
1-

Sensorand SimulationNotes

February 1972

2-Method of Calculating Impedance and
Field Distribution of a Multi-Wire

Parallel Plate Transmission Line Above a
Perfectly Conducting Ground

Lt. Daniel F. Higgins
Air Force Weapons Laboratory

Abstract

Using izage t“heory and superposition, the potential distz~ -
bution for a number of thin, parallel wires located above a
gro’undplane so as to form a transmission line is calculated.
The v.’lresare arranged so as to approximate a two plate trans-
mission line above a perfectly conducting ground and TE14mode
propagation is assumed. Charges on each wire are calculated so
that all wires in each “plate” are at tb.esame potential and
the resulting potential function is used to calculate the field
distribution and impedance of the line. The potential function
for each wire is assumed to be that of a line charge so that
one requires all dimensions to be large compared to a wire
radius for this approximation to hold. An estimate of the ef-
fects of finite ground conductivity is also included.
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a I. Introduction

The effect of the nearby, finitely conducting earth on a
horizontally polarized transmission line is an important ques-
tion which is far from being well understood theoretically.
The specific effects of the finite conductivity of the earth
are particularly difficult to treat analytically or model ex-
perimentally. Therefore, in this note only the effect of a
perfectly conducting ground (earth) on the impedance and field
distribution of a transmission line will be calculated, with
the assumption of TEM propagation. A two-wire transmission
line will be considered first and the results extended to a
multi-wire line where the wires are arranged so as to approxi-
mate a two-plate transmission line. An estimate of the effects
of finite ground conductivity will also be made, but one must
remember that the original assumption of TEM mode propagation
is not valid for a finitely conducting ground. Throughout this
note the assumption that the wires are very thin is made; ie,
it is assumed that the wire diameter is much smaller than other
characteristic lengths. This assumption is necessary $.norder
to be able to use the superposition of the potentials of line
charges to approximate the fields due to the wires. The re-
sulting potential function for various arrangements of wires
will be given and the electric field distribution and transmis-
sion line impedance calculated from this potential function.

m II. The Two-Wire Line in Free Space

First, consider a two-wire transmission line in free space.
This problem has already been considered in a previous note.1-
(See Figure 1A.) From this
such a line is given by

$=u+iv=~n[~~~l

where

Z=x+

Thus

iy

‘($+1;+ (X)2a

.(:- 1)2+ (:)2

note, the potential function for

(1)

(2)

(3)



Figure 1A. Two-Wire Line inFree Space.
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Figure lB. Two-Wire Line Above a Perfectly
ConductingGround.
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v’ arctan

[1

-2y/a

X2 + y2
~~-1

and

u= constant is an equipotential surface

v= constant is a stream line

The electric field is calculated by taking the derivative of
the potential function and it is shown in Reference 1 that

E 1

[

1 + x/a= - x/a

‘rel ~g+(l+:)’+$(l-$
a 1

E 1

[y

/a .- y/a “

‘rel ‘z 2 2
d+ (l-:)’~+(1+~) a2

a2 1

(4)

(5)

(6)

a where Exrel and Eyrel are normalized
1 at the origin (x = O, y = O). The
meter is given by multiplying the relative fields by

so that Exrel is equal to
actual field in volts per

Ex

I

. Av~ fE
X=o
y=o

where

AV is the voltage across the line

2a is the wire spacing
.

and

2
‘E ‘ !.tn(~)

o

(7)

(8)

where r. is the wire radius and it is assumed that
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:<<1
0

(9)

e

It is also shown in Reference 1 that the geometrical factor for
such a line is approximately just

again assuming (9) is correct.
given by

z =
[
>f = 1201Tf
09 9

(lo)

Then the pulse impedance Z is

where the inductance per unit length of line is

L’ =pf
09

and the capacitance per unit length is

c’=>
9

(11)

(12)

(13)

111. The Two-Wire Line Above a Perfectly Conducting Ground

Now consider the same two-wire line discussed in section
II with the addition of a perfectly conducting ground aJ.ongthe
line y = -b (see Figure lB). This gives two image wires such
that one can approximate the potential function by

(14)

Such superposition is only strictly correct in the limit as
r. + ();ie, for line charges. But as long as r. is much
smaller than other characteristic lengths, equation 14 should
be a good approximation for the potential. Thus
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; !?mu=—

“(3+1)2+<
a

a

&l)2+g
a.

+*!hl

[

(:-1)2+(X+=)2
a a

[:+1)2+(5+*)2

(15)

Now define an effective wire separation aEff such that

1 1 au—= ._
aEff U. ax

X=o
y=o “

where U. is the potential at one of the wires.
Z= ~ - a- Then

4’ = An[*l + !tn[E- 2a + 2ib1
~ + 2ib

Now , assume c is very small, ie

IEI =. <<~o

Then

giving

(17)

To find Uo, let

(18)

(19)

(20)

(21)

From equation 15
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Now ,

Ex
Av

= 2aEff
=gfE

x=o
1y=o

where

%=&

(23)

(24)

and AV is the voltage across the line, From equations 17, 21,
and 22J the efficieficy faCtO~, fE is

Note that this equation has the limiting
10 as b becomes large (ground plane goes

Now, define relative electric fields by

-1

(25)

a
form given in equation
to infinity).

au

E
E

‘re1
‘~

I
X=o
y=o

E A
Yrel = Ex

X=o

(26)

(27)

1y=o

Then
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E
‘rel

E
Yrel

= a(4b2+a2)

{

a+x a -x

8b2
2+ 2

y2i-(a +x) y2 + (a - x)

a+x a -x

(yi-2b)2+(a+x)2 (y+2b)2+ (a-x)2 /

= a(4b2+a2)

{

~-~
8b2 y2+(a +x) y2 + (a- x)

(28)

y+2b y+2b
2+ 2

/
(29)

y2+(a +x) y2 + (a - x)

It can easily be shown that these expressions just reduce to
equations 5 and 6 for the fields in
ing plane moves far away, ie as b +

Now conside”r the effect of the
metrical factor

Au 21U I IUol
fEE=2; =—
9 ?T

Thus

and the ground plane has the effect
fg, as expected (see equation 10).

Iv. A Multi-Wire Transmission Line
Ground

free space as the conduct-
Co.

ground plane on the geo-

(30)

(31)

of lowering the value of

Above a Perfectly Conducting

Now let us consider a transmission line above a ground
which consists of a number of parallel wires lying along two
planes (see Figure 2). The wires in the plane x = -a are at
the potential +v/2 and those in the plane x = +a are at a po-
tential -v/2 . Each plate of the transmission line consists of
N wires equally spaced a distance d apart, and the bottom wire
is a distance b above a perfectly conducting ground.

One might first
similar to that used

consider treating this problem in a method
in the previous sections, ie, merely
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Figure 2. N-Wire Line Above a PerfectlyConductingGround.
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e superimposing the potentials of a number of line charges to get
an expression for the total potential. One runs into an added
complication for multiple wires though. We require the magni-
tude of the potential at the surface of each of the wires to be
the same. If one assumes equal charges on the wires, this will
not be true. Thus we must solve for the charge on each wire
such that the potentials are the same.

To solve this problem we will find Maxwell’s potential co-
efficients for the multi-conductor system being considered, in-
vert this matrix to find the capacitance coefficients, and thus
find the charge required on each wire of the line.2,3

A more complete discussion of this technique can be found
in references 2 and 3 and thus will just be outlined here.
Basically, if we have a set of N conductors, each with a given
charge, superposition tells us that the potential on the nth
conductor can be written as

un = pn~q~ + pn2q2 + “-” + pnNqN (32)

where we have a set of N linear equations since 1 < n < N. (qi
is the charge on the ith conductor.)

--

0 The pil’s are called Maxwell’s potential coefficients and
form a N X N matrix. These potential coefficients are a func-
tion of the conductor geometry only and have the general prop-
erties

‘ij = ‘ji (33)

P.’ ~ O for all i,j1-J (34)

By inverting the pij RIatriX, or equivalently, solving the set
of linear equations in equation 32, one obtains another N x N
matrix, nam~ly Kpq~ wher; a given kpq is called a capacitance
coefficient. One can wri~

Qn = KnlUl -I-Kn2U2 + ● 0. i-KnNUN

where 1 < n < N and Qn is the charge on
capacitafice ~oefficient is given by the

K =
rs

cofactor of prs matrix

determinant of prs matrix

(35)

the nth conductor. The
expression

(36)
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Krs = Ksr

K >0rs -

<0

Once we
use equation

a
(37)forr=s

forr+s

know the capacitance coefficients, Krs, one can
35 to calculate the charqe required on each wire

such ~hat

‘1 =

the potential on each wire is th~ same, ie let

.

‘2=””” =UN=U0

Then the charge on the nth wire is

N

zQn = U. Knm

m=1

Once the charge on each
to superpositioning the
line charges to get TEM
line.

(38)

(39)

wire is known, one can easily go back
potentials and fields of a number of
mode expressions for a multiple wire

Now, consider a transmission line consisting of N-pairs of
thin wires above a perfectly conducting ground. To calculate
Prs, assume some charge qn on each of the wires to obtain the
normalized complex potential function

n=l

-i(n- l)d+ 2i[b+ (n-
+qn~n[~ j ~- i(n- l)d+ 2i[b+ (n- :):;1} (40)

We want an expression for the potential, urn,on the surface of
the mth wire (m = 1 for the wire closest to the ground plane).

Let

z = ‘5- a + i(m - l)d

Then

(41)
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N

$(X,Y) = x[
!?n[C <- i (n - m)d

-2a- i (n - m)d I
n=1

[

E.- 2a+ 2i[b + (n+;- 2)d]
+ h

~+2i[b+(n+~-2)d] 1}
Now, assume

M =r << a,b,do

where r. is

]Um] =

Now we have
wires qiven

the wire radius. Then one can write

‘m’nl~]+$~{qn’n[‘(:_4m)2d2+4(n-m) d i-4(n-m) ad 1]

n#m ‘

N
-1

[
oqn!h 1 + a2

2
n=1 [b+(n+~-2)d] 21}

(42)

(43)

(44)

an expression for the potential at each of the
a constant charqe at each wire. From this we can

[(n -m)2d2+4a2]2

(n-m)4d4+4(n -m)2a2d2

since

(45)

l+- a2

[b+(n+; -2)d]21

determine Maxwell’s potenti~l coefficients

N

u
m= x qnPm

n=l

From the above equations

(46)

for m # n and
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[1 [

=h= -+1+ a2
Pnn r. 2

[b + (~) d] 1 (47)
a

for m = n.

Thus, knowing’pm one can use equation 36 or some other numer-
ical inversion technique to obtain Km. Once Km is known,
equation 39 can be used to find the required charge on each
wire for a given potential. Using equation 39, the complex po-
tential function for all the wires at a constant voltage is
given by

+CV(X,Y) =

n=1

-i(n-l)d+2i[b-t (n- l)dll
+ Qn~n[~~~-i(n -l)d+2i[b+(n-l)d 1}

(48)

where cv indicates that all the wires in each plate
same constant voltage.

Now, define an

1 1
aUcv

——

G
‘Uax0

effective plate separation aEff

X=o

are at the

such that a

IY-(H ~
2

From equation 48, it can be shown that

aucv
N

I‘[

Qn
2/a

--%?-~=o “
n=1 l+[(N-l) Q-- (n-1)~]2

~-N~ld Za

(49)

and since
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N

EQn = KnmUo

In=1

N N
1 Z(Z ){K

2/a—=
aEff ~=1 ~=1 ‘m ~+[(N-l)d

2a - (n-1)~]2

2/a
2

l)d+(n-l)d+2b]~+[(N-
2 I

Now define an electric field efficiency factor fE where

fE=~
aEff

Then

Ex
Av

= 2a~ff
=gfE

X=o
~=(N-l)

2

(51)

(52)

(53)

(54)

where AV is the difference in potential across the two sides of
the line.

Now let us define a relative electric field normalized to
the electric field strength in the x-direction at the center of
the wire plates. Then

Ex (X,y) = + ~
re1 E

N N
=—

f: Z{(X )[
K

x+a

n=l m=l ‘m (x+a)2+ [y’-(n -l)d]2

x-a

1~x-a)2+[y+(n-l)d]2
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(k
N

E K x-a

‘m (x-a) 2+[y+(n-l)d+2b]2
m=1

x-l-a .1I
(x+a)d+[y+ (n- l)d + 2b]Aj

~

E
Yrel

(x#y) = $- ~
E

NN
a

Z{(IZ J
Kn y-(n-l)d=—

‘E ~=1 m ~ (x+a)2+[y-(n-l)d]2=

y-(n-l)d

(x-a) 2+[y-(n-l)d]2 1

myN

E K
+ (n -l)d+2b

m=1 ‘m (x+a)2+ [y+(n-l)d+2b]z

y+(n-l)d+2b

(x-a) 2+[y+(n-l)d+2b]2 ‘l\
Thus we have defined the relative fields such that

E (N-l) d)=l(x=o, y=~
%el

(55)

(57)

Now let us calculate the geometrical factor for a multiple wire
transmission line above a perfectly conducting ground. The po-
tential on the bottom wire is given by

N N
-1 z{[!Lnl+ a2

2
]( ))
2 z

Knm
n=1 [b+ (~) d] m=l

(58)

●
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Then, the

f
9=

geometrical factor, fg, is given by

Au
G=

‘1
FJ/~\ (59)

All the expressions in this section are for a multiple
wire transmission line a distance b above a perfectly conduct-
ing ground. To consider such a line in free space, one can
just take the limit as b becomes very large. It is easily seen
that this is equivalent to dropping certain terms in the ex-
pressions for the potentials and fields. As a check on this
formulation one can take the limit of large b and large N and
compare the results to existing calculations for the field dis-
tribution and impedance of a finite width, parallel plate trans-
mission line.4 For N = 5,1and b/a = 106 good agreement with
the results of reference 4 were obtained (e.g., the result for
fg with 51 wires was about 4% higher than for the flat plate
treated in reference 4).

One should also remember that all of these expressions are
based on the superposition of the potentials and fields of line
charges. Since real wires have some finite radius ro, all of

a

the expressions developed here are only approximations which
are valid only as long as the wire radius is small when com-
pared to all other characteristic lengths; iel we require

r
+<<1

r
*<<1

and

r
=<<1
d

(60)

(61)

(62)

v. An Estimate of the Effects of a Finitely Conducting Ground

All of the calculations thus far have assumed an infinitely
conducting ground in order to make the problem tractable. How-
ever, one can at least estimate the effects of a finitely con-
ducting ground in the limit of low frequency. One should note

m
that the transmission line equations are really only valid for
wavelengths large compared to the cross-sectional dimensions of

17
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Since the presence of a ground decreases the geometrical
factor of a transmission line,

zFS < ‘FCG < ‘PCG
(67)

Note that with a finitely conducting ground we can no longer
assume TEM mode propagation; ie.

(68)

Thus the above equations are only estimates with limited valid-
ity.

VI. Conclusions and Summary

The expressions developed in Section IV of this note for
the geometrical factor, efficiency factor, and electric field
components of a multi-wire transmission line have been pro-
grammed for computer evaluation. A complete parametric study
has not been carried out as of yet, but some preliminary re-

a
suits are shown in Figures 3 to 6. The number of wires making
up each plate of the transmission line was chosen to be 51
somewhat arbitrarily, but it was found that data with N = 51
and large b/a agreed fairly well with Reference 4 and with ex-
perimental results using teledeltos plots. Thus one is led to
believe that 51 wires is a pretty good approximation of a solid
plate. On the other hand, numerical inversion of the N X N prs
matrix is relatively simple, but increasing N much beyond 51
would require excessive amounts of computer time.

One should note that the technique used here to approxi-
mate a solid conducting plate by a number of thin, parallel
wires all at the same potential can easily be generalized to
other transmission line geometries. For instance, one might
wish to study various curved plates in order to obtain better
field uniformity. One would simply choose each wire’s location
on the surface of interest and develop an expression for the
potential similar to that of equation 40. By requiring the
wires to be at the same potential, one can approximate various
equipotential surfaces formed by conducting sheets.

The use of a number of thin wires to approximate a solid
sheet is more than just a theoretical technique, however. Many
EMP simulators use wire mesh and/or a number of parallel wires
instead of solid metal sheets. Both cost and mechanical con-

●
siderations require the use of such “sparse” structures as ap-
proximations of solid ground planes and conducting plates.

19
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Thus , the assumption made in this note that each plate of the
transmission line is made up of a number of parallel wires is
probably closer to the real case for a large horizontally polar-
ized simulator than the assumption of a solid conducting plate
would be.

. .——.
The effect of replacing a solid conducting sheet by a grid

of wires is considered in several other Sensor and Simulation
Notes. Reference 4 treats the case of thin wires, as is assumed
here. Reference 5 discusses relatively “thick” wires. Refer-
ence 6 goes on to calculate the difference in inductance be-
tween a grid of parallel wires and a planar conducting sheet
and it is found that there is no change in inductance for cer-
tain ratios of wire size to wire spacing. (See Reference 6 for
details.) If one applies the results of these references with
the technique presented here, at least a fairly good qualitative
understanding of the differences between a solid plate and a
grid of wires can be obtained.

In summary then, this note has presented a method of cal-
culating the TEM field distribution of a multi-wire parallel
plate transmission line above a perfectly conducting ground.
The method depends on the fact that the TEM field can be calcu-
lated from a potential function which satisfies Laplace’s equa-
tion (rather than the more complicated wave equation) . The po-
tentials of a number of line charges are superpositioned to ap-
proximate thin wires, and the charge on each wire is chosen so
that all the wires making up one “plate” of the transmission
line are at the same potential. Maxwell’s potential coeffici-
ents and a simple matrix inversion are used to solve for the
proper charges. Once the potential function is known, rela-
tively standard techniques are used to find the electric field
at various points and the impedance of the transmission line.

\i
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