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inverse fourier transform.

1, Introduction

A finite difference technicjue for analyzing the early time propa-

gation of an EM pulse guided over the ground in a manner approximating

an EMP simulator has been developed by Pagel. This method consisted

of a time domain finite difference using a dynamic computational mesh.

A parametric set of calculations was also done.

A method of analysis for this problem has been described by

2, 3
Baum . This method, which is based on a waveguide approximation,

has subsequently been extended to allow the frequency domain calculation

of fields above and below the ground. These results were used to obtain

time domain waveforms by means of a numerical calculation of the

The results of the finite difference calculation are presented

here along with comparable calculations using the waveguide approximation.

These results are given in the form of time domain waveforms which

have been carried far enough in time to illustrate the convergence of the

waveguide approximation to the finite difference calculations at lower

frequencies.
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H. Finite Difference Calculation

The geometry of the finite difference calculation is given in

figure l-A. The configuration is assumed to be infinitely wide (in the

z direction) and the fields are taken to vary in the two spatial dimensions

x and y. This geometry approximates an actual ground transmission

line simulator for points near the centerline where fringing effects are

negligible.

It is assumed that a plane electromagnetic wave is propagating

in the positive x direction. This wave has only a positive y component

of the E-field (Eyo) and a corresponding z component of the B-field (B ).
20

All the computed fields are then normalized ~0 the amplitude of this

initial plane wave, i. e. :
Bz E Ex

Yc
B=~, E- c

Bz
and E =—

Y Ey x Ex
o 0 c1

(1)

The pulse propagates as a plane wave until the air-ground inter-

face is reached. Diffraction from the ground then establishes an x

component of the electric field. The effect of this refraction continues

to alter the assumed incident plane waveform as the pulse propagates

across the simulator. The finite difference calculation determines the

x and y components of the E-field and the z component of the B-field as

a function of time throughout the configuration.

In the wave equation

Q24 - pc$ -#ucnjl =0 (2A)

a fundamental length h (the height of the conducting boundary above the

ground as shown in Figure 1) and a corresponding fundamental time

T ‘ h/c are introduced obtaining new non-dimensional coordinates
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Figure 1. Surface Transmission Line Simulator.

-5-



. .

xl=; yl=: T’=+

equation is

L V24
h2

1 @+laJ=(l

T’

Multiplying through by h’ we obtain the final

v2~+c1j+c2&o

where

and

Ex =$, E=-%
Y

dimensionless

t

tiz=vx~= -v2(j,B(t)=-J(V2 @ dt

(213)

form

(’c)

(4)

(5)

(6)

o

It is assumed that the permittivity, permeability and conductivity of

the air above the ground is equal to that of free space. The constants

occurring in the propagation equation then become

c1 ‘ 2- c Poco , C2 ‘0
air air

and

c1 =-c’p E E C9
000’

ground ‘“ground

The propagation calculation is thus normalized by

of the ground (cr = e
ground’ ‘o) and a2 h.

= c#oa2h (7)

the relative permittivit y
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‘l?hc calculated waveforms are plotted against local retarded times

in tl]e air and in the ground (7’ and 7“ respectively) in terms of the funda-

mental time T. These retarded times are based on the optical path from

the origin to the point (x, y) and are given (for x >0 and Cl > C2) by

1
‘T

T’ ‘t J
l=_. z

11 _ 1
T

[

‘+ -&-(l+c)-mt-; ~ r-l r 1 (8)

where t is the real time.

The incident pulse waveform was taken to be a unit step function

which was incorporated in the finite difference calculation as a linear

ramp with a fast risetime. This incident pulse rises to a unit amplitude

and then remains constant. For numerical accuracy it was found that the

risetime of this incident rise had to correspond to four or five spatial

grids. A risetime much short-er than this would lead to excessive numeri-

cal oscillations in the computed valuss of the field components. The time

step in the calculation was taken to correspond to one-third of a spatial

grid in order to assure the stability of the calculation.

The numerical oscillations in the computed field components were

most prominent below and on the air -ground interface where a finite

conductivity exists. These effects are illustrated by figure 2 and 3.

Figure 2 shows a typical computed B-field waveform on the air-ground

interface where the numerical oscillations are most pronounced. This

figures shows the diminution in the amplitude and period of the numerical

oscillations when the spatial and time grid sizes were reduced for a given

risetime.

Computational experiments with the use of a finer-mesh in the

calculation indicated that the results tended to converge to a value midway

between the extremes of the oscillations encountered with a coarser mesh.
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This effect is illustrated in figure 2. In view of this convergence, the

numerical results were fitted with a smooth curve through the center

of the oscillations. To minimize the inaccuracies in this procedure

without using excessive computer time the calculations were carried

out to time r! = 1.0 using a spatial grid size Ax! = Ay! = As = .01. This

time range encompasses the risetime, that part which is most rapidly

changing, of the waveform. The calculations were completed to latei’

times (~’ > 1. O) using As = .01667.

Figure 3 shows a typical B-field waveform computed above the

air-ground interface and illustrates less pronounced numerical oscilla-

tions relative to calculations on and below this interface. Therefore, the

inaccuracies involved in fitting a smooth curve through these points is

less than that involved in smoothing the computed waveforms on and

below the interface. As can be judged from these typical examples,

the smoothed results presented in this note represent the converged

values of the waveform to within a few percent, the greatest error occurring o

where the rate of change is greatest.

The inflection in the waveforms at point A in figure 4-A arises from

the diffracted wave formed at the ground ~conductor interface and then

reflecting off the top plane to the observation point. The second inf~ection

at B“ corresponds to the first multiple reflection from the top conductor

and then the ground surface arriving at the observation point. These

reflection paths are illustrated in figure 4-B. These reflection effects are

most prominent in the results given for E since this component arises
Y

directly from the diffraction that alters the incident plane wave pulse.

-1o-



B

. /;

.6

.4

.2

0

A.

Numerical Calculation

e Wave Guide Analysis

1 I I I
o 10 20 30 40

Nanoseconds

Waveform Inflections Resulting from Reflection.

Conducting Boundary —

/
/

/

//////// Observation~o~n~

B. Reflection Paths to Observation Point.

Figure 4. Early Time Reflection Characteristics.

-11-



● ✎

111. Waveguide Model

The waveguide model used for calculations presented in this
2, 3

note is an extension of the method given by Baum to allow calculations

of some response characteristics above and below the air ground inter-

face. The waveguide solutions are computed in the frequency domain for

an incident pulse having a fast risetime comparable with that used in the

finite difference calculation. These results are then used to generate the

time domain waveforms by means of a numerical calculation of the

inverse fourier transform.

This method allows the relatively rapid computation of the fie~d

waveforms in an approximation that comes into more exact agreement

with the finite difference results at lower frequencies (later times).

The coordinate system of the geometry of the

is illustrated in figure 1-B. Note that the coordinate

11 differs somewhat from the system in this section.

‘transmission line

system in Section

Thai is, the y

and z directions in figure I-B correspond to the z and y directions

respectively in figure l-A. The length of the transmission was set to

a value of x = d such that no reflections from the termination would occur

within the time frame of interest in the comparisons presented here.

The electrical parameters permittivity, permeability and conductivity

(E, ~ and (7respectively) above the air.ground interface are assumed

to be the same as those of free space. Below the interface the ground is

assumed to have perrnittivity ~2, permeabilit y #o and conductivity a2.

The relative permittivity is defined as 6 = 62/Co.
r
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The equations for the f’ie

(O < z < h) from reference 2 are

ds above the air-ground interface

7X -Yxx
E“ ‘-; 2, ~ cosh(~n z’) e (9)

--yxx
ii = ~ cosh(~ z’)e

Y~ ‘1

and the fields below the air-ground interface are

?’Z --yx
-Y

E =-~ 22 ~ cosh(vz h) e
2X

‘2 72 1

~z Yz z - 7XX

1
E ‘—

2
Z1 ~ sinh(~ h) e

‘2 71 ‘1

Y z=fxx

G = = cosh (7 h) e
‘2

Y2 ‘1

(lo)

(11)

(12)

(13)

(14)

Equations for the coefficients 7
x’ 71’ 72’ ‘z and 7Z are ‘ot ‘epeated

here but appear in the references,
1 2

The solution of equations 9 and 11 is thoroughly discussed and

solved for a wide range of parameters in reference 3. All of the previous

studies were for the case along the air-ground interface (z = O+). However,

the other field components above and below the interface can be solved.

This can be accomplished, using the solution and computer code for

that solution for equations 9 and 11, by taking the ratio of an unknown

component to that of a known one. ‘The time domain waveform is then
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produced as in the references by an i,nvcrsc ]“ouricr tr’:lnsforrn. It

should be noted that the field components e and IL do not. vary jn
z Y

the range O -’ z < h and appear as such in the graphs. The ex field

component varies only with z 1 = z - h where z is the height above the

interface where the calculation is taken and h is the height of the simu-

lator (upper metallic boundary) above the interface,

For the purpose of the comparison a non zero risetime was

added to the incident wave. This finite risetime is assumed to be of

the form

where

-+-

l-e
d

.
u(t) (15)

l-=
‘d

time constant of the rise
(16)

For the comparisons in this note the time constant was chosen to give

a one nanosecond risetirne in the incident wave. A retarded time factor

as given in equation 8 was incorporated for the calculation of points

below the air-ground interface.
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IV. Results and Comparisons

A wide ran~c of parameters arc used in this cc~mparativc parameter

study. Specifically these arc

-1
0=10 , 10-2, 10-3, 10-4 mho/meter (17)

h = 3 meters

Y’ = . 7, . 5, . 2, +0,-0,-.3

X’ = 1, 2, 4, 6, 9, 12, 15 (except as noted below)

e = 10
r

Note that a (as given on the graphs) is equal to 02 for h equal to 3 meters,

however, other combinations of a z and h can be chosen to satisfy equation 7.

The graphs in Appendix A are subdivided first by conductivity, the heading of

each page, and secondly by Y f, the heading of each graph, On each graph

X’ is defined by the number to the right of the termination of the curve. In

some cases the value of X’ appears above the peak of the curve if the

curves converge as ~’ increases. Waveforms from both methods of cal-

culation appear on the graph with curves marked with “O” indicating wave-

forms computed by the waveguide model. Three comparisons are made

on each graph, namely Y’ = 1, 6 and 15. The other waveforms were not

compared to avoid undue- confusion.

In general for times 7! > 1 and ~“ > 1 agreement between the

waveforms of the two methods is good. In making the comparison it should

be noted that there are some general restrictions on the ranges of the

various parameters for the waveguide model. These restrictions are

[

10.4 erZo2h202

1

2 -1
<< 1

and

cJy
(j <<

h

(18)

(19)

where Z. is the wave impedance of free space,
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A summary of the parameters used for the graphs in this note are

tabulated in Table 1. Since the graphs are not numberccl sequential.ly hut ●
are grouped according to their major parameters. Each graph has st:ven

values of X’ (1, 2, 4, 6, 9, 12 and 15) except those marked with an

asterisk which have only 1, 6 and 15 due to the density of the curves.

●

-16-



u
Y’ 13

E
Y

E
x.

1

.7

.5
A 2 A4 A5’:

.2
10-1 A2 A4 A5’:

+0
,

-o
A3 A4 A5::

-. 3

.7
A6 A8 A9

.5

10
-2 .2

A6 A8 A9
+0

-o
A 7 A8 A9

-0 3

.7
Alo A12 A13

.5

.2
10-3

Alo A12, A13
+0

-o
All A12 A13 ~

-. 3

.7
A14 A16 A17

.5

.2
10-4 A14 A16 A17

+0

-o
A15 A16 A17

-. 3

J

Table 1. Summary of Location of Graphs by Major Parameters

(all units rationalized MKSA)

-17-



V. References

1. W. E. Page and D. H. Peterson, Sensor and Simulation Note
96, A Numerical Method for Computing the Propagation of an
Electromagnetic Pulse Guided Over a Material Interface,

January 1970.

2. C. E. Baum, Sensor and Simulation Note 46, The Single-
Conductor, Planar, Uniform Surface Transmission Line,

Driven from One End, July 1967.

3. C. E. Baum, Sensor and Simulation Note 92, A Parameter

Study of the Uniform Surface Transmission Line Driven by a
Step Function Voltage and Terminated in its High- Frequency

Characteristic Impedance, August 1969.

-18-



Appendix A

Graphs for the Comparative Parameter Study
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