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Abstract

In this note, the free space electrostatic capacitance of conducting

ellipsoids and spheroids is determined by solving Laplace’s equation in

ellipsoidal coordinates. The particular solutions are expressed in terms ‘-

of incomplete elliptic integrals which are evaluated numerically to de-

termine the capacitance. Degenerate cases of the general ellipsoid are

also considered. In addition, an equivalent radius for each of the con-

ducting bodies is defined and calculated. The results are presented in

both graphical and tabular form_.
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1, INTRODUCTION

A current area of interest in EMP studies is that of attempting to

understand system generated EMP. This effect occurs when a conducting

obstacle in space (such as a satellite) is subjected to a high energy beam

of gamma rays, These gamma rays cause electrons to be emitted from

the conductor at one location, travel through space in the vicinity of the

obstacle, and either be reabsorbed by the conductor, or escape to infinity.

The result is that currents flow on and around the obstacle, providing a

source of large electromagnetic fields,

A general discussion concerning the system generated EMP has

been given previously [7], A forthcoming note by Dr. C. E. B.aum de-

scribes in detail this effect and proposes a new type of EMP simulator to

test actual satellites for EMP hardness [11], As mentioned in that note,

one problem of interest is to compute the free space capacitance of various

types of satellites as well as defining an equivalent radius for the body.
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11. FORMULATION

a

The design of an actual satellite depends on many factors, In order

to perform its desired functions, the satellite may need to be of a rather

complicated geometry. It is difficult to define a general model with a geom-

etry of enough complexity to exhibit the desired electrical characteristics

of the actual satellite and of enough simplicity to allow an analytical or exact

determination of these characteristics. As a first order approximation, one

particular geometry, the ellipsoid, appears very promising for modeling ar -

bitrarily shaped conducting bodies,

The problem of determining the free space electrostatic capacitance

of perfectly conducting ellipsoids and spheroids has been considered by several

authors [1, 2, 3]. It is also interesting that rather tight bounds for the ca-

pacitances of these bodies can be predicted by purely geometrical considera-

tions. The numeral ranges of these bounds will be discussed in a later section

of this note. A thorough discussion of this geometrical approach has been

given by Polya and Szego [ 4]. The method presented here for determining

the capacitance of an ellipsoid is essentially that given by Stratton [ 1].

Suppose that a perfectly conducting ellipsoid of semiaxes a, b, C,

centered about the origin of a carte sian coordinate system carries a total

charge Q, (See Figure 1. ) One can state several conditions which the elec-

trostatic potential, @ , produced by this charge must satisfy:

1. @ must satisfy Laplace’s equation at all points not

the surface of the ellipsoid,

2. @ must be constant” on the surface of the ellipsoid,

3. @ must be regular at infinity.

on

and

The equation for the surface of an ellipsoid centered about the origin

of a cartesian coordinate system may be written as

X222+-z -.+-c . 1
~

b’ C2
(1)
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FIGURE 1. General ellipsoid
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For later convenience we will force the semiaxes to satisfy the inequality

c>b>a. There is, however, a more general representation for the ellip-

soidal surface which leads one to considerations in another coordinate

system. The equations

X2
2 ~2

—+ L+_ = 1 , ~>.cz
a2+~ b2+~ c2+g

x’
2

Z2—+x+— =
2

1, -c2>q>-b2
a +q b2+q c2+q

(2)

(3)

2 2
x Z2+J_ +-= 1, -b2>~>-a2 (4)

a2-1-~ b2+~ Cz+g

are the equations respectively of an ellipsoid, a hyperboloid of one sheet,

and a hyperboloid of two sheets, all confocal with the ellipsoid given by

equation (1). The three surfaces associated with the variables $, v , and K

represent a new orthogonal curvilinear coordinate system usually referred o

to as the ellipsoidal coordinate system. Note that in equation (2) when g = O,

we have the surface of the conducting ellipsoid of semiaxes a, b, c centered

about the origin.

The pertinent field relations, in particular Laplace’s equation, can.

be written in terms of the new coordinates as (see Moon & Spencer [5] )

where

(6)
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Since @ must be constant on the surface of the conducting ellipsoid,

it must be independent of r? and t . Hence, the potential, @ , musl

function depending only on E which satisfies equation (5) exterior

conducting ellipsoid, represents the correct value of the potentia

the surface of the conducting ellipsoid, and is regular at infinity.

Under these considerations, Laplacels equation reduces to

he a

to the

on

where

R, ‘@a2)(E+b2)(5+c2).

Integrating this equation, one obtains

The upper limit is chosen as indicated to produce the proper behavior
3/2

of ~ at infinity. When ~ becomes very large, Rg approaches ~

and

(7)

(8)

(9)

(lo)
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Note also that equation (2) can be written as

2 2
x Z2

2
++ +_=

2 5

1+; 1+~
~

1+:
E (11)

Ifr2=x2+y2+z2 is the distance from the origin to any point on the
2

ellipsoid $’, then as & becomes very large ~ ~ r . Hence

We know that whatever the charge distribution, the dominant term of

the potential function for large distances from that charge distribution

is the potential of a point charge at the origin equal to the total charge.

Therefore, the solution for the complete potential is

(13)

(14)

Now, since the total charge on the ~ = O ellipsoid is Q, the electrostatic

capacitance is found to be

(15)
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‘,

.

Due to the form of R
E’

the capacitance can be written in terms of an

incomplete elliptic integral of the first kind, ‘(See Abromowitz and

Stegun [10]. )

and

where

4
1

f (,
.—

F(@#m) = 1 - m sin2@ ) 2dg

o

{() 2
A’ Cl-:

bz
()1-;

m=

()
2

,m<l
1-:

(16)

(17)

(18)

(19)

(20)
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II I.. REDUCTION TO DEGENERATE CASES

As mentioned before, the capacitance (or the equivalent radius)

of the general ellipsoid can be calculated in terms of the incomplete

elliptic integral of the first kind. However, this integral does reduce

to more elementary forms for several particular geometries, namely

the prolate and oblate spheroids, the sphere, the elliptic disk, and the

circular disk.

CASE 1. Prolate Spheroid (See Figure 2, c> b = a). Equation
(15) reduces to

and upon evaluation of this integral,

c ——

(21)

(22)
.

CASE 11. Oblate Spheroid (See Figure 3, c = b>a). ~nte~ral is

of the same for~ as (21), and

4m/i’i’-

C=v) (23)

Note: The inequality (c> b ~ a) results in the different forms for the
evaluation of the integral in equation (21).
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FIGURE 2. Prolate spheroid (c >b = a).

FIGURE 3, Oblate spheroid (c = b>a).
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CASE 111. Elliptic Disk (See Figure 4, c >b> a = O). Equation

(15) reduces to

The integral above is a complete elliptic integral of the first
kind. Hence

_ 47rt c
c - K(m)

where

X12

1){(
-1/2

K(m) =F(~m= )1 -m sin20 do
o

()b2 “m<landm=l. —
c’

CASE IV. Circular Disk (See Figure 5, c = b> a = 0).

CASE V. Sphere (See Figure 6, c = b = a).

c“=jm(g8~j2)3,2 = 4TEC

(24)

(25)

(26)

(27)

(28)

(29)

-12-



.
●

~ 2’‘—’f
FIGURE 4. Elliptic disk (c>b>a = O).

FIGURE 5. Circular disk (c = b>a = O). FIGURE 6. Sphere (c = b = a).
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lV. EQUIVALENT RADII

A definition of an equivalent radius for conducting bodies of

arbitrary shape has been suggested by Baum [ ~ ] . Suppose we know

the capacitance of a particular conducting body as C, and we equate

this capacitance to that of a sphere of radius r. Then solving for r,

we define this r as the equivalent radius of the conducting body under

consideration and denote it as req. For example, consider the general

enips oid. From equation (16) we have

87TLEA
c= F($lm) ●

We know the capacitance of an isolated sphere of radius r is

c= 47r& .

Hence, the equivalent radius of the ellipsoid is

Finally we define the

radius divided by the

A’=

2A
‘eq = F(4 Im) .

normalized equivalent radius as the equivalent

largest semi-axis of the ellipsoid.

(30)

(31)

(32)

(33)

(34)
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(35)

bz

1- ()G,m.

()a2
,m<l

1-: (36)

Note that once this equivalent radius is determined, then the capacitance

of the conducting ellipsoid can be obtained immediately as

C=47rtr eq ●

(37)

V. NUMERICAL RESULTS

The numerical results are presented in terms of the normalized

equivalent radius “since the capacitance can be obtained from this directly.

Table 1 gives the normalized equivalent radius for the prolate

spheroid for a variety of shapes ranging from the one extreme of the sphere

to the other extreme of the infinitely thin needle, Figure 7 is the correspond-

ing curve for this data.

Table 2 gives the normalized equivalent radius for the oblate

spheroid for a variety of shapes ranging from the sphere to the infinitely

thin circular disk. Figure 8 is the corresponding curve for this data.

Table 3 gives the normalized equivalent radius for the elliptic disk

for a variety of shapes ranging from the circular disk to the infinitely thin

line segment. Figure 9 is the corresponding curve for this data.
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Figures 10, 11, 12, and 13 show plots of the normalized equivalent

radius of a general ellipsoid. Note that the degenerate cases appear as

boundary lines or points on this general plot.
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r

b
r

b
r

eq eq eq— —
c Z-- z c c c

,01 , 1887’33 .34 .539942 .67 .776757
.02 ,217110 .35 .547540 .68 .783649
, 03 , 238016 .36 .555098 .69 .790530
● 04 .255443 .37 .562616 .70 .797401
.05 .270791 .38 .570099 .71 .804262
.06 .284739 .39 .577546 .72 .811114
.07 .297670 .40 .584960 .73 .817957
.08 .309827 .41 .592343 , 74 .824790
, 09 .321369 .42 .599696 .75 .831615
.10 .332413 .43 .607021 .76 , 838432
.11 .343045 .44 .614318 , 77 .845239
.12 .353327 .45 .621590 .78 .852040
.13 .363310 .46 .628836 , 79 .858832
, 14 .373034 , 47 .636059 ,80 .865617
.15 .382531 .48 .643259 ,81 , 872395
.16 .391827 .49 .650438 , 82 , 879165
, 17 .400946 .50 .657596 , 83 , 885929
.18 , 409905 .51 .664733 .84 , 892686
, 19 .418720 .52 , 671852 , 85 .899436
.20 .427405 , 53 .678951 .86 , 906180
.21 .435971 .54 .686034 .87 .912917
.22 .444430 .55 .693099 .88 .919649
.23 .452788 .56 .700148 .89 .926374
.24 .461056 .57 .707181 , 90 .933094
.25 .469239 .58 .714199 .91 .939808
.26 .477345 .59 .721203 .92 .946516
.27 .485377 .60 .728191 .93 , 953220
.28 .493343 .61 .735167 .94 .959917
.29 .501245 .62 .742129 .95 .966610
, 30 .509088 .63 .749079 .96 .973298
.31 .516876 .64 .756016 .97 .979981
.32 .524612 .65 .762941 .98 .986660
.33 .532300 .66 .769855 .99 .993333

TABLE 1. Normalized equivalent radius of the prolate spheroid,
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FIGURE 7. Normalized equivalent radius of the prolate

spheroid ( c >b= a ).
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a h a h s
r

eq
: c c c c T~—

.01 .640667 .34 , 768397 .67 .887369

.02 .644702 .35 .772116 , 68 , 890866

.03 .648725 .36 .775826 .69 .894358

.04 .652737 .37 .779528 .70 .897843
, 05 .656737 .38 .783224 .71 .901323
.06 , 660726 .39 .786911 .72 , 904798
.07 .664704 .40 .790591 , 73 .908267
.08 , 668671 .41 , 794263 “. 74 .911731
.09 , 672627 .42 .797928 , 75 .915188
, 10 , 676573 .43 ,801586 .76 .918641
.11 .680508 .44 ,805237 .77 .922090
● 12 .684433 .45 .808881 .78 .925531
.13 .688347 .46 .812517 “ , 79 .928968
.14 .692252 .47 .816146 .80 .932401
.15 .696146 .48 .819769 .81 .935826
.16 .700031 .49 .823385 .82 .939247
.17 .703906 .50 .826994 .83 .942665
.18 .707771 .51 .830597 .84 .946076
.19 .711626 .52 .834192 .85 .949483
.20 .715473 , 53 .837781. .86 .952884
.21 .719310 .54 .841364 .87 .956281
.22 .723138 , 55 .844939 .88 , 959672
.23 .726957 .56 .848509 .89 .963059
.24 .730767 , 57 .852072 ● 90 , 966441
.25 .734568 .58 .855629 .91 , 969818
.26 .738361 .59 .859180 .92 , 973192
.27 .742145 .60 .862725 .93 , 976562
.28 .745920 .61 .866264 , 94 , 979921
.29 .749687 .62 .869796 .95 , 983281
.30 .753445 .63 .873322 .96 .986638
.31 .7”57195 .64 .876843 .97 .989987
.32 .760938 .65 .880357 .98 , 993341
.33 .764671 ● 66 .883866 .99 .996713

TABLE 2, Normalized equivalent radius of the oblate spheroid.

,“
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FIGURE 8. Normalized equivalent
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f

b
c

.01
● 02
.03
.04
.05
.06
.07
.08
.09
.10
.11
.12
.13
.14
.15
.16
.17
.18
, 19
.20
.21
● 22
.23
, 24
,25
.26
.27
.28
.29
.30
.31
.32
.33

.166901

.188724

.204343

.217079

.228095

.237948

.246957

.255317

.263163

.270589

.277665

.284442

.290963

.297260

.303360
, 309284
.315052
.320677
.326173
.331553
.336824
.341996
● 347077
.352073
.356989
.361832
.366605
,371313
.375961
.380550
.385086
.389569
.394004

b
c

.34

.35

.36

.37

.38

.39

.40

.41

.42
, 43
, 44
.45
.46
, 47
.48
● 49
.50
.51
.52
, 53
.54
, 55
.56
.57
.58
.59
.60
.61
.62
.63
.64
.65
.66

c

.398392

.402736

.407038

.411300

.415523
, 419710
.423861
.427979
.432064
.436117
, 440141
.444136
.448103
.452043
.455957
.459846
.463711
, 467552
.471371
.475167
.478942
, 482697
.486431
.490145
.493841
.497518
, 501177
.504819 {
.508443
.512051
.515642
.519218
.522778

b
c

.67
, 68
.69
.70
.71
.72
.73
, 74
.75
.76
.77
.78
.79
.80
.81
.82
.83
.84
.85
.86
.87
.88
.89
.90
.91
.92
.93
.94
.95
.96
.97
.98
.99

c

.526324

.529854

.533370

.536872

.540360

.543835

.547297

.550746

.554182

.557606

.561017

.564417

.567806

.571183

.574548

.577903

.581247

.584580

.587903

.591216

.594519

.597812

.601096

.604370

.607634

.610890
, 614136
.617373
, 620602
.623822
.627034
.630237
.633433

TABLE 3. Normalized equivalent radius of the elliptic disk.

-21-



,. .

r
eq
c

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

r
I I I i I [ I I I

— —

0.0 0.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0.9 1,0
b/c

FIGURE 9. Normalized equivalent radius of the elliptic
disk(c>b>a= O).
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FIGURE IQ. Normalized equivalent radius of the general
ellipsoid ( c>b~a ).
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FIGURE 11. Normalized equivalent radius of the general
ellipsoid (c>b >a, expanded view).
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FIGURE 13. Normalized equivalent radius of the general
ellipsoid (c >b >a, expanded view).
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V 1. COMPARISON WITH OTHER DATA

Suppose we wish to determine the capacitance or equivalent radius

of a conducting body which is not an ellipsoid or one of its degenerate

cases. It has been suggested by Baum [ 7 ] that the results obtained for

the ellipsoid might be used to approximate the capacitance of the body

under consideration. If we circumscribe the given body with an ellipsoid,

the capacitance of this ellipsoid can serve as an upper bound on the

capacitance of the body itself. Similarly, if we inscribe the given body

with an ellipsoid, we can obtain a lower bound on the capacitance of the

body. A simple average of these two bounds might serve as a first order

approximation to the true capacitance of the body under consideration.

As an example, suppose we wish to determine the capacitance of

a right circular cylinder of length 2C and diameter

ellipsoid with semiaxes (c, a, a) and circumscribe

semiaxes ({2c, fia, fia). Note in this case, the

2a. We inscribe an

an ellipsoid with

ellipsoids are actually

spheroids due to the inherent symmetry of the cylinder. This produces

bounds for the capacitance. If c = 2a, then

8,27 < ~<11.7

An approximate value of the capacitance is the average of these bounds.

Hence,

c—=9,97
CE

(38)

(39)

The capacitance of a right circular cylinder for c = 2a has been calculated

numerically by Smythe [ 8 ] to be

c—=9,88
cc

(40)
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Polya and Sz”ego [4] dis cuss several types of bounds and ‘

approximations based on the geometrical parameters of conducting solids

such as the volume, surface area, and mean curvature. One interesting

approximation proposed is related to the surface area.

()
1/2

c = 47TC & (41)

where S is the total surface area of the solid. For example, the cylinder

described previously has a surface area of

s ‘$ 7TC2, (42)

and consequently the capacitance is approximately

c—== 9.93Ec (43)

a
Table 4 presents data obtained in the same way as that above

for various conducting bodies. The two dimensional bodies are approxi-
.

mated with elliptic disks and the three dimensional ones with ellipsoids

or spheroids. Whenever possible, capacitances calculated by other

means have also been indicated for comparison. The square plate is

of side 2C, the cube is of side 2C, the right circular cylinder is of length

2c and diameter 2a, and the rectangular parallelopiped is of length 2c,

width 2b, and height 2a. (Note: c>b>a for all bodies. )—-
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bounds of & .
approximation/

average
calculated
value of

obtained using mmilar of of &- from c
body ellipsoids bounds surface area -75 investigator

square
8.00< $< 11,3

plate
9.66 9.02 8.92 Barrington [9]

cube 12. 6 < ~<21. 7 17.2 17.4 16.5 Reitan and Higgins [6]

cylinder
(c=a) 12.6<~ <17,8 15.2 15.4 15.0 Smythe [8]

cylinder
(c=2a)

Q--< fl.7
8“27< Gc 9.97 9, 93 9.88 Smythe [8]

cylinder
(c=4a)

5.88< ~< 8.32 7.10 6.66 6.97 Smythe [8]

cylind”e r
(c=8a) 4. 47<-& < 6.32 5.40 4.58 5.22 Srnythe [8]

parallelopiped
(a=O. 8C 11.7 < ++ <20.3 15.4 16.2

b=c)

parallelopiped
(a=O. 6C 10.0 < &< 17.3 13.7 13.7
b=O. 8c)

parallelopiped
(a=O. 4C 8.26<+ <14.3 11.3 11.2
b=O. 6C

parallelopiped
(a=O. 2C 6.38 < +< 11.1 8.72 8.27
b=O. 4c)

TABLE 4. Capacitance approximations for simple bodies .
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