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Abstract

Parallel-Plate

The time dependent surface current density that is induced on the outer

surface of a plamr source array of a parallel-plate simulator is calculated

and an energy theorem is presented which relates this Current to the energy

delivered outside of the working volume of the simulator. Using the calculated

current together with the energy theorem, it is shown that decreasing the slope

of the source array or increasing the slope of the adjacent ground reduce the

amount of wasted en”ergy. For certaim finite times of interest, this result is

obtained by using numerical integration; however, in the infinite time limit

analytic formulae are derived that clearly demonstrate the dependence of

wasted energy on the slope angles of the source array and the adjacent ground.
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1. Introduction

As a logical extension of a previous study concerning the effect of flanges

on the sloped termination of a parallel-plate simulator [1], we consider the

effect of flanges on the radiating properties of a sloped planar source array.

We relate -theangle of the flange to the sloping of the ground adjacent to the

source array and then calculate the surface current density on the outside

portion of -thearray. It is this current that delivers wasted energy outside

of the working volume of the simulator.

In the calculation of this surface current density, we use the termination

analysis. We show that it is possible to obtain an expression for this current

by making suitable vatiable changes in the current formulae presented in the

termination study. Even though these currents are simply related, we cannot

make use of the numerical results for che termination current. After obtaining

our expression for the source current, we Yequire a separate numerical integration

to obtain our results. These numerical results are presented as time dependent

o plots.

In a previous note [2], Baum used qualitative arguments to arrive at the

conclusion that there was benefit to be gained by decreasing the slope angle of

the source array, <, as well as benefit to increasing the slope of the ground

adjacent to the source, 8 (see figure 1). In order co quantitatively examine

the effect of these two parame~ers, we derive an energy theorem that relates

the current that we calculate to the wasted energy delivered outside of the

working volume of the simulator. We show that the wasted energy is a triple

integral that must be evaluated numerically when the source is turned on for

a finite length of time. We present tables of the wasted energy for two finite

times of interest and for various <’s and 6’s. For the infinite time limit,

we analytically derive formulae for ratios of wasted energy tha’cshow the

effect of varying C and 6. These formulae are algebraic functions of C and d

that can readily be examined. Both the numerical integration and our analytic

expressions show that the wasted energy can be reduced by decreasing ~ and

increasing IS.
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II. Explicit Representation

In a previous note on q termination

simulator [I], we derived an expression

on the outer portion of the tenyination

that the source problem Created in this

problem. The discussion relating these

of the Induced Current

problem for a parallel-plate

for the magnetic field that is induced

plane. In that note we mentioned

note could be related to the termination

two analyses is facilitated by referring

to figure 1. Repeating (21) of reference 1, we have

J
d ~E

HZ(P) =
[1

@oG(p,po)si-n gSoF #
o

(1)

The quantity Hz(p) is the magnetic field induced on the outer portion (region

of the source or termination plane. The quantities p, PO, d, and C appear in

figure 1 and are equally appropriate for either the source or termination

problem. The source for the magnetic field is the Fourier transform of the

time derivative of the y component of the electric field on either the source

1)

o or termination plane (F[~Ey/~t]). The Green’s function G(p,po) is exactly the

same for either problem and s is the dielectric permittivity of free space.
o

For the termination problem HZ(P) was treated in detail when Ey(t) w= given W

Ey(t) = -EoU(t - (vo/c)cos ~) (2)

where U is the Heavyside step function. In this note we would like to calculate

HZ(P) when Ey(t) is given by

Ey(t) = -EoU(t - (130/C)COS :) (3)

In (2), the termination problem, t = O corresponds to the incident wave striking

the junction of the top plate and upper flange, while in (3), t = O corresponds

to the source array being turned on at the junction of the bottom plate and

lower flange. For out source problem we will label t as ts to distinguish it

from the t of the termination problem. Specifically we

inverse Fourier transform of Hz(p), F-lHz(p) = Hz(p,ts),

J
d ~E

HZ(P) =
[1

dpoG(p,po)sin CGOF &
o s

are interested in the

when it is given by

(4)
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0
where

Ey(tS) = -EJJ(t - (~o/C)COS ~)
s

Using the relation

~o=d-vo

*
and defining the quantities t and y as

Y~-t=

and

t* = ts + (d/c)cos y

we see that (4) and (5) become

J
d aE

HZ(P) = [1dpoG(p,po)sin &coF~ )
o at

(5)

(6)

(7)

(8)

(9)

and

Ey(t*) = -EoU(t* - (Vo/C)COS y) (lo)

Comparing (9) and (10) with (1) and (2), we see that we can use the termination

analysis evaluation of Hz(p,t) provided we can separate the t and & dependence

that are due to G(p,po) from the t and ? dependence due to Ey(t). TO do this

we present G(p,po) from reference 1. It is

where

and

o

G(P,PO) = G1(P,PO) +G2{LIYPO)

. ,,
‘%+ -Po\]G1(P,PQ)= -;HO

%#[k(p2+of+2ppo
J

co. . cosh p) ]
G2(P,PO) = lq ;: ‘m dp 0 cosh qp-cos ,qn

o

(11)

(129

(12b)

The only u dependence that appears in G(Q,PO) is in k which is the free space
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●
wave number, u/c, where c is the speed of light. The only & dependence contained

in G(P,PO) appears in q which is given by
,,

where d is the slope angle

a position to describe the

the

the

q = T/(7r -1-d - E) (13)

of the adjacent ground (see figure 1). We are now in

change of variables necessary to obtain Hz(p,ts) for

source problem from Hz(p,t) for the termination

functional dependence of Hz(p,’c)in more detail.

We obtain Hz(p,ts)

● ☛
where t and y are

L

and performing the

in reference 1, we

Hz(wt) ‘H@,Lq(&))

as

Hz(p,ts) = Hz(p,t*,y,q(~))

defined in (7) and (8). Defining

z

j = +Hz(p,ts)
o

substitution indica~ed in (15) in

obtain

problem. First we exhibit

It is

(14)

(15)

(16)

the Hz(p,t~&,q(?)) given

where

j = U(T) - l/n U(T - ~,)arccos[~-l(a sin”~ + T cos ~)]
A

- l/7rU(T - ~2)arccos[’r‘-1((1 - C%)sin~ - ‘ccos ~)] ~

- q/m2 sin qn{[U(~ - T2) - U(7 - T3)IIA + U(T - T3)IB}

ct.-p Cos g Ct--p Cos g

(17)

(18)

l+COS g
‘1= a sin <

(19)



,

Cf. =v/d= l-p/d

l+COS <
‘3= T2+sin~

f

1

lA= ~A(y)arccos g(y)dy

lB = lB1 + IB
2

/

~

Y~

IB = A(y)arccos g(y)dy
10

1

IB2 = /{ A(y) arcsin[g(y) i-e(y)] - arcsing(y)}dy
Y.J.

A(y) = 2y@/(y2~ - 2yq Cos qr i-1)

g(Y) ‘= C(C2+ D2)-%

c =y2+2y@cos<+l

D2 = 4y2(B2 - l)sin2g

e(y) = 2y sin2g/[(1 - a)(C2 + D2)4]

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)
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(32)

In comparing

observe that

Y~ =1+-1’- ((l+ r)2- 1)% (33)

r’= [(6(1 - a) - cos ~)2 - (2 - a)21/[2(1 - ;)1 (34)

this j with the one contained in reference 1, it is important to

the same symbol, ‘c,is used to define different normalized times

in each note. We did not

in (18) in order to avoid

the note.

The j as defined in

add the appropriate subscript “s” to the T defined

this additional notation in the remaining part of

(17) with appropriate auxiliary definitions is the

form that was treated numerically in order to obtain the data for the plots

●
of j versus T that are presented in this note. In these plots the quantities

E, 6, and a serve as parameters. For a not equal to O or 1, the value of j

at ‘r= O is unity for any < and 6. When a = O we can immediately evaluate j

at T = O to obtain

j(0)=l-&/n (a= o) (35)

Wlen a = 1 we can use the results of reference 1 together with (15) to obtain

an analytic expression for all ~.
r

It is

j = qh’r{w’(-c)- U(7 - ~l)arccos[~‘L(~in & + T COs E.)]} (36)

where T~ is given in (19) with a = 1. From (36) we see that

j(o) = (:/n)q = g/n(l + d/7T- g/7T)-1 (a= 1) (37)

Finally, to take full advantage of the termination kesu~ts we apply (15) .

0
to the case $ = Tr(2and 6 = 0, For this case

7



j = U(T) - l/lTU(’r- a)arccos(a/T) - l/n U(T - (2 - a))arccos((2 - a)/T) (38)

Equation (38) will be particularly useful for our stibsequencenergy analysis.
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●
III. Energy Theorem

Due to the symmetry of the boundaries of the simulator and excitation we

know that the electric field has no z component, while the magnetic field has

only a z component (see figure 1). We now write Maxwell’s equations as

~H
VXE = -~o:z &—

s
(39)

(40)

where V operates only on the coordinates transverse to z. The ts that appears

in (39) and (40) is measured from the time that the lowest element in the source

array is fired and to be consistent ~ the subscript “s” is used. Taking the

scalar product of both sides of (39) with ~zHz and of (40) with ~, then subtract-

ing and using a standard identity, we obtain

(41)

We now integrate (41) over region 1 (see figure 1) and use the divergeme theorem

to obtain

The first integral on the right hand side of (42) is over the dashed contour

bounding region 1 and the second is over region 1. The integral on the left

hand side can be written as

-1
d

i

d
dpn.[&;zHz] = - dp sin &EyHz
o 0

(43)

The Hz that appears in (43) is the one calculated in the previous section and

Ey is the source field given in (5). Let us now consider that Ey is given by

the following expression rather than (5). It is

Ey(tS) = -Eo[U(t - (po/C)COS ~) - U(t - t - (~o/C)COS g]
s s m

(44)
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This expression corresponds ‘coeach element of the source array being sw,uentia~ly

turned off after a time tm has elapsed since it was sequentially turned on, The

reason it is now desirable to consider Ey(tS) to be given by (44) rather than

(5) is to avoid infinite energies. It is also physically meaningful to consider

the case where the elements of the source array are only turned on for a finite

length of time since the EMP that is simulated only lasts for a finite time.

Eventually we will allow tm to approach infinity and still obtain a meaningful

answer by considering a ratio fo energies which causes the infinities to cancel.

Using (16), (18) and (44) in the integral contained in the right hand side of

(43) we obtain

~

d E2 d
- sin E dpE H =$sin<

J
dp[U(~) - U(T - T)]j(a,~) (45)

o
yzo

o

where
Ct

T=+ (46)

o We note that j(a,~) for the excitation described in (44) is the same j(a,~)

for the excitation described in (5) for T < T. Using (21) to change the p

variable of integration to a, the integral in (45) becomes

I
d

/

1
dp[u(~) - U(T - T)]j(a,~) = d da[U(~) - U(T - T)]j(a,~) (47)
o 0

We can now write (42) as

E2 1 ~
$h J 1da[U(-r)- U(T - T)]j(a,~) = dQ;*[~X;zHz]
o 0

H;o,~\Hz12 so ~lEj2
-f-

)AF 3tS ‘T~dA

(48)

where we have used the relation h = d sin Z. Equation (48) is a relationship

involving power. We now integrate both sides of this equation with respect

to ts from O to tm to obtain our energy relationship. It is
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●
where E2 ‘In 1

E(&,6,T) =
~~

$ h dtS da[U(~) - U(T - T)]j(a,~)
o 0 0

(50)

The first term on the right hand side of (49) corresponds to the energy wasted

through radiation and the second term corresponds to the

in region 1. The source for both forms of wasted energy

(18) and (21) we obtain a form for a change of variables

evaluation of (50). That is

t
h“’ (1-a)

=;T+—
s c

Cos <

enables E(&’,cS,T)to be written as

E: h2
E(~,6,T) =~-#~,6,T)

o

where

o

lT

)JI(&,d,T) = da d~j(a,~)
o 0

wasted energy stored

is E(&,6,T). Combining

chat will simplify the

(51)

(52)

(53)

with T given by (46) and the previous section was devoted to defining j(a,~),

For general $, d, and T, I(&,6,T) must be evaluated numerically. This is

complicated by the fact that the determination of j, in general, requires a

single numerical integration so that the evaluation of I requires a triple

numerical integration. In order to test the numerical integration we will.

evaluate I analytically for special cases. Finally we will obtain the long

time asymptotic behavior of I for arbitrary < and 6. The remaining analysis

to be presented in this note will be devoted to analytically treating I.
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● Iv. Analytic Evaluation of Energy for E = v/2 and d = T/2

In order to obtain the analytic representation for this case, we set

< ~== 7r/2in (17) and the corresponding defining equations. The resulting

expression is

j = u(r) - I/n U(T - a)arccos(a/~) - I/n U(T - (1 - a))arccos((l - a)/T)((54)

Substituting (54) into (53), the

where rl @

resulting expression to be evaluated is.

1=11+12 (55)

rl (T

=+
11 J)da JJ

d~ -1-I/m da d~(n/2 - arccos(a.~))
o 0 0 a

and 11=

~J
lT

12=% ‘a JJd~ + l/n da d~(n/2 - arccos((l - U)/T))

@
o 0 0 l-a

We now make the change of variables in (57), a’ = ,1- a> ‘0 ‘how ‘hat

11 = 12

so that

I = 211

(56)

(57)

(58)

(59)

We now rewrite II by evaluating the first integral on the right hand side

of (56) and using the iden’city

arcsin x = T/2 - arccos x

in the second to obtain

‘1 = 1/4 + l/T 13

0 where

(60)

(61)

12
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1

13 = ‘a
o

An evaluation of the T integration

J
T
d~ arcsin(a/~) (62)
a

can be found in the book by Gradshteyn and

Ryzhik [3]. Performing the T integration, and subsequent a ifitegratiofiwhere

is is trivial, we can write I as
3

j

1

j

1.

j

1,
= -n/~ + T

z%
13

da arcsin(a/T) - dcm in a + dacilh[T + (T2 - ct) ] (63)
o 0 o’

The first two integrals in the right hand side of (63) can be found in many

different tables of integrals or can be evaluated by integrating by parts.

The resulting

where

and

The remaining

expressicmlsare

integral

change of variables

J
1

da arcsia a/T = arcsin(l/T) - T(1 - A)
o

~

1
daa in a = -1/4

o

is put iato a more recognizable form by making the

Y = (T2 - i2)%

(64a)

(64b)

(65)

(66)

The resulting integral

I

1
daa
o

The right hand side of

tables of integrals or

rT

can then be expressed as

T
ln[T + (T2 - &2)%l =

~
dyy ln(T + y) (67)

AT

(67) is now in a form where it is readily found inrnany

it can be evaluated by integrating by parts.

] dyy ln(T + y) = -1/4 + l/2~T2(l - A) -t-ln[T(l + A)]] (68)

13



●
Combining our results we have

I = 2T arcsin(l/T) - T2(l - A) -I-ln[T(l +A)] (69)

This expression is useful as a check on the numerical integration of I for

general g and 6, In particular the evaluation of I for & = m/2 and 6 = O was

performed in several ways as part of our debugg%ng procedure. This case will

be treated in the next section.
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●
v. Analytic Evaluation of Energy for ~ = Ti/2and 6 = O

The evaluation of I(m/2,0,T) was obtained using two different approaches.

It was obtained by using the program for general ~, 6, and T and then choosing

d = 10-31T. This served as a check on the program because we can obtain an

analytic evaluation of this quantity. The explicit representation of I is

found by substituting (38) into (53) to obtain

lT..

JII(IT/2,0,T)= 10 = da d~[U(T) - l/TrU(T - a)arccos a/T
o 0

-1/?r U(’C- (2 - a))arccos((2 - a)/T)l

Using the change of variables

and

we can rewrite (70) as

t%

J10 = 4 da.
o

t
o
= T/2

a.
= a/2

1
T/2

d~o[U(ro) - l/TrU(’r - ao)arccos So/To
o

0

-1/IT U(TO - (1 - uo))arccos((l - ao)/~o)l

Because the integral in

J
1

10 = 2 duo
o

(70)

(71)

(72)

(73)

(73) is symmetric about a. = %, it can be written as

?T/2

J d~o[U(~o) - l/lTU(TO - ao)arccos ao/~o
o

-1/Tr U(T - (1 -
0

Comparing (74) with (55) and its

ao))arccos((l - ao)/To)l (74)

corresponding defining equations, we see that

15



I(Tr/2,0,T) = 21(IT/2,7r/2,T/2) (75)

Using the explicit representation of I(7r/2,7T/2,T)given ~m (69), we have

I(Tr/2,0,T)= 2T arcsin(2/T) - (T2/2)(1 - Ao) + 2 ln[(T/2)(1 -i-A)]
o (76)

where

A. = (1 - 4/T2)% (77)

o

16



In this

given by (53)

now express I

VI, Analytic Long Time Energy Relationship

section we will obtain the long time asymptotic behavior of I

with j given by (17) which is valid for arb~trary & and d. We

as

where

(- 1/77U(T - ~2)arccos[;-1(1 - a)sin & - ‘cCos +;]

(78)

(79)

H1(2) = TdT 1
da(-q/n2)sin qm{[U(~ - T2) - U(T - T3)]IA-I-U(T - ;3)IB} (80)

o 0

The quanlcities~1, -i2,T3, q, lA, and I have been defined in section 11,

Because I”)
B

is a monotonically increasing function of T, the lower limit is

unimportant in obtaining its asymptotic behavior~ We Pow evaluate this quantity

as

#) - +
L

(81)

where

- l/17 arccos[~ 1‘1((1 -~)sin~ -’r CCJS ~)1 (82)

and TL is chosen so that TL k T and T > T for any a, i.e.,
1 L2

TL = (1 + cos ~)/sin~,

Our final expression will be independent of TL. Using (60), we can rewtrte

O (82)as :

17



‘(’)=1“[;’&F’’’n’’-”~‘in‘ +‘ co’‘)’L

+arcsin[~-l((l -a)sin& - T

For large T, the integrand in (83) behaves like

arcsin[-r-l(asing +cos.&)] +arcsin[~-l((l

Cos $)]
1

- a)sin C - Cos g)]

(83)

l-u 1
- ardsin(cos e) 1-arcsin(-cos g) + :+7=; (84)

Substituting (84) into (83), adding the requirement T >> TL, and performing

the integrations, we obtain after combining the resulting integral with (81)

#
- l/T in T (T +CO)

@
We now consider the long time behavior of 12. First we note

where

We choose TL so that

We now refer back to

lB“
Examining these

1(2)
T

~J
1

L
= (-q/m2)sin qn d~ daIB

‘L 0

it is larger than T3 for any u, i.e., TL = 2/sin 5.

(24) through (32) to determine the large -cbehavior

equations, we see that

I
1

IB-- T-% A(y)dy
o

with A(y) given in (27). Making the change of va~ia~les

Y = e-p

(85)

(86)

(87)

of

(88)

(89)

●
we have

18



● I
1

J
co

A(y)dy = dp(cosh qp - COS qr)
-1

0 0

(90)

The right hand side of (90) was evaluated in reference 1, and is given by

/

w

dp(cosh qp - COS q?r)
-1 =

:(1- q)/sia qr (91)
o

Combining (88), (90), (91),,substituting the result into (87), and performing

the remaining integrations we obtain for T >> T
L

1:2) --(1 - q)/n lnT (T + co) (92)

Our resulting asymptotic expression for I is obtained by combining (78), (85),

(86) and (92). The final expression is

I(C,8,T) - q/n in T (T + m) (93)

● where q is given in (13), Our final resultsare obtained by forming physically

meaningful ratios. Using the relationship between the wasted energy E(E,d,T)

and I(C,8,T) given in (52) as well as the explicit representation of q given

in (13), we obtain

E(&,rS,OJ)/E(~,O,CO)= (1 + d/(m =.&))-l (94)

This expression shows how the wasted energy is decreased by increasing the slope

of the ground adjacent to the source array (see figure 1), It is also meaningful

to form the following ratio of energies again using (93),

E(g,d,@)/E(lT/2,d,@)=
l-(%)(1+6/Tr)-1

l-(&/m)(l+d/n)-l

(52), and (13)

(95)

This expression shows how the wasted energy is decreased by decreasing the

slope angle of the source array.

19
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●
VII. Results

Because we related this source analysis to our previous termination

analysis [1], it was convenient to calculate our induced surface current density

for the same values of the geometrical parameters (c,d,a) that were used for

the termination problem. Out data is presented in the following manner. For

each orientation described by a particular & and 6, we present plots of the

induced current after it has been normalized versus the appropriately normalized

time, ~, at the center of the source array (a = .5). The

are given in (16) and (18). These plots are presented in

In figure 6 we also show how the current varies over the

6=0. We ,augmentthis sample of waveforms by presenting

6
“a

o

.1

,5

.9

1.0

6
a

o

,1

,5

.9

1.0

Table 1,>

-c1s for < = Tr/2
w

o Tr/12 Tr/6 Tr/4

6.47 5.58 4.91 4.39

6.46 5.56 4,90 4s36

6.41 5.51 4.84 4*31

6.39 5*49 4.81 4,28

6.39 5*49 4.81 4.28

Table 2,

T~’s for g = Tr/3

o T/12 m/6 Tr/4

4.68 4.15 3.70 3.31

4.72 4.18 3,73 3.34

4.87 4.34 3.90 3.53

5.06 4.54 4.12 3.77

5.12 4.60 4,18 3.84

n/3

3,94

3,92

3.87

3.86

3.86

Tr/3

2.97

3001

3.21

3.48

3,56

normalizing relations

figures 2 through 5 .

array fQr E = Tr/4and

the following tables.

-r

2,09

2.07

2.06

2.14

2.20

T

‘1.94

1.94

1.95

2.23

2.38
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6
a

o

.1

.5

●9

l.O

6
a

o

●1

.5

,9

1.0

0

4.05

4.11

4.40

4.76

4,86

0

2.30

2.52

3.84

5.82

6.34

Table 3.

-c~ls for c = IT/4

T/12 7r/6 Tr/4

3.58 3.16 2.79

3.64 3.23 2.87

3.96 3.57 3,24

4.34 4.00 3071

4,45 4,12 3.85

Table 4.

-c~’s for & = 7r/10

Tr/12 rr/6 Tr/4

2.19 2.12 2.06

2.41 2.33 2.27

3.69 3.58 3.51

5.72 5.52 3,10

6.30 * $$

T/3

2.54

2.60

2.95

3.46

3,62

Tr/3

2*O2

2,22

3.46

2.28

*

‘m

1.96

1.99

2.18

2.46

2.68

‘IT

1.88

2.06

3.30

1.18

*

*
The value of j at T = O is given in (37) as j(0) = .1/(.9 -t-d/n) and is below

.1 for these special cases.

Table 5.

‘I
‘s

* o 1.00

.,,1 “. Lo,..

*5 .5.0.. .-

.9 ● 9.0

f’1.0 1.00

IT/3 T/4

.58 :41

‘..17 .24.
:29 ~:21-.
.58 .Q4

1,73 2.41

Tf/lo

.16

.14

.08..

.02.,
6:31

—

*
The initial value for c%= O is given in (35) as j(0) = 1 - g/m. -1
iThe initial value for & = 1 is given in c37~ as j@~ = ~i~ ~1 + 6/n - “m) “

. . ..,, , ,, -.
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0
Tables 1 through 4 contain the

current density. This is the length

pulse width, Tw, of the induced sueface

of time, measured in units of h/c, for

the normalized current to decrease to .1. Table 5 contains the normalized time,

‘I‘
that this current stays at its peak value. Again, ‘cIis time measured in

units of h/c. For the step function excitation we are considering, it is known

that there is zero rise time to this peak value, and the numerical value of

this peak (plateau) is either a unity or

simple.algebraic formulaegiven below the

Although the current waveforms are

energy corresponding to this current can

can be readily determined from the ‘

table.

of interest? our results for the wasted

be more readily used to assess the value

of sloping the ground adjacent to the source array. In (52) we showed that the

wasted energy for a particular (G,d) when the source was turned on for time, T,

is given by

9 Our energy results are presented in’the following tables.

Table 6,

Values o,fI(g,d) for T = 5

6 0 7r/12 %./6 lT/4 lT/3 ‘m
E

lT/2 1.98 1.75 1.58 1.45 1.35 1.01

l’r/3 1.50 1.38 1,29 1.22 1,16 *94

Tr/4 1.30 1.22 1.15 1.10 1.06 .90

T/lo .84 .82 .80 .78 ● 77 .72

22
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Table 7“.

Values of I(g,d) for T = 10

T/2 2.42 2.13 1.91 1.75 1.62 1.15

T/3 1,84 1,68 1.56 1.46 1.38 1*O7

rI/4 ‘1.60 1.49 1.40 1.32 1.26 1.02

7r/lo 1.11 i.06 1.02 ● 99 ,,96 .85

The values of T used in these tables correspond to -theelements in the array

being turned on for a duration of 5h/c and 10h/c seconds, To augment these

tables we repeat (94) and (95)
. ._ .—

,.,,.. . .,
‘l-@)(l+d/T)-l

E(g,&,~)/E(n/#,6,@) =
l-&/lT)(l+d/#

These relations together with tables 6 and 7 quantitatively show the benefit

of decreasing E as well as increasing 6.

.,
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