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Abstract

cfround contouring schemes on the im-The effect of various
pedance and field distribution of horizonta~ly polarized trans-
mission line EMP simulators is an important question. This note
considers the specific geometry of a semi-cylindrical hump or
mound symmetrically located below a two-wire transmission line.
A perfectly conducting ground and TEMmode propagation is as-
sumed. The field distribution and impedance of such a line are
calculated for a variety of hump sizes and transmission line
configurations . The results are compared to those of a similar
line above a ground without the hump (i.e., a planar ground)
and a similar line in free space. By means of these compari-
sons several “equivalent” ground contours are defined.
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I. Introduction .._._L:ti
.,.,

The use of TEM mode propagation of a transmission “l~ne=t;
simulate the free space EMP environment is a fairly well under-
stood EMP simulation technique. Present experience, however,
is almost totally limited to vertically polarized transmission
lines with one plate of the line being placed directly on the
ground. When one considers simulating the effects of EMP on
large aircraft however, one is forced to build horizontally
polarized transmission lines because of the difficulty of ro-
tating large test structures within the working volume. For a
horizontally polarized transmission line, one must consider the
effect of the neaby, imperfectly conducting earth on the quality
of simulation produced by transmission line.1 In particular,
our purpose is to consider ways of contouring the ground below
the line so as to enhance the performance of the simulator sys-
tem.

More specifically we shall consider here the effect of a
mound or hump in the ground located symmetrically below the
plates of the transmission line and running along the axis of
the line. The earth is considered perfectly conducting, TEM
mode propagation is assumed, and the transmission line is as-
sumed to be long; thus, we will consider only the two-dimen-
sional problem of fields in a cross-section of the line perpen-
dicular to the direction of propagation (see Figure 1).

The simplest conceptual design for a horizontally polarized
simulator would consist of a parallel plate transmission line
above a planar ground. A dielectric test stand would be re-
quired to support the test object approximately in the center
of the transmission line. Now , in designing a large horizon-
tally polarized simulator of this type one is faced with sev-
eral conflicting problems. Because the ground tends to lower
the fields in the working volume and because of the problem of
flashover and arcing from the bottom of the plates to the
ground, one wants to place the transmission line as far as pos--
sible above the ground. On the other hand, due to cost and me-
chanical considerations, one wishes to minimize the height of
the dielectric test stand for supporting the test object in the
working volume. One method of solving this problem is to build
a mound of earth under the center of the transmission line.
The dielectric test support stand is built on top the mound,
thereby minimizing its height while at the same time the dis-
tance from the bottom of the plates to the ground is maximized,,
(See Figure 1A.) In other words, the mound tends to put the
bottom of the test support stand nearer to the working volume
while still keeping a relatively large distance between the
transmission line plates and the ground.

This mound at the center of transmission line serves sev-
eral purposes. First of all, the interaction between a test

3



aircraft and an earth with a mound below the aircraft is less
than the interaction between the aircraft and a flat ground lo-
cated at the top of the mound. Thus for a given height of test
support stand, setting the support stand on a mound helps to
decrease the undesirable interaction between the test object
and the ground.

Another way in which this mound or hump can be used to en-
hance simulator performance is by reflecting certain undesi~-
able high frequency sections of the pulser output away from the
working volume. To understand this effect, consider a horizon-
tally polarized transmission line above a flat earth. The high
frequency portion of the pulse generator’s output pulse (i.e.,
those frequencies corresponding to wavelengths less than the
transmission line dimensions) will tend to expand along spher-
ical wavefronts centered at the generator. These high frequen-
cies would reflect off a flat ground right back into the work-
ing volume, thus distorting the environment there. (The re-
flected pulse would tend to cancel the electric field.) Using
the limits of geometrical optics, however, one can easily see
that a properly contoured ground would reflect these high fre-
quencies away from the working volume, or at least disperse the
reflected energy of the fields over a larger volume.

Thus we have seen several reasons for contouring the
ground below a horizontally polarized transmission line. In
this note a rather over-simplified geometry will be considered
in order to make the problem tractable. We shall consider the
effect of a semi-cylindrical hump attached to an otherwise flat
ground plane on the fields produced by a two-wire transmission
line (see Figure lC). A two-wire line obviously varies from
finite width parallel plates but should approximate a parallel
plate line where the plate separation is greater than the plate
width. Furthermore, a semi-cylindrical hump is probably not
the optimal shape of the ground contour, but should still point
out the main features of interest with regard to the electro-
magnetic effects of such a mound.

In this note we shall consider both the case of a line
above a flat ground and the case of a Line above a contoured
ground. Variations in field strength and uniformity will be
considered as a function of transmission line wire separation,
distance to ground, and mound size. In addition, equivalent
flat ground planes will be defined for various mound sizes in
terms of equal transmission line impedances and equal field
strengths at the center of the transmission line.

II. The Two-Wire Line Above a Planar Ground

f. .

The complex potential function for a two-wire line above a
flat ground (Case A) can be written as
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where

‘1 =

‘2 =

Z3 ,=

. . .

a

a- 2ib

a+2ib=z~

.,;.:..
and 2a is the wire separation and b is the distance of the wires
above the ground plane (see Figure lB) . This equation for the
potential is only strictly correct for line charges; i.e., in
the limit as the wire radius r. + O. As long as r. is much
smaller than other characteristic lengths, the above expression
should be a good approximation of the potential, however.

Now , rather than writing out the real and imaginary parts
of $(A) and taking derivatives to get the fields, let us con-
tinue to use complex notation. Consider the fact that since
$(A) is an analytic function

But a normalized electric field

+
e = ex~ + ey~

is defined by

e au=
x -E

au av
‘Y=-m==

Thus

a~—=
az ‘ex + ‘ey

(2)

(3)

(4)

(5)

(6)
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Therefore, if one thinks of the vector = in terms of a complex ‘
number in the z-plane, -....—--

)f\-.:

+
e =

[1

+*

where * indicates the complex conjugate. Thus

:(A) =

[
1+1 1+1*

-Z+z
1 ‘-=1 -z-z 2

Z+z
31

(7)

(8)

Remember that :(A) is really just a complex function whose real
part equals ex(x,y) and imaginary part equals ey(x,y} when
evaluated at z = x + iy.

The unnormalized field can be written as

(9)

where ]AVI is the potential difference across the line in volts
per meter and u~A~ is the real part of

$

(A) evaluated on the
surface of one of the wires. To find uA), letz=~- z1.
Then

Now , assume ~ is very small, i.e. ,

Then

(lo)

(11)

(12)

Note that the inequality r. << a,b ensures that the second
term in equation 12 is much smaller than the first term. In
comparing field strengths, we will usually ignore this second
term. However, in other cases (e.g., calculating the geometri-
cal factors) it will be necessary to retain this term.
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Now ‘consider defining an efficiency

pq .l#f
z=iy E

Then, from equation 9

fE =
,Ua) ,

]:(A)\~=iy

o

2 -f 1-=

One can also define a geometrical

+1

factor

faCtOr, fE, such that2

fg (ref. 2)

,U(A),
~(A)=Au– o =——

Av () ()
+Ln> -*flnl+~

9 T
o b:

,;,,

(13)

(14)

(15:1

where the pulse impedance of the line is just

the inductance per unit length is

L’ = pofg (17)

and the capacitance per unit length is

E
c’=:

9

Now consider the previous expressions in the limit as b
becomes very large. This special case is just a two-wire line
in free space which is treated elsewhere. 2 It is easily seen
that the expressions here just reduce to those in reference 2
as b + ~.
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1~1. The Two-Wire Line Above a Ground with a..S.qmi-cylindrical ‘

HumP ‘-
.

.)

Now consider the case of a two-wire transmission line above
a non-planar ground which is flat except for a semi-circular
hump symmetrically located beneath the two-wire line (Case B) .
The hump has radius y, the wires are separated by 2CX and are a
distance P above the planar part of the ground (see Figure lB).
Consider this geometry in the complex z-plane and the wires as
line charges located at

‘2 = ‘a
(20]

Now map the z-plane into the complex w-plane by the conformal
transform

w= Z+ie+y
7 z+i(l

(21)

This transformation maps the entire non-planar ground in the z-
plane onto the real axis of the w-plane. The wires are mapped
onto the points

where

(22)

(23)

(24)

(25}
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Then
I,.

(26). . =---

as before, define a normalized electricNow , field

.=r-+.

I
:(B) “[ 1@) *

=-
az

‘[:’::)4’.. ~---- .-

[( 1 )(1+1+11

)1

*
= Y

-V7+w -vi-v?
1 1

W+W2 W-W2 y-
(z+i~)2

(27)

The unnormalized field is just

,#B) =“ IAVI :(B)
“-(B)VJo I— ..

where /u~B)/ is obtained by

(28]I

I

letting w = $“- W1 . Then

‘(B)=4A-J‘ ‘n(=i)
I

(29)

(30)/UjB)\ . ~n(~).’jri(+-)

limit as first termtheo

.“

only

.

thewhere again in
nificant.

is sig-
I
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f.

As for the flat ground plane, define an.efficiency facto~ ‘
fE

“3

Now , note that

Thus

~O(B) -W2 +W
1

+W.’-Wl

aw =
+

w~+w(w1+w2) +W1W2 w’ -W(W1+W2) +W1W2

2a~ ‘ap=
w2+w(2iW - Iwly W2 -w(2i#3v) -]W1]2

(31)

(32)

(33)

giving

(34)

As before we can also define fg as

Iv. Comparison of Ground Plane Effects

(35)

In the previous two sections of this note expressions have
been derived for the geometrical factor and field distribution
of a two-wire line above a planar ground (Case A) and above a
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ground with a semi-cylindrical mound symmetrically lacated be- ““ _-
low the line, (Case B). It was.noted in section Il.that Case~.A.
has the limiting form of a twa-wire line in free space as the

.....

ground plane is moved infinitely far away from the line (as
b+~). Similarly, it can be shown that Case A is the limiting
form of Case B as the mound becomes very small (as y + O).

However, in situations other than these limiting cases,
one would like some means of comparing the effects of the
ground plane. In particular, changes in the field distribution
within the region between the two wires making up the transmis-
sion line must be considered, since the object being tested
would be located in this area. Thus, in this section we will
define several factors giving some quantitative measure of the
various ground plane effects.

—

First consider the geometrical factor. Let

Af :
f(A) - f(B)

99 9

‘M+-)-+-’a
(36)

To compare the effects of the various ground planes being
considered, first have the wires of the line coincide by making

Then Afa just becomes a function of b, 6, and y. There are
several”interesting choices for b that can be made to compare
Case A and Case B. One obvious choice is b = 6. Another is
b~-y.= These choices put a planar ground at the bottom and,
top of the semi-circular

?V
p, respectively. Another choice

for b is to define some beff such that Afg = 0; i.e.,

(38)
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..Q 1% second comparison one might make indicates the effect of ‘
the grmnd contouring on the efficiency factor, fE. Define a
relative change )

AfE z

=

As in

(39)

equation 37, we assume a S a for comparison purposes.
Now consider equations 12 and 30 for lu~A)\ and lu~B)], respec-
tively. Note that in deriving both equations we have assumed
that r. is small, giving

and

Thus , one obtains the approximation

luy\ = \lJqo

which gives the result

@A),
z=iy -

@B) /

AfE =
Z=iy

I: ‘A) I z=iy

(40)

(41)

(42)

(43)

Due to symmetry, ~ evaluated along z = iy has a zero y-
component, indicating that AfE as approximated in equation 43
is just the relative difference in the normalized electric
fields. As mentioned before, one can make several choices for
b,to compare Case A and Case B.
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“z:Now’%nsider a more generalized’ parameter which compares “ -“‘:”
the normalized electric fields everywhere in space. Let US~ ‘“~ ‘

first compare the transmission line above a planar ground ‘with
——

the same line in free space. Define.. :’(7rd”.’.-L. ,-
- “ ‘--w..”

(44)

where Z(A) (b = Q) corresponds to a line in free space. The
vector difference indicated above is just a simple subtraction
of-the complex numbers representing the electric field vectors.
Thus, maintaining the field expressions in terms of complex num-
bers simplifies looking at field changes.

Similarly, the humped ground can be compared to the flat
ground. Here let

*e(B) ~ I:(B)(B) - :(A)(b)\
/~(A)(b)[

(45)

where several
ing Afg. One
ground plane,

Ae (B)
X=(J

logical choices for b were discussed in consider-

1
c n also define another effective distance to the
b ~~, such that

= o (46)

Iy=o

This implies that

giving the result

~(2)

1[

-1 1/2
eff = 1 a+(B)
a 1]72T2e~=o+1 -1

(47)

(48)

Note that the definition of Ae(B) in equation 45 simply
reduces to the expression for AfE in equation 43 when evaluated
along the y-axis.
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.NOW let us consider defining some quant>~a~~ve.rneasure of
the uniformity of the.fields produced. Let e(z) be-the normal-
ized field at any point in the z-plane. Consider the field at
z + Az, where z and Az can be thought of as vectors or complex
numbers; it is a~sumed that IAz] << Iz]. The field at the
point z + Az is e(z++ Az). The~ one measure of the change in
the field is just ]e(z + Az) - e(z) ] where we take the magni-
tude of the vector difference in order to include changes in
f$eld directi~n as well as field magnitude. In general,
\e(z+Az) -~e(z) \ will depend on the direction chosen for Az.
However, if e is derived+from a complex potential function as
done in this note, then e (when written as a complex function
of z) is also an analytic function. Taking the limit as /Azl
goes to zero, one can define a uniformity factor~ Ur such that

>fi

Since ~ is analytic, the direction of Az is immaterial and from
the above definition

(50)

One can consider U(z) as a measure of the local uniformity at
the point z since U depends only on the location z and how fast
the field varies as one proceeds away from z.

ered
Now let us apply this definition to the case being consid-
here. From equation 8

1 1 1 1
a - 2+ 2-(Z

z+
(2+21) (Z-zl)

2
U(A) =

- Z2) (2+23)
(51}

I:(A)\

Similarly, from equation 27
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.2 ‘%

I

(1 Y )
2

. —-
Y (z+i@)2

( 1+1+— 1 1 )( 2y
W+w -W+w -w-w )

(52)
1 ‘-WI 2 2 (z+if3)3

v. Discussion of Results

In the previous sections a number of expressions describ-
ing the impedance variation and field distribution were derived.
In addition, certain figures of merit for comparing different
ground geometries were defined. A number of these expressions
were evaluated numerically and the results are shown in the at-
tached figures. The number of graphs and figures is fairly
large due to the number of independent parameters one can vary.

First, let us consider Figures 2 to 10. These figures
show curvilinear square plots of the equipotential and stream
lines of the complex potential function defined in equation 26.
(Y/6 = O corresponds to equation 1.) The equipotential lines
correspond to u = constant while the streamlines correspond to
v= constant where $ = u + iv. The plots show the effect of
varying the hump size for various 13/aratios. As would be ex-
pected, when the hump radius becomes comparable to the line
spacing or the height above the ground, ,considerable changes in
the field distribution can be seen, especially near the surface
of the hump. (Similar -“ for the two-wire line in--~ree
space can be found in reference 2. As in reference 1, u and v
in the vicinity of the wire are plotted in increments of .05n
up to u = Tr. For u > IT,u and v are in increments of .lIT. The
u= m contour is easily seen on the graphs as the contour where
every other v contour ends.)
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While such equipotential plots are useful in seeing the
overall field distribution, it is very difficult to directly
read field strengths from such plots. Because of this, we have ‘1

numerically evaluated equations 8 and 27 to find the normalized
electric field~. The x- and y-components (the real and imagi-
nary parts of e) are plotted as a function of y along lines of
constant x in Figures 11 to 29.
J)

Figures 11 to 14 show e~A) and
eA with a planar ground at v r ing distances below the line.

?7In Figures 15 to 29 e~B) and eyB is plotted for variations
both in the distance to the ground, B, and the radius of the
mound, y. The field is plotted only in the region between the
wires (x/a < 1.0) because we are primarily interested in the
fields in this working volume between the “plates” of the trans-
mission line. [Note also the step rise in some of the plots—
these correspond to intersection with the surface of the semi-
cylindrical hump.] From these plots it is easily seen that the
effect of the ground on the field is most severe near the sur-
face of the ground and becomes less as one goes out along the
positive y-axis.

Now let us consider the results of numerical evaluation of
several of the parameters defined in section IV. Figure 30
plots the change in geometrical factor, Afg, as a function of (3
for several values of b and y. Figure 31 shows both b~~} and
b~#~ as a function of B with y as a parameter. Thus F~gure 31
can be used to find some flat ground geometry which is “equiva-
lent” in some sense to the contoured ground under consideration.

Figures 32 and 33 are contour plots of the field deviation
Ae (A), These figures plot lines of constant Ae(A~ in the re-
gion between the two wires making up the transmission line,
thus giving an indication of the spatial distribution of field
deviation in the working volume due to the ground plane. As
one would expect, the deviations are largest as one approaches
the ground plane.

Similarly, Figures 34-48 plot contours of the field devia-
tion Ae(B), comparing the planar ground with the contoured
ground. The plots show various f3/aratios with y/~ varied for
each value of B/a. Furthermore, each contoured ground is com-
pared with both a planar ground located at the bottom of the
semi-circular hump and a planar ground tangent to the top of
the hump (i.e., b=~andb=~ -y).

In Figures 49-57 contour plots of the uniformity factor
U(B) (defined in equation 52) are presented for various f3/aand
y/a ratios. (Note that y/a = O corresponds to a planar ground,
i.e., Case A.) Several interesting things can be seen from
these local uniformity plots. First, note the minimum in U(B)
on the y-axis slightly above the center of the transmission
line. This minimum, indicating good field uniformity, would
occur at the exact center of the line if the ground plane were
absent and results from an “averaging” of the fields produced
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by each of the two wires making up the transmission line,i_-:kTo.@
that as the ground plane is moved up and the hump becomes
larger, this minimum is pushed further up the y-axis away from:
the center of the line. This effect would indicate that one
should center the working volume of a horizontally polarized
simulator above the geometric center of the transmission line
for best field uniformity.

A second minimum can be seen near the surface of the hump
approximately on a line from the center of the hump to the
transmission line conductor at (a,o). This minimum results
from the combination of fields from the wire at (u,o) and its
image inside the semi-cylindrical hump of the ground plane. In
fact, it can readily be seen that such a minimun would occur orl
a line connecting two parallel line charges of opposite sign.
At some point depending on the charge magnitudes the field corn-’
ponents along the connecting line will add while components
perpendicular to the connecting line will tend to cancel, thus
making the resultant field more uniform. This same effect can
be seen in the equipotential plots (Figures 2-10). The areas
where the curvilinear “squares” are most like a geometrical
square are the areas of best uniformity.

VI. Summary

In this note, expressions for the geometrical factor and
field distribution of a two-wire TEM mode transmission line
above a perfectly conducting ground plane with a symmetrically
located semi-cylindrical hump have been developed. These re-
sults have been compared to those of a similar line above a
planar ground and various figures of merit for quantifying
these comparisons have been defined. Several techniques for
defining a planar ground “equivalent” to the contoured ground
were discussed and the effect of the hump on field strength and
uniformity are shown in the attached figures. The results in-
dicate that certain ground contouring schemes similar to the
idealized geometry considered here might well be used to enhance
performance and reduce cost of a horizontally polarized simu-
lator.
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c. TWO WIRE LINE ABOVE A GROUND WITH A
twMp (cAsE B)

FIGURE 1. TRANSMISSION LINE

SYMMETRICALLY LOCATED SEMI-CYLINDRICAL

CROSS-SECTIONAL GEOMETRIES
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