll= 1.0
0$=0”

/

0= 909

o 2 4 6 8 10 12 14 16
et/L

Figure 9f. Time re.s~nse of the current at / = . 25L for an incident step ~ave,

49



L c

, i’:

.50

.25

I(t)flm

o

-.25

-.s0

-.75
0

.7:

-(.a

-.25

-.50

-.75
0

2 4 6 8 10 12 14
et/L

Figure 9g. Time response of the current at ~ = . SL for an incident s.tcp wave.

——-. .. . .. . .

h/L = 1.0
$=0”

.

2 4 6 8 10 12 14 lb

0’

cti L

Figure 9h. Time response of the current at ~ = . 75L for an inci<fcnt step wave.

50



,

0

-. 5

C(t)luw

-1.0

-1.5

-2.0

-2.5

2.5

2.0

1.5

U(t)/u m

1.0

.5

0

hlL= 1.0
/$.00

A {

I 1 I t I 1 ! d
‘2 4 6 8 10 12 14 16

et/L

Fi~re 9i.’ Time response ofthc cl]argc density at / = O for an incident gtepwaveo

I I I I t I I

i

hlL = 1.0
d=o”

1 ! I I I I I J
o 2 4 6 8 10 12 14 16

ctf L

Figure 9j. Time resp.cmse of the charge density at $ = L for an incident step wave.

51



6

5

4

lI(k)l/Ie

3

2

1

0

o 4 8 12 16 20 24 28 32

kL

Figure 10a. Magnitude of the impulse spectrum of the current observed at the point / = , 251..

n
“,\N.Y’---

/’ ‘i

o 4 8 12 16 20 24 28 32

kL

Figure 10b. Magnitude of the impulse spectrum of the current observed at the pint ( = . 5L.

52



5

4

lI(k)l/1,

3

2

1

:

4

3

lu(k)l/um

2

1

0

hlL = .75
. $$=0”

“o 4 8 . 12 16 20 24 28 32
kL

Figure IOC. Magnitude of the impulse spectrum Of the current ohscrved at the point < - . 75L.

h/L = .75
@.oe

o , 9fj*

@. 6os

o 4 8 12 16 20 24 28 32
kL

Figure 10d. &lagnitude of the impulse spectrum of the ltiear charge density obsemed at the point < = O.

53



5

4

3

Iu(k)l/u@

2

1

0

IL
e .90.

h/L = ,75

@= 60@
.#. O*

kL

l-igure 10c. Ma~nitude of the impulse spectrum of the linear charge density observed at the point <. L,

1,0

,75
[

hlL 3.75

#so*

.50

-.25

-.50

.

I
-.75

I 1 I I 1 ! I
..-

0 2 4 6 8 10 12 14 16
et/L

Figure 10f. Time respnse of the current at $ = . ~jL for an incident step Wave.

54



.

1.0

,75

.50

.25

I(t)/Io

o

-.25

-,50

-.75

-.
1.0

.75

.50

.25

I(t)/Ie

o

-.25

-.50

-.75

..

o 2 4 6 8 10 12 14 16
et/L

Figure 10g. Time rcspmse of the current at ~ = . 5L for an incident step wave.

—

‘

\
.

e = 90”

0 2 4 6 8 10 12 14 16

c/L

Figure 101I. Time respense OCthe current at < z . 75L for an incident step \vave.

55



;!. :

. .

0

-. 5

U(t)lum

-1.0

-1.5

-2.0

-2.5

u (t) /um

2.5

2.0

1.5

1.0

.5

0

h/L = .75
4.0* ,

1!
“\

\. I
jfi”-.,uf ‘--or..._._.–__._._.-””

\\

“’v’’--’-——------

0 2 4 6 8 lU Lz L’1 16

et/L

/Y”f-—~——————_ .-— ---

I ! “’-., f=\d-\._._.-._.-.-_.—---

I~
:1
u

I I 1 I 1 I I

hlL = .75
~.~w

o 2 4 6 8 10 12 14 16

●✌✌
I

et/L

Figure 10j. Time response of the charge density at (”= L for an incident step wave.

56



,

6

5

4

lI(k)l/1,

3

2

1

0

6

5

4

lI(k)l/Ie

3

2

1

0

f’
@ .90.

hfL = .50

o 4 8 12 16 20 24 28

kL

Figure ha. Ma~nitude of the impulse spectrum of the current observed at the point $ = , 2SL.

h/L = .50
@= (J.

f

e = 90”

6 = 60°

/ , 9=30”

32

0 4 u 12 16 20 24 28 32
kL

Figure llb. hlagnitude of the impulse spectrum of the current observed at the pint < = . 5L.

57



6

5

4

lI(k)I/I.

3

2

1

0

c
.

4

3

IU(k )![u=

2

1

0

0 4 8 12 16 20 24 28 32

kL

Figure llc. Magnitude of the impuisc spectrum of the current observed at the point ~ = , 75L.

- -..—. -- — —

1 1 i 1 I I I

hlL = .50
/ (7=90” $.0.

, 6=60°

, $=30’

o 4 8 12 16 20 24 28 32
kL.

9 \/

o-)

9
Figure lld, Magnitude of the impulse spectrum of the linear charge density observed at the point < . 0.



.

.

i,‘o

5 F

4

3

10(k)lfu=

2

I

hlL = .50
#so*

g .900

6 = 60’

e . 30.

0 4 8 12 16 20 24 28 32

kL

Figure he. hlagnituclc of the impulse spectrum of the linear charge density observed at the pint < = L.

1.0

.75

.50

.25

I(t)/10

o

-.25

-. so

-,75

h/L= .50
~.o.

1 ! 1 I ! I !

u 2 4 6 8 10 12 14 16
et/L

Figure llf, Time res~nse of the current at < ❑ , 25L for an incident step wave.

59



, ,

1.0

.75

.50

.25

l(t) /I.

o

-.25

-.50

-.75

1.0

.75

.50

.25

I(t)lIe

o

-.25

-.50

-.75

0 2 4 6 8 10 12 14 1s
et/L

Figure Ilg, Time response of the current at $ = . 5L for an incittcnt step wave.

h/L = .50
.#. f)*

A

Lg= go.

o 2 4 6 8 10 iz 14 lG

et/L

Figure 1lh. Time response of the current at $ = , 75L for an incidcn: StCP \vaveq

60



.

>

(

-. :

0(t)/u*

-1. C

-1. :

-2.0

-2.5

2. s

2.0

1.5

d(t)lu m

1.0

.5

0

./”\, /’-.\l,#_\._,/._
.—. --. —--

} ~-~ ——------

1

I

0 2 4 6 8 10 12 14 16

ctt L .

Figure Iii. Time response of the charge density at / = O for an incident step wave.

------

/-”\./-,.”\-_\. _.-. _.-._

1 f I 1 [ I I I 1
0 2 4 6 8 10 12 14 16

et/L

Figure 1Ij. Time response of the charge density at < = L for an incident step wave.

61



,
r

2.:

2.(

1.:

1.C

K.Q

o

-. 5

‘4-.io~

-1.5

-2.0

.

.

.

-2.5
0 .2 .4

I I f 1 \ I I I 1 I
.6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

h/L

Figure 12, Plots of the percent change of the firstresonant frequency
of the wire scatterer relative to the free space resonant

frequency, shown as a function of h/L for various values
of the inclinationangle #l.



.’

0 ● , ~
bl

1.4

1.2

1.0

.8

T/Tm

.6

.4

.2

n

~-’ ‘
I I 1 I I [ I I I

.5 1.0 1.5 2.0 2.5

h/L

Figure 13. The normalized damping cor,stantT/T@ for the fundamental mode. Shown
as a function of h/L with /3as a parameter. The IIOrIT@Z hIg factor, T@,

is tile clamping constant for 1he fundamental. mode of the sca~terer i.nfree space.



1.:

1.4

1.3

1.2

+@))

1.1

1.0

.9

.8

.7

\

h/L =.5

h/L

7.
1.0
1.5

‘h(go)

5.43

8.44

7.48

7* 88
h/L = 1.5 7.68

~/ L=2.

\\ \

h/L = ~

h/L = 1.0

h/L=2. O ~

.

! I 1 f 1 ! I I
10 20 30 40 50 60 70 80

19(degrees)

Figure 14. The normalized damping constant T/Th(90) shown as a

/’

function of ~ for h/L as a parame~er. The normalization
factor ~h(~o), is the damping constant calculated for
~ = 90° and the h/L value under consideration.

64



1.2

1.0

.8

.6

.4

.2

~-l I I I I I 1 I

\

&_______ B = 15°

6

.

1 I I I i I I 1 t I I I ( I

o .5 h/L 1.0 1.5

l~igure 15. Plots of the latetime or staticlinear charge density induced on the ends of the scattering

element shown as a function of h/L with B as a parameter. The normalizing factor, CL,

● ’ .
.

1

t

is the charge density on the ends of the scatterer in free space and parallel to the incident
electric fjel(l.The solid line is the ch(mge of < = O and the dotted is at < = L.



1.2

1.0

.8

.6

CT##o”, 0°)

cm
a

.4 .

.

8 = 450 +.00

0=900 (75=6(30

e=30° @“o”

9=90” 4)=750
-,

e = 15° 4=00

.

,~.J I 1 I 1 I I I

.5 LtT 1.0 1
11/ .ld

Figure 16. Plots of the fieldenhancement factor at ~ = O (maximum normalized charge density in
Q

the time domain) shown as a function(:fh/L and for various combinations of the

angles O ant]~. The variation of this quantity at ~ = L was negligible and not plotted.

.. 5

o
.

.
...



Appendix I

As mentioned in the text, it is necessary to modify the thin-wire

approximation in the integro-differential equation for the scattering problem

in order to get an accurate time domain response. In this appendix, this

problem is discussed in conjunction with the driven antenna problem.
(lo) In the

scattering problem, it is not necessary to worry about the gap model as also

treated here. Hopefully, this additional information will not cloud the issue

at hand, but will serve to shed more light on the use of the numerical methods

in antenna and scattering problems.

In attempting to obtain the time response of a thin-wire transmitting

antenna by numerical means, there are two ways to proceed. The first is to

formulate an integral equation in the frequency domain for the antenna current

and upon solving the equation numerically, construct the time response by

means of—Fourier inversion. The other, perhaps less conventional, approach

is to solve the problem directly in the time domain.

o

The first approach necessitates being able to solve the integral equation

for high as well as low frequencies, so as to pemit—tyne correc~ CLJtisLZuCt~uii

-...
of the time response. The customary thin-wire approximation is known to break

down at higher frequencies. This can cause appreciable error in the high

frequency response of the antenna. Moreover, the model of the driving gap of

the antenna influences to a certain extent the frequency response. These

effects are briefly discussed in this appendix.

Consider the case of a straight, cylindrical antenna as shown in Figure

Al. The antenna has a total le~gth L, radius a and is center driven with a

gap at x = L/2. The parameter Q = 2 ln(L/a) = 10.0, so that the antenna is

relatively thin. Neglecting the radiation from the equivalent magnetic current

flowing over the gap region and assuming a perfectly conducting wire, the

following integro-differential equation of the Pocklington type can be formulated

for the antenna current(7)
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By assuming that the current can be considered flowing at the center

the wire and that the observation point z still remains on the cylindrical

surface (thin-wire approximation), PocklingtonIs equation becomes

The numerical solution of this equation by the method of moments has

of

(A2)

(3)-been discussed and illustrated by Harringtors . In solving these equations

for this particular study, the basis functions used are pulse functions defined

over a small interval or cell on the antenna. The weighting functions are

impulses, thereby yielding a point matching solution.

ln the solution by the method of moments, it is riecessary to increase

the number of cells on the antenna as the frequency increases so that the

current will be adequately represented. If it is assumed that the source

voltage is applied over one cell only as has been done by Barrington, the

,effecrivesource region gets smaller and smaller as the number of cells

incrtitises. . . ..TF.<~g:~.re~r~~e tfla ~a~ capacltall~~h-tLi-~ti ~~~t~~
.

;.:?+ f=aq1%eFc,7
-.

and causes the numerical results to differ from those actually expected in a

physical situation.

One way to eliminate this problem is to permit the source gap to contain

more than just one cell, By doing this and distributing the incident field

out over these source cells, the gap size can be considered fixed. One difficulty

with this, however, is that as the gap starts to contain more and more cells, the

input current of the antenna becomes difficult to define.

The curves of the magnitude of the input antenna currents as a function of

kL in Figure A2 show the effeccs of the Chin-wirs approxiinationEnd of placing

the driving source in just one cell. “The solid curve, which is the result of

solving equation (Al) with a fixed driving gap of L/10, shows the expected

behavior of the input current at higher frequencies, The dotted curve is the

result of solving equation (Al) with the source voltage in only one cell which

becomes smaller compared to the antenna length as the frequency increases.

The effect of the increasing gap capacitance is observed in a rise in input

current with frequency. The dashed curve represents the input current obtained

o ‘k
J

.
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, ● by using the thin-wire approximation (equation (A2)) and the driving voltage

again in just one cell. The divergent.nature of the solution is even more

serious than in the previous case.

Special attention should be paid to the differences between the dotted

and dashed curves, since they have bearing on the accuracy of the thin-wire

approximation. Notice that for kL > 1.5or so, the results begin to differ,

indicating that the thin-wire approximation is breaking down.

In conclusion, it can be said that the use of the thin-wire approximation

as well as the variable gap model of the driving source can cause large errors

in the high frequency solution of the integral equation for thin antennas. As

a result, the time response calculated from such a frequency spectrum will be

in error.
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Figure Al. Geometry of the thin-wire, center driven antenna

Q = Z ln(~la) = 10. and the driving gap A = .lL.
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Figure A2. Plots of the magnitudes of the antenna input currents as a

function of kL. (Solidline--exact ke~nel with fixed gap.
Dotted line--exact kernel with variable gap. Dashed line--

thin wire kernel with variable gap. )
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