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.Abstract

This note presents a brief study of a wire grid designed to reduce
electron backs catter within an EMP satellite simulator. The grid, which
is maintained at a constant potential, is modeled by an infinite number of
thin cylinders which are located parallel to a perfectly conducting plane at
zero potential. The distribution of potential around and away from the grid
is shown for one particular grid geometry, as are t!lc trajectories for
electrons being emitted into the grid .‘egion from the groun~ plane. Curves
showing the fraction of electrons escaping to infinity as a function of the
angle of departure and the initial kinetic energy are presented for various
grid geometries and an indication as how to use this data in subsequent
tivestigation is outlined.
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In a recent note:’)l%um

EMP Satellite Simulator. This

the effects of system generated

describes the general

class of simulators is

configuration of a.n

designed to stud~’

EMP which is produced by a flux of gamma

and X-rays impinging on a satellite in spaceas in Fig. 1. The proposed sim-

ulator shown in Fig. 2 consists of a large vacuum tank which surrounds

the satellite under test. The photon beam is produced externally to the

cavity, passes into the vacuum chamber and produces Compton electrons

from the satellite surface. These electrons travel about in the space near

the satellite, creating large currents which produce the radiated electro-

magnetic fields.

As pointed

to the cavity wall,

out by Baum9 some of the Compton electrons may escape

be absorbed and cause secondary electrons to be emitted

back to the satellite under test. In addition, part of the incident photon flux

may cause Compton electrons to be emitted from the cavity walls and travel

back to the satellite. As these effects are not present in the case of the

actual satellite in free space, it is desirable to reduce their contributions

in the simulated test.

One possible method of reducing such “spurious electrons” would be

to place a wire mesh or grid slightly away from the cavity wall. By biasing

the grid to a large negative potential with respect to the wall, the electrons

emitted from the wall feel a decelerating force, which prevents the electrons

from continuing on to the satellite, as indicated in Figure 3.

This note investigates the properties of such a wire grid, Of special

interest in this problem will be the potential distributions around the grids,

and a study of the behavior of the electrons which are emitted from the

wall with a fixed kinetic energy and in a specified direction, as a function

of grid spacing, location and applied potential.

One possible model of the cavity wall and repelling grid is to

consider the structure to be locally flat and replace it by an infinite
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Figure 1. System Generated EMP on a Space Vehicle
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conducting piane at potential

b above the plane, which has

the wire grids is given by 2a

@= O, with a grid of cylindrical wires a distance

a potential @= -V The distance separating
o’

and the value of the wire radius is r
n“

For simplicity, the ‘wire grid is assumed to be uniform in one cli:cection,

thereby reducing the problem to the two dimensional geometry as shown in

Figure 4. Moreover, it will be assumed that the wire radius is very small
.

compared with the other distances involved in the problem, such as wire

spacing. This enables one to use the approximation that the wire can be

represented by a line charge of vanishing radius, so as to simplify the

formulation which is presented in the next section.

In Section III, the trajectories of electrons leaving the plate with given

initial conditions are determined. These results help in quantifying the

shielding properties of this grid structure. Specifically, the fractio:n of

electrons es taping to infinity for a given initial kinetic energy and angle

of emission from the plate is presented for various b/a ratios.
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II. EVAIJJATION OF THE POTENTIAL

Using the ideaIized structure as shown, in Figure 4, it is noted that

there is a periodicity in the $ direction so that it is necessary to consider

the solution of the problem only in one of the unit ceHs shown in Figure 5.

Replacing the cylinder of radius r ~ by a line charge Jo (whose value will

be determined later), the task is to find the potential @ in the region x >0

and-a <yea. Dividing this region into two sub -regions, I and 11, it is

seen that the boundary conditions that @ must obey are as follows:

Region I

ap,y) = o

Iy=+a

Region H

x:: ‘ll(X’ ‘)= cons’”

WH (X, y) =0

aY

y=~a

Interface

(1)

(2)

. ,’

0

●
(3)

(5)

(6)
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Figure 5. Unit Cell and Boundary Conditions for Q.
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Since regions I and 11 are free of charge, the potentials t[]ere arc

solutions to Laplace 1s equation

V% (X, y) = o (7)

Using the standard technique of separation of variables, the representations

for the potential in the two regions take the following forms:

r.
@u(x, y) = ~

o

m

1 1
-~nb

~+
2

— cos ( Yny) e
7’

sinh(~nx) x<b (8)
n=l n

bal
I

- Ynx
—+
2

— cos ( 7ny) e
Yn

sinh ( Ynb)1x>b (9)

n= 1

where ? = n7f/a.
n {0 b

Note that as x ~ m , Eq. (9) gives @7r(x, y) -~ Y for the
-u .4

pot ential at infinity. AIso, as y+O and x-.” b, the potential goes to infinity

as it should for an infinite sirnally thin line charge. For distances very

close .to the line charge, the summations in (8) and (9) are difficult to sum.

Letting (b-x)= c in Eq. (8) and (x-b)=t in Eq. (9), and examining the asympotic

behavior of the terms in the respective sums, it may be noted that by adding

and subtracting the weH-known series

al

z
e -jnz

c —= -cln(l+e
-jzl

n
n= 1

the resulting series converges much more rapidly.

Another representation for the potential in the

from ccmformal mapping techniques and is employed

(2)paraHel plate EMP simulator problem.
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In this case, c=a/4~

unit cell is obtainable

in a note treating a
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Using the conformal transformation w= e where w = u+iv

and t = (r+ is), the periodic strip s>O, -a< t <a in Figure 6 is transformed

into the unit circle with the boundary condition @= 0 “on the perimeter. A.

line :h~~rge at (r, S) = (O, b) is transformed into a similar charge at (u ,V )=

( )O,e r . With this charge location, the potential within the cylinder rrlay

be obtained using the method of images. Expressing the answer in terms

the original x, y co-ordinate system of Figure 2, the result is given by

of

[

cosh ( x (xi-b) /a) - cos (7ry/a)
@(x$y) = & h-l —

o 1cosh ( m (x-b) /a) - cos (Ty/a) .

Note that this expression is clearly more desirable than those of Eqs. (9)

and (10), due to the relative ease of numerical evaluation. As x -+ = , the

asymptotic form of this equation is the same as that obtained from the

previous equations.

The relation in Eq. (11) may be used to obtain plots of contours” (of

constant potential for various values of b and a. In evaluating such plots,

it is convenient to normalize the potential to that at infinity, given by

‘0 (;).@~= ~ This removes all dependence on the magnitude of the line

charge ;ensity. Figures 7 through 10 show the normalized constant potential

contours for various a/b ratios. Note that away from the wire, the contclurs

are far from being circular in shape, but as one gets closer to the charge,

the contours become more like the circular ones obtained from an isolated

char ge.

One quantity of interest is the variation of the potenti;l as the observation

point approaches the line charge. Letting y = O and the observation point

be defined by x = b - ro, plots of the normalized potential @/@O as a function

of ro/b with a/b as a parameter are given in Figure 11. From these

curves, the voltage source needed to place between the ground plane and

the wires with radius ro, such that @ at m is unity, can be determined.
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Figure 6 Conformal mapping of unit cell into a circle.
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It should be noted that had similar calculations been made f~}r t}Ic:

observation point moving in on the x ❑ b line, slightly different values 01”

the potential for a given r. would be obtained, due to the fact that thu

potential contours are not exactly circular as was previf~usl,y mcnt.itjn[:cl.

As the point of observation becomes very close to (x$y) = (b, O), this ciifferencc

becomes neg~igible and this effect is disregarded in the present analysis.
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III. CALCULATIONOI? ELECTRON TRAJECTORIES

From simply looking at the plots of the potential contours around the

wire grid, it is difficult to tell exactly how weH the grid will impede the

motion of electrons into the working volume of the simulator. One possible

way to quantify the shielding properties of the grid is to compute the fra c-

tion of electrons which escape to infinity for a given set of assumed initial

conditions,

.To perform

that the electrons

these calculations, it is necessary to know the trajectories

take after they are emitted from the plate. For the pre -

sent analysis, several simplifying assumptions will be made; namely, that

the electrons are non-relativistic and that space charge effects may be

neglected. It wili be assumed that the ‘electrons are emitted from the plate

with an initial kinetic energy given by T, and in a direction described by

the angles 6 and @ in the usual polar co-ordinate system as shown in

Figure 12. For non-relativistic electrons of mass m, the magnitude of

the initial electron velocity is given by

v=
o

J2T/m

and the cartesian components of

v=
x

o

‘Y. =

v=
z

o

(12)

the velocity are

v sine sin@ (13)
o

v sintl cosf#J (14)
o

v sin 9
0 (15)

To determine the electron trajectory, the equation of motion

~ = I%X must be integrated, subject to the proper initial conditions. Noting

that ~ = q.l? = -qV@, and choosing an increment in time At so small that the
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o force is approximately constant, the equation of motion can be integrated

to yield

(16)

with q representing the electronic charge.

Thus, given an initial position %0, and velocity 7., Eq. ( 16) may be

used to determine a new position given by xl = 5? + AZ. A new vclocit,y is

subsequently determined by VI = 70 . ~ V@(At) an: the proccduru can he
m

repeated until the electron eithel* escapes or returns back to the plate.

Using the two-dimensional potential distribution (in the x-y plane)

for this problem, it is clear that the velocity Vz is unchanged as the
o

electron moves about in the region away from the ground plane.

For the purposes of illustrating the electron trajectories, consider

the case where

place in the x,y

trajectories for

For these plots,

0= Tj2. Since Vzo = O, the motion of the electrons takes

plane only, Figures 13 through 24 show some typical

various normalized initial kinetic energies T where
n’

a/b = 1.0 and the angles @ are 0° , 30° and 60° . Note

that only the trajectories for elect rons leaving the plate within the limits

-a < y < a have been shown, due to the symmetry of the problem. The

black circles at x/b= 1 represent the line charges which repell the electrons.

By keeping track of the fraction of the electrons emitted from the

unit cell that escape to infinity, it is possible to describe how well the

grid behaves as a shield. In Figures 25 through 29, this fraction f is

plotted as a function of Tn for various values of @and a/b. In the present

problem, this fraction is independent of the angle 6.

If from subsequent calculations, the spectral density of emitted

electrons ne(T, 0 ,0) is determined, the total number of electrons, N,



escaping into the test volume may be determined by performing the integral

~=pj-;y=., lle(T,(3,@)fmd (18)

The spectral density of the electrons ne, depends upon the energy of the

incident gamma rays, the energy of the incident Cornpton electrons, and

the properties of the cavity walls. This quantity will not be computed in

this note.

In more general problems where the potential distribution is not

simply a two dimensional function, but depends upon all of the cartesian

co-ordinates, the fraction of escaping electrons wiH depend on 6 as well

as on 1#1and T. Nevertheless, Eq. (18) may be employed to determine the

total number of escaping electrons for all angles and energies.

‘@

,

0
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IV. CONCLUSlON

Using a conformal mapping technique, the potential distribution in

space due to an infinite number of infinitely long charged cylinders located

parallel to a ground plane was computed. From knowledge of the spatial

distribution of potential, the trajectories of electrons being emitted from

the ground plane have been calcu~ated under the assumptions that the electrons

are non-relativistic and that space charge effects are negligible.

By looking at the plots of the potential, very little real information

is gained regarding the effectiveness of the grid as a shield for the back-

scattered electrons. A more useful quantity is the fraction of electrons

which manage to escape from the grid structure to infinity for a given

initiaI kinetic energy and angle of departure from the wall.

From the curves of the fraction of electrons escaping, it is to be

noted that the larger a/b ratios correspond to structures which apparently

hinder the escape of those electrons leaving the plate with small angles $.

For small a/b, the reverse is true. The electrons leaving with large

angles tend to be retarded more efficiently. In order to more accurately

evaluate a practical design for a wire grid repeller for use in satellite

simulators, it will be necessary to obtain the spectral density of the electrons

emitted from the plate and perform the integrations indicated in Eq. 18.
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