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I

INTRODUCTION

@

The transient far field waveforms radiated by linear antennas, loaded

non-uniformly and continuously with resistance, are investigated in the present

technical note. The antennas considered are finite length thin cylinders excited

symmetrically by unit slice generators having unit step function type of time

dependence. Emphasis is given here to a specific type of resistive loading in

which the amount of loading increases continuously towards the antenna end

points where it becomes infinitely large.

Resistively loaded long and thin dipoles may be used as simulators (RES)

to radiate intense electromagnetic pulses of desirable shapes. Basic design

considerations and limitations of pulse radiating long dipoles have been discussed
1,2

by Baum . In any pulse radiating finite antenna, the reflection effects at the

antenna end points produce undesirable features and distortions in the radiated

waveforms. One way to reduce such distortions is to attenuate the outward

traveling current waves on the antenna to an insignificant amount by the time

they reach the end points. A possible method of obtaining this is to load the

antenna with resistance; reactive loading being frequency sensitive is ruled out

from the wave distortion point of view. It is also clear from physical considera-

tions that uniform resistive loading is incapable of eliminating the wave reflections

at the antenna end points although it may reduce the effects of such reflections to

a certain extent. It has been shown by Wu and King3 and by Baum4 that with a

special type of non-uniform resistive loading it is possible to obtain a reflection

free antenna, i. e., the antenna sustains only single outward traveling current

wave. As discussed by Baum4, such an antenna may be used to radiate intense

electromagnetic pulses of desirable shape. The motivation of the present

research has been to investigate and obtain quantitative results for the various

effects of the resistive loading on the transient radiation from such an antenna.
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II

BACKGROUND

Rigorous analytical solutions of similar tirnedependent boundary value

problems are extremely difficult, if not impossible, and are available only for

some highly restricted cases. WU5 and Morgan6 have derived theoretical

expressions for the transient current distribution on unloaded infinitely long linear

antennas excited by a step voltage across an infinitesimal center gap. Brun-

de117 treated analytically the more general probIem of determining the fields

anywhere in space for a step excited unloaded dipole. Transient radiated fields

for miloaded and uniformly loaded infinite linear antemas with similar excita-

8,9
tions have been discussed theoretically by Latham and Lee . The waveforms

radiated by a Gaussian pulse excited infinitely long dipole have been obtained
10

numerically by Harrison and King . The time dependent far fields radiated

by unloaded and uniformly loaded finite linear antennas with Gaussian pulse
. .

excitation have been obtained by Bennett and Auckenthaler 1‘-by applying direct

time domain numerical analysis. Transients in step voltage excited unloaded

cylindrical antennas have been investigated both theoretically and experimentally
12

by Schmitt . Schmitt’s theoretical time domain radiated waveforms are of

limited value because of tie fact that he arbitrarily truncated the frequency

domain results at kL ~ 5, where 2L is the length of the antennas and k==WL

is the free space propagation constant. By applying the moment methods in the

time domain Sayre
13

obtained the waveforms radiated by uiioaded and loaded

dipoles for step excitation. Taylor and his group
14,15

obtained by numerical

means some results of limited application for the case of discretely loaded

linear antennas excited by step voltage. Transient waveforms radiated by dis-

cretely Ioaded linear antennas with step excitation have also been studied numer-
16, 17

ical~y by Merewether .

=.

.

.

.

Transient waveforms radiated by a non-uniformly Ioaded finite linear



antenna with step voltage excitation have first been investigated analytically

by Baum4 who used the transmission line model for the antenna. The trans -

mission line model simplifies considerably the analytical investigation of the

antenna and led to the.. development of the special non-reflective loading which
4

significantly improves the radiated waveform . However, because of the basic

approximations involved the results obtained from the transmission line model

are rather approximate.

In the following sections we investigate numerically the waveforms radiated

by a step voltage excited linear antenna which is continuously and non-uniformly

loaded with resistance along its length. At first the radiation fields produced by

the harmonically excited antenna are obtained. The far field waveforms pro-

duced by the step voltage excited antenna are then obtained numerically with

the help of Fast Fourier Inversion technique. The effects of the loading and

other physical parameters of the antenna on the radiated waveforms are also

studied in detail.

Numerical investigations of the waveforms radiated by similar antennas

with short pulse excitations and analytical results for the Gaussian pulse excita-

tions were discussed in our two previous reports. In view of their limited

accessibility, and also for completeness, these two reports are included here

as Appendices A and B without any significant editing.
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m

BASIC RELATIONS

Let us assume that a linear antenna of length 2L be aligned along the

z-axis of a rectangular coordinate system with the origin located at the center

of the antenna and that it is excited by a unit slice generator located at the

origin. The far electric field produced by such an antenna is directed entirely

in the O-direction. In the time harmonic case the far electric field is given

by the following:
jut

F=?@(r, 6,w)e , (1)

where,

jwqosin 6 e
-j~r L

!

j~zlcos@
%@(r, 6, w) =

4TC
Y(z1, w) e dzl, (2)

r

[

No

no= ~ is the intrinsic impedance of free space,
o

1
c= ,= is the velocity of light in free space,

Vpo’ o

w is the radian frequency of excitation,

r, 6, j? wce the spherical polar coordinates of the far field point

with the origin located at the center of the antenna,

~(z’, w) is the current distribution on the antenna due to the har-

monically time dependent unit slice generator.

In Eq. (2), ?6 (r, O, w) is the time independent far electric field produced by the

antenna. For convenience we define the antenna transfer function in the following

manner:

.

.
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j: r
Y@(e, w) = r~e(r, 9, w) e

(3)

jwnosin 6

“r

j:z’cose
=

47rc
T(z’, u) e dz’ .

Notice that in the transfer function given by Eq. (3) the dependence of the field

amplitude on r as well as the phase shift suffered by the field in traveling from

the antenna to the far field point are both suppressed. As a result of this all the

field quantities in our subsequent discussion will be independent of

Let the slice generator have arbitrary time dependence such

signal voltage in time is represented V (t). It is now assumed that

ier transformable. This means that the following relations hold:

? (w) = -(V(t)e
-jut d t ,

r.

that the input

V (t) is Four-

(4)

(5)

After making use of the linearity of the system along with the superposition theorem

and the concepts of Fourier transform technique, it can be shown that the time de-

pendent far field produced by the antenna excited by a unit slice generator signal

V (t) is given by the following:

eo(6,t)= * -!(’$(6, u)?(w) ejut dw

1 J jwt d w
“%

‘&e(6, w)e .

-co

(6)



In Eq. ([i) the qunnt,ity SO (0, W)= ~’ (0, u)~ (w) may be looked upon as the spec-

hnd density of the Iar field w~veform. Notice that, by definition, e. (f3, t) and

36( 6, u) are related to each other by the following transform relationship:

86 (0, u) = T(e, W)v(u)

d-a)

In the present problem the transient

center of. the antenna is represented by

v(t)= f(t)

(7)

voltage at the &gap located at the

(8)

.

.

where,

f

1/~ J O<t<T

f(t) = (9)

[
o, otherwise

For sufficiently large T (usually T = few times T, where ~= ~= the transit time

on the antenna) the radiated waveforms may be identified with those radiated by

the same antenna when excited by a unit step function voltage in time, i. e.,

V (t) = U(t). For convenience of numerical computation, the rectangular puLse

type of excitation has been used here to obtain the step voltage response from the

antenna. With the input signal of the form given by Eqs. (8) and (9) we have,

sin wT/2 -jWT/2
Y (w)= e

wT/2
(10]

as the spectrum of the input voltage signal.

As can be seen from the above, the first step in the analysis is the deter-

mination of the current distribution Y(z!, w) on the antenna when it is excited by

a harmonically time dependent unit slfce generator. Let us assume that the an-

.
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tenna is loaded with distributed resistance such that its internal impedance may

be expressed as rs (z’) ohm~/meter for O< z’! _< L. Under this condition it

can be shown that the current distribution I (z f, w) on the antenna satisfies

the following modified Hall&n’s integral equation:

1

:j~ ~z-zT)2+a2Jq’
Y(z’, w) r 12 1/2

dz’ = B coskz
47r (z-z~)2+a

-~ sin klzl
o

where,

k=: is the propagation constant,

B is a constant to be determined from

>

the end condition

a is the radius of the antenna element.

17
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A NOTE ON THE LOAD~NG

The antenna is assumed to be resistively Ioaded such that its internal

impedance may be expressed as:

r
r~(z’) =

&’\/L
ohms/meter, -L~z1~L , (12)

where r = rs(0)

(12) pre;cts that

from the value r.

ohms/meter and is referred to as the loading parameter. Eq.

the internal resistance of- the antenna increases continuously

at the input end to infinity at the antenna end points. The

rationale behind this particular type of resistive loading is as follows. It is

known3 that for a linear antenna loaded according to Eq. (12) there exists a

2L
critical value of r o, depending on the thickness parameter S2= 21n ~ of the

antenna, for which the loaded antenna excited by a harmonic slice generator

sustains a single wave of current traveling in the direction of increasing z C ,

i. e., from the generator towards both ends of the antenna. In other words, for

this type of loading there is no reflected wave on the antenna traveling in the

opposite direction. For this reason the antenna loaded according to (12) and

with this critical vaIue of r. is sometimes referred to as the reflectiordess

antenna. 13aum4 arrived at the same conclusion from his transmission Iine

ana~ysis of the same antenna. For r. less than the above critical value the

antenna stops being reflectionless and sustains a standing wave type of current

distribution. From theoretical considerations Shen and Wu
18

have found that

for r. larger than the critical r. the antenna sustains a progressive wave of

current whose distribution may be expressed as a hypergeometric function. Our

previous numerical investigation of the problem (Appendix A) essentially con-

firmed the above observations. In the present study we investigate in detail

.

18



the effects of the variation of the loading parameter r. on the transient far

field waveforms radiated by the antenna.

19
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BRIEF OUTLINE OF. THE NUMERICAL METHOD USED

As mentioned in Section II we have used numerical techniques to obtain

the solution of the problem outlined in Section III. Detailed discussion of the

numerical methods is given in Appendix A. In this section we give only a brief

outline of the numerical techniques used to obtain the various quantities,

Standard numerical techniques
19,20

are used to solve Eq. (11) for

m’, w). For this purpose the integral equation (11) is reduced by moment

methods to the following set of N simultaneous algebraic equations:

N

x$
~(Z*, (d) @Zj, Z’) dz’

IF1 Az
n

=Bcos*kz. - L
2 no

sink z.
1 1

t
+L

ZJ
~(z’, w) rs(zt) sink (z.-z!) dzt , (13)

no J
n Azn

j=l,2, . . . . ..N.

where,

G (Z j, Zf)=

N/2

-2
s forj~~ ,

z

t
n=j

=
j

n

z
J forj>~ ,

=3+ 1
‘2

-–

( 14)
.

.

(15)
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and it is assumed that N

that the antenna of length

sections increasing from

is an even number and z’ ~ A z Eq. (13) implies
n“

2L is divided into N sections, the numbering of the

1 to N along the antenna length from -L to L.

It is now necessary to make an appropriate approximation to the current

distribution ~(z’ ) (for simplicity we use the notation T(z’ ) for ?’(z1, w)) in each

of the sections A zn. We make the following quadratic approximation to the un-

known current in each section:

~(z’)‘ An+ ~n(Z’ - Zn) + Cn(z’ ‘Zn)2 , for z’eAzn ,

(16)
= o, otherwise,

where An, Bn, Cn are the three unknown constants. These constants are

determined by requiring that the continuations of ?’(z’ ) expression given by

Eq. (16) into the centers of the adjacent sections give the appropriate current

values there. After evaluating the constants it can be shown (Appendix A)

that the current in each section is given by the following recurrence relation:

~(z’) = In ~Xn(z’)+InYn(z’) + In+l !Zn(Z’) , z’e Az (17)
n’

where,
Z’-z (z’ -Zn)z

Xn(z’) = - ~+
2A Z

2A Z2

(z’-zn)z
Yn(z’) = 1-

A 22

2’-2 (z’ -zn)2
zn(z9 = ~+

2A Z
2A 22

) z’ eAz (18)
n

Z’CAZ
n

# Zr CAZ
n

(19)

(20)

‘?’(zn) = In etc. ,

A z is the length of each section,
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For the two end

(Appendix A):

where,

n+l, N.

sections A Z1 and A ZN the currents are given by the following

1(2’)= II Yi(Z*) + 12 Zi(Z1) , for z’eAzl ,

~(z’) = INY~(z’) + IN ~X~(z’) , for Z’CAZN ,

(Z’-Z1)2 (z+
Y\(Z’) = 1 +

Az
-2 , for zteAzl ,

A 22

(z’ -z.) 2( ZI-ZJ2
z~(z’) =-+

1

3A Z
; for Zt CAZ1 ,

3A 22

(z’ - ZN) 2 (Zf -zN)z
Y~(z~) = 1-

Az - AZ2
, for ZICAZN

(z’-zN) 2(Z1 -zN)z
x~(z’)= -

3Az
+ , for zteAzN .

3Az2

(21)

(22)

(23)

(24)

(25)

(26)

After substituting 13qs. (17)-(26) into Eq. (13) we obtain a set of N simultaneous

a~gebraic equations involving the N unknown current coefficients I1’12’”””’lN”

‘I’he extra unknown constant B is now determined by applying the end condition

?’( L, w) = O. By using Taylor series expansion for the currents at the centers of

the last four sections and retaining four terms in the series, we obtain the follow-

ing extra equation:

-51N 3+211N 2-35$-1 +351N= O . (27)

.

.

We now have N+ 1 equations for the N+ 1 unknowns and the system of equations

are solved by usual matrix methods for I
1’12’”””’1Nmd B”
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The transfer function 76(0, u) given by Eq. (3) can now be evaluated

numerically with the help of the following relation:

N
uqosin 6

2

j~zncos6
T6 (6, u) = j ~n In e Azn , (28)

n=l

w
where we have used the notation I (z w)= Inandz’=z

n’
is the coordinate of

n
the center of the section A z

n“
The spectral density S6 (6, w) of the radiated waveforms is obtained by

using Eqs. (7), (10) and (28). Finally the time dependent radiated waveform

e~ (0, t) is obtained by carrying out the integral given by Eq. (6) with the help

of Fast Fourier Inversion technique.

During the numerical computation the antenna of length 2L has been

divided into N equal length sections. Time domain results have been obtained

for L = 1 meter so that-the antenna is 2 meters long. The frequency domain

calculations have been truncated at the highest frequency f. such that A z =
.

2L ~ ‘O———
N6’

where k. is the free space wavelength corresponding to fo. In

the next two sections we discuss the various results obtained.
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CURRENT DLSTRIBUTION Y(z, u)

It is instructive to study how the loading effects the current distribution

on the harmonically excited antenna. Figures 1 and 2 show the amplitude and

the phase distribution, respectively, of the time independent current on the

linear antenna of length 2L = 5 k, ~ X 156 and ro= 318. Under these condi-
3,4,21

tions the antenna approximately satisfies the non-reflecting criterion .

The approximate theories of Wu and King3 and Baum4 predict the existence of

a pure traveling wave of current with linearly decaying amplitude distribution

on the antenna. The results shown in Fig. 1 indicate that the amplitude distri-

bution of current maybe considered to be approximately linear except near the

feed region where it is significantly different. The linear variation of phase in

Fig. 2 indicates the existence of a pure traveling wave of current in the antenna.

Figures 3 and 4 show the amplitude and the phase distribution of the cur-

rent on the harmonically excited antenna of length 2L = 3 k, ~ = 156 and for

different values of the loading parameter ro. For r. <318, the reflection

effects on the current distribution become appreciable; the results for r o= 120

clearly indicate that the antenna sustains a standing wave type of current distri-

bution. For r. >318, the amplitude distribution of the current resembles an ex-

ponentially decaying function and the phase distribution, although not linear, is

progressive along the length of the antenna. In this sense it is proper to say that

for r. larger than the critical value of the loading parameter (i. e., larger than 318

in this case) the antenna maintains its non-reflecting properties, but it supports

a progressive wave of current. It should be noted that the critical value of the

Ioading parameter r. is different for an antenna with different value of ~ .

For a given non-reflecting antenna with ~= 156, r = 600, the amp~itude
o

and phase of ?’(z, u) are. shown in Fig. 5 for two values of frequency w such

.

.
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Figure 2: The phase variation of the current along a non-

reflectively loaded antenna. ~= 156, $=5s,

ro= 318.
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Figure 3: The amplitude of the current distribution along the antenna

as a function of the loading parameter. @56, ~=3~.
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that ~= 10 and ~= 30. It is found that the antenna retains its non-reflecting

characteristics within the range of frequencies considered in Fig. 5.
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VII

TRANSFER FUNCTION OF THE ANTENNA To (6, W)

In this section the magnitude and phase of the transfer function of the

antenna are given as functions of ‘L/c and for different values of the loading

parameter ro. Figure 6 a gives the variations of the magnitude and phase of

To (0, w) in the broadside direction (d = ‘/2) of the antenna of length 2L and

~ = 156 and for three values of the loading parameter. Similar results are

shown in Figs. 6 b-d for the same antenna and for three different directions.

The corresponding results for an antenna of length 2L and ~ = 100 are shown

in Figs. 7 a-d.

In all the curves, fe (6, w) approaches zero as u approaches zero

which is consistent with the fact that there is no radiation at zero frequency.

[
For higher frequencies the mean value of fe (6, w) tends to increase with an

increase of frequency. In general, the mean value of the phase of To (8, u)

appears to decrease rapidly for small values of ‘L/c and then assumes a

constant value.

In each case for r. = 240 both the amplitude and phase of To (6, u) oscil-

late with ‘L/c. With increase of r. these oscillations are smoothed out. It is

interesting to observe that the oscillations in the amplitude and phase of TO(6, W)

appear to be smoothed out for r. ~ the critical loading parameter.

The increase of the parameter ~ tends to increase the amount of oscil-

lation in the curves.

—
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VIII

SPECTRAL DENSITY 36 (6, W)

The spectral densities %8 (6, u) of the transient waveforms radiated by

the step voltage excited antenna under various conditions are discussed in the

present section. For three given values of r. and $ = 156, Figs. 8 a-d show

the envelope of =6(6, u) vs. ‘L/c for four values of the observation angle ~.

U is found from Fig. 8 that in general the envelope of ‘&O(6,

a dominant peak at the low frequency end for all values of 6

initial peak ~. (6, w)! decays at first rapidly and then slowly

(40 Vs. ‘L/c has

and r ~. After the

with increase of

~L/c. Depending on the values of r. and 6 there also appear some minor

peaks in ?6 (f3, w)I for large values of ‘Wc. For the purpose of discussing

the behavior of ~@(6, u) I let us define the frequency regions larger and smaller

than the frequency where the initial peak appears as the high and low frequency

regions, respectively. Critical study of the results shown in Fig. 8 reveals

the following observations:

(a) AS 6 decreases away from the broadside direction 8 = 90°, the low

frequency content of ~@(@, u) I decreases and the high frequency content decreases.

Also for a given loading, as @ decreases the amplitude of the initial peak de-

creases. For a given r., the position of the initial peak appears to be indepen-

dent of 19. As 6 decreases from 90° the minor peaks in se (0, w) become appre-

ciable.

(b) As r. increases, the low frequency content of l~e (6, w) and the initial

peak in 86 (6, w)I decreases significantly. IThe rate of decrease of ~0(9, w) in

the high frequency end appears to be almost independent of ro.

(c) In the broadside direction the position of the initial peak in l~e (6, ‘/2)

increases with an increase in the loading parameter r o. For example, from

Fig. 8 a it is found that the initial, peaks are located at ‘L/c ~ 1.56, 2.4 and
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2.6 for rO= 240, 480 and 600, respectively.

The above observations will have implications in the corresponding

time dependent waveforms. Figures 9 a-d show the corresponding results

for the antenna with ~ = 100. The general behavior of these results is simi-

lar to that of the results shown in l?ig. 8. On comparing the results of Figs.

8 and 9 it is found that the decrease of ~ tends to make the minor peaks in

IF6(6, u)] less pronounced.
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TIME DEPENDENT RADIATED WAVEFORM e. (6, t)

Figures 10 a-d and 11 a-d show the time dependent waveforms in different

directions radiated by loaded linear antennas for ~ = 156 and 100, respectively,

and for various values of the loading parameter r o. In each case L = 1 meter

so that 7 = 3.33 ns and the width of the input rectangular voltage pulse T = 20.94

ns. It has been found that for T ~ 3 ~, the time dependent radiated waveforms

due to the discontinuities at the two ends of the input pulse do not interfere with

each other. Hence, the results shown here for T = 20.94 ns maybe identified

with the transient waveforms radiated by the antenna for step voltage excitation.

The undulations in the waveform for r. = 240 (for example, Fig. 10a) are

attributed to the existence of reflected current waves on the antenna. In general,

the etistence of reflection effects causes the waveform to cross the zero axis

more than once, as can be seen in the r o = 240 waveform in Fig. 10a. For

r. > the critical value, the radiated waveform has onIy one zero crossing. It

has been found that for a given angle (3, the increase of r. has the following

effects on the radiated waveforms:

(i) decreases the initial amplitude e6(6, t). This conclusion is based

on the numerical sense. In the asymptotic results obtained from analytical

studies it is foundg that ee (6, t) - ~
J

as t+o.

(ii) increases the rate of decay of e~( 6, t) after the initial rise,

(iii) decreases the first zero crossing time to and consequently decreases

the pulse width,

(iv) decreases the amplitude ee (e, t) for t > ‘0/7 .

For a given value of the loading parameter r., the decrease of the ob-

servation angle O from the broadside direction (6 = ‘/2) has the following effects

.

on the radiated waveforms:

(i) increases the rate of decrease of e~ (6, t) from its initial amplitude

decreases the zero crossing time to. Consequently, the pulse width decreases,
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(ii) the initial amplitude of ed (e, t) increases.

The shape of the waveform radiated by a non-reflecting antenna can be

adjusted by adjusting the zero-crossing time t . For this purpose it is of
o

interest to study the variation of to as a function of the various physical para-

meters of the antenna. Figure 12 shows the normalized zero crossing time as

a function of loading with the observation angle 6 as the parameter. Notice

that results are shown for values of ~= 156 and 100. As far as the zero

crossing time is concerned, it is found from Fig. 12 that the decrease of O

has similar effects of to as the increase of r., i. e., to decreases with a

decrease of 6. In the broadside direction, to is found to decrease with the

decrease of ~. In this direction the spread between the to values, for the

two values of
&
a shown, increases with an increase of r .

0
It is interesting to compare the time dependent waveform obtained by

numerical means with that obtained by analytical means from the transmission

line model of the same antenna as done by Baum4. For comparison the wave-

form produced by the loaded antenna with r. = 690 are superimposed in Fig.

10a. It appears from Fig. 10a that the transmission line model predicts

slightly slower decay of e6 (z/2, t) for t < to than our values. For t > to,

the approximate model predicts a higher value of e~ (r/2, t) . These discrep-

ancies may be attributed to the fact that the transmission line model assumes

a linearly decaying current amplitude distribution on the antenna. Our numer-

ical investigation indicates that the amplitude of the current distribution of

the antenna is, in general, approximately exponentially decaying.

The early time behavior of ee (6, t) is compared with Latham and Lee)s

asymptotic results for uniformly loaded infinite dipole antennas. It is assumed

that the infinite dipole antenna is loaded uniformly in such a manner that the

internal impedance of the antenna is r. ohms per meter. We compare the

early time behavior of the waveform radiated by this infinite antenna with that
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of the waveform produced by the non-reflectively loaded finite antenna for

t << T. It iS assumed that the paramater ‘a! is the s~e for both antennas.

The results are shown in Fig. 13 which indicates that the Latham and Lee

theory predicts faster decay of ee (El, t) for early times. With the assumption

that the antenna is loaded uniformly with r., the decay rate of the field for

early times should have been slower. This discrepancy indicates that the

nonuniformly loaded finite antenna may Dot be approximated by a uniformly

loaded infinite antenna for t << ~.
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x

CONCLUSIONS

Transient waveforms radiated by a step voltage excited resistively

loaded linear antenna have been investigated by numerical means. Results

have been obtained in different observation angles from the antenna and for

different values of the loading parameter. It has been found that for an an-

tenna of given $ ratio there exists a critical value of the loading parameter.

If the loading parameter is equal to or larger than the critical value, the

antenna becomes non-reflecting. The waveform produced by the non-reflec-

tively loaded antenna shows only one zero crossing. The zero crossing time

as well as the radiated pulse width depends upon the loading parameter and

the observation angle. It is hoped that these observations maybe found use-

ful in designing a pulse radiating dipole antenna.

It would be interesting to compare our time dependent results with

those obtained by the singularity expansion method (sEM). ti particular, the

relationship of the critical loading parameter with the natural resonant fre-

quency (or frequencies) of the antenna should be investigated.

—

—
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APPENDIX A

NUMERICAL INVESTIGATION OF WAVEFORMS R.ADIATED BY
A PULSE EXCITED RESISTIVELY LOADED LINEAR ANTENNA

ABSTRACT

The waveforms of the radiation field produced by non-uniformly resistance-
loaded finite linear arAenna excited by pulse signals are investigated by numerical
means. The antenna model considered is a thin cylinder loaded symmetrically and
continuously with resistance and is assumed to be excited symmetrically by a slice
generator supplying a time dependent signal of arbitrary shape.

Current distributions and the transfer functions of the antenna are obtained
as functions of frequency for different values of the loading. Spectral density of
the radiated waveform produced by the antenna is obtained as a function of
frequency for two different types of input pulse and for different values of loading
and widths of input pulse. Finally the radiated waveforms produced by the antenna
for the particular input pulse are obtained by using Fast Fourier inversion tech-
nique. Far field waveforms are obtained in 6 = r/2, m/3, r/4, z-/6 directions
and for different values of the loading. Three selected values of the ratio of the
input pulse width to the~,transit time on the antenna have been used for a Gaus-
sian pulse, while one specific ratio value has been used for a Gamma pulse.
pulse.
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APPENDIX A

1. INTR-ODUCTION

The waveforms of the radiation field produced by non-uniformly resistance-

loaded finite linear antennas excited by pulse signals are investigated in the present

Appendix. The antenna model considered is a thin cylinder loaded symmetric-

ally and continuously with resistance. Emphasis is given to a specific type of

loading in which the amount of loading increases continuously towards the an-

tenna end-points. The antenna is excited symmetrically by a slice generator

supplying short pulse type time dependent signals.

Analytical solution of such a boundary value problem is extremely difficult,

A similar problem with step input excitation has been analyzed by Baum4 from the

transmission line point of view. Analytic results for both unloaded and uniform
9a, 9b

resistively loaded antennas with step excitations are given by Latham and Lee
11

only for cases when the antenna len@hs are infinite. Bennett and Auckenthaler

reported some results for uniformly loaded finite linear antennas obtained by

applying numerical technique directly in the time domain. By applying the moment
13

methods in the time domain Sayre obtained results for unloaded and uniformly

loaded linear antennas of finite length. Taylor and his group
14,15

obtained some

results of limited application by numerical means for the case of discretely

loaded linear antennas.

In the present Appendix our approach to the

At first the radiation field produced by the antenna

problem has been numerical.

excited by harmonically time

dependent slice generators are obtained numerically as a function of frequency.

The far field waveforms produced by the pulse excited antenna are then obtained

numerically with the help of Fast Fourier Inversion technique.

—

—
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2. METHODS OF ANALYSIS

In this section we give a brief discussion of the method of analysis and also

define a few terms that will be used throughout. Let us assume that the linear

antenna of length 2L be a’ligned along the z-axis of a rectangular coordinate

system with origin located at the center of the ,antenna and that it is excited by

a slice generator located at the origin. In the harmonically time dependent case

the voltage signal supplied to the antenna by the unit strength slice generator

may be represented by e ‘Ut volts, where w is the radian frequency. Let the
jwt

current distribution on the antenna due to this source be I ( Z, w) e . The far

electric field produced by the antenna under such conditions, will have only a

9- component and maybe written formally as follows:

F=
jut

Ye(r, w)e , (A. 1)

where, T

jnOwsin O e-jkr U
To(r, w)=

s

I(z F,w)e
jkz’cos~dzl

. (A. 2)
c 4X r

-L

where,

JiJo
no= ~ = intrinsic impedance of free space,

o

,1
c=—

r = velocity of light in free space,
;poc o

k=& propagation constant in free space,

(r, 6, @) = the spherical coordinates.

Let the slice generators have arbitrary time dependence such that the in-

put signal voltage envelope in time is

that V ( t ) is Fourier transformable

V(t) f-+T(u)

represented by V ( t). It is now assumed

i.e.

(A. 3)

“

.

.
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which means that the following relations are true,

m

w)) =sV(t)e
-jutdt ,

-a)

-. m

v(t)=+

J

Y(u) e‘Wtdu .

-m

(A. 4)

(A. 5)

Assuming the linearity of the entire system and using the superposition theorem,

it can be shown that the far field produced by the antenna when excited by a slice

generator having arbitrary time dependence is given by the following expression:

co

E6 (r, t- :)=+

s

fio(r, w)~(u)e jutdu . (A. 6)

-co

Notice that E9 , as given by Eq. ( 6 ) is dependent on the parameter r, and also

that it is delayed in time with respect to the input by ~ which is the retarded

time taken by the signal to reach

convenient sometimes to remove

can be done as follows.

Let us define a quantity ~e

T&m) =

the far field point from the antenna. It is found

both of these effects from the final result. This

m
which is related to F

0
in the following manner:

-1-j~r
rl?o(r, w)e

Similarly we

the following

.

—

L
j nou sin 6

= .—

J

I(zl, w)e
jkz’cos6dz,

(A. 7)
c 47

.

-L

can remove the dependence of r and $ from Eq. (A. 6) and define

modified field quantity produced by the antenna excited by arbitrary
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time dependent input signals:

co

1

‘-z s?’o(t?, w)~(w)e JWtdu .

-a)

Thus, formally if the field ?“ (6, u ) produced by harmonically time dependent

(A.8)

excitation of unit strength is known, then the field produced by any other time

dependent signal can be obtained with the help of Eq. (A. 8). Of course, it is

assumed that the time dependent signal must have a Fourier transform.

From the analogy with signal transmission through linear system, we shall
m

call fe ( O, u) given by Eq. (A. 7) as the frequency response or the transfer func-

tion 01 the antenna and %6(8, w ) = TO( 0, u ) ? ( w) as the spectral density func-

tion of the radiated signal for arbitrary time dependent input signal. Note that

according to this definition e (6, t ) and % ( 6, u ) constitute a Fourier trans-
6 6

form pair, i.e.

eo(O, t)#%@(8, w)

.

3. BRIEF OUT LINE OF THE REPORT

It can be seen from Eq. (A. 8) that the knowledge of the transfer function of the

antenna under consideration is necessary for obtaining the waveform radiated by

the antenna for arbitrary signal input. Equation (A. 7) indicates that the current

distribution I ( z, w ) on the antenna for the harmonic time dependent excitation
m

must be known so that fd ( (3, u ) may be evaluated. In the following sections we

at first determine the current distribution I ( z, u}. This is done by numerically

solving a modified form of Hallen’s integral equation, appropriate for the antenna

.

.
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w
under consideration. The transfer function fe ( 6, w) is then obtained by numer-

ically evaluating Eq. (A. 7). The spectral density function %’6( 6, w ) is obtained

by multiplying the transfer function by the Fourier spectrum of the input signal.

Finally the waveform of the radiated signal is obtained by numerically evaluating

Eq. (A. 8) with the help of Fast Fourier Inversion technique. Two input waveforms

have been assumed in this work. They are the Gaussian and gamma pulse rep-

resented by

(A.10a)

V2(t) = te-dt U(t) (A. 10b)

where the constants parameter a and 1/d are proportional to the width of the

input pulse and U ( t ) is the unit step function. The Fourier spectra correspond-

ing to the signals given above are, respectively,

‘YI(u)= JX cre
- w202/2

72(W) ‘——
(jw~d)2

(Alla)

(A.llb)

4. INTEGRAL EQUATION FOR THE ‘CURRENT DISTRIBUTION I ( z, W).

In this section we discuss briefly the integral equation for the current dis -

tributions on thin cylindrical antennas continuously loaded with resistance. As

before we consider a linear antenna of length 2 L oriented along the z-axis of

the Cartesian coordinate system such that z = O is at the center of the antenna.

Assuming azimuthally independent excitation, Hallen’s integral equation for the

current distribution on a linear antenna excited by harmonically time dependent

slice generator of unit strength is given by:

L

J

z

I(zr, w) G(z, z’)dzf = Bcoskz-j
/r/

J

E~z(g)sink(z-~)d$
o

-L o (A, 12)
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where, E is the electric field on the surfs ce of the antenna due to the induced
Sz

currents. G ( z, Zr ) is the free space Green’s function and B is a constant to

be determined from the end condition I ( ~ L ) = O, a is the radius of the antenna.
element and c is the free space permittivity. Since the dipole is electrically

o
thin, i. e., ~ < 0.01, we can assume the current to be located at the axis of the

antenna. This implies that the Green!s function is approximately given by:

G(z, z’)=

1/2

e-jk[(z-z’)2+a2 1

[ 1

1/2
47r (z-z’ )2+a2

(A. 13)

If the antenna is loaded with distributed resistance Rs ( z ) ohms/meter, then the

total tangential electrical field on the surface of the antenna is given by:

Ez(z)= I(z, w) Rs(z)=Eoz (z)+ Esz(z) (A. 14)

where E ( z ) is the field due to the externally impressed source. In the
Oz

present case the external source is assumed to be a unit slice generator with

harmonic time dependence, i. e.,

Eoz(z)= 6(Z) , where 6 ( z ) is the Dirac delta function.

Under these conditions, the integral equation for the current distribution on a

symmetrically loaded linear antenna is given by:

L

J
-L

I(z~, w) [ 1%e-jk (z-z’ )2+a2

[ 11/2
4X (z-z’ )2+a2

dzl

=Bcoskz - ~sinklz~ +
o
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z
1+.j —

J

1(~, w) R~(~)sink(z-g)d& (A. 15)
no

o

Eq. (A. 15) is the desired integral equation for the current distribution on the l~aded

antenna when excited by slice generator of unit strength having harmonic tirrm de-

pendence ejti.

In the next section Eq. (A. 15) will be solved numerically for ~ome as swrmd

values of R~ ( z ). The loading function of special importance to us is of the form:

c
RS(Z)= ‘—

L-[zl

Note that according to the previous notation of Eq. (12)$ ro= C/L.

special value of C, the above loading gives rise to a pure outward

at a specific frequency on the antenna as discussed by Wu and Kingg. For thi~

reason the antenna with this special loading is sometimes referred to as the

reflectionless antenna. Bauml arrived at the same conclusion from his tm. ns-

mission line model analysis of this antenna. We shall consider in detail. the

effects of the loading of the type given by Eq. (A. 16) for variou~ ‘mluos cf G

including the value corresponding to the reflectionless case.

5. EVALUATION OF THE CURRENT DISTRIBUTION I(z, u).

Standard numerical technique
19

is used to solve Eq. (A. 15) for :1~, u).

For this purpose the integral equation is reduced by moments method. to the

following set of N simultaneous algebraic equations:

N

Z$ I(z’, w) G(z. ,z’)dz’
1

n=l Az
n

“1= Bcoskz. -2V sink Z.
3 0 J
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2s

t

+ %0 I(z’, u) R~(zl)sink(z. -z’) dz’
1

n A Zn

j=l,2j. ... N (A. 17)

where the summation on the r. h. s. of Eq. (A. 17) is interpreted as:

2’= -2
for j ~ N/2J

n n=j

j

z
for j > ‘/2=

n= N/2+1

(A. 18)

and it is assumed that N

that the antenna of length

sections increasing from

shown in Fig. A-1.

z =-L

is an even number and z’ c A z Eq. (A. 17) implies
n“

2 L is divided into N sections, the numbering of the

1 to N along the antenna length from - L to L as

2=0 z=L

:~” I “ ‘------ “
n=l n=2 n . N/2 ~=N

FIG. A-1: Division of the antenna into N-sections.

.

It remains now to make an appropriate approximation to the current dis-

tribution I ( z ‘ ) in each of we sections A z When the antenna length is small
n“
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.

20
electrically the usual pulse approximation to the current in each section pro-

vides sufficient accuracy. Since our preliminary results have been obtained by

this method we give here a brief discussion of the appropriate expressions used

in this method.

Pulse Approximation Expressions

In this method the unknown current in each section is assumed to be a rec-

tangular pulse, i. e. ,

I(zt)=I ztc Az
n

n=l,2, .o. ,N
rl

(A. 19)
=0 elsewhere

Using Eq. (A. 19) it can be shown that the general integral equation given by Eq.

(A. 15) can be transformed into the following N simultaneous equations:

N

rl
In G(zj, zt)dz~=Bcoskz. - -&sin k(zj)+

J
n=l Azm

o

11

~.
$

0
+ vqon In Rs(&)sink(zj-~)dg ,

Azn
(A. 20)

j=l,2, . . ..N.

Z
!

where the meaning the summation P is as explained before. In general the

unknown current

Let us assume:

I ( z ) and the unknown constant B are complex quantities.

I(z)= IR(z)+j IC(z)

B= BR+j BC
1

(A. 21)
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Separating Eq. (A. 20) into real and imaginary parts we obtain:

Cosk[(zj.zf?+ag”z

r 11/2
471 (z. -z f)2+a2

dzl - BR COS kz.
J

+

N

z
11=1

N

z
n=l

IC
J

n Azn

Ic sn Azn

[, 11/2
sink (z. -z1)2+a2

[ 11/2

4m (z. -zf)2+a2

[, 11/2
22

cmk (z.-z’) +a

[ 1

%

47r (z. -zr)2+a2
J

+bj Rs(”$)sink(z ,-g)d~
o

n n Azn

N

z
il=l

IR
J

n Azn

[, 11/2

sink (z. -z F)2+a2

[ 1

1/2
47f (z. -z’)2+a2

J

1
=-

Ijl ‘
—sink z
2 q.

74

.

(A.22)dzl = ()

c
COS kz.

J

dz!

(A. 23)



where the upper ( lower ) sign is used for j ~ ‘/2 ( j > ‘/2) respectively.

The above sets of equations along with the end conditions have been solved

numerically for the unknown current;s, The results will be discussed later.

Pulse approximation method provides farily accurate results for small antenna

lengths. However, if the antenna length is long electrically, to obtain suffi-

ciently accurate results, N must be chosen very large. Hence to obtain

accurate results without taxing the computer capability a different type of

approximation should be used. In the next section we discuss such a method.

Quadratic Approximation Expres sion~

As mentioned before, when the antenna length is large, the computer

capability makes it inappropriate to use the pulse approximation methcd. For

the present problem of resistively loaded linear antenna, it is known from theo-
1, 9

retical considerations that the current amplitude decreases linearly towards

the ends of the antenna.

For this reason, we make the following quadratic approximation to the

unknown current in each section:

I(zf)=An +Bn(z*-zn)-~Cn(z ‘- Zn)2 , for z~eAz
n

(A. 24)
=0, otherwise,

where An, Bn, Cn are three unknown constants. These constants are determined

by requiring that the continuation of I ( z I ) expressions given by Eq. (A. 24) into the

centers of the adjacent sections give the appropriate current values there. Thus

we obtain the following:

I(zn) =1 =A
n n

I(zn-l) =In-l=An+Bn(zn-l- Zn)+Cn(Zn-1-Zn)2

)

(A. 25)

1(z n+l)=In+l =An+BIl (Zn+l-Zn) +Cn(Zn+l-Zn)2
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After eliminating A
n’

by Eq. (A. 6) we obtain

section:

Bn, Cn from Eq. (A. 5) with the help

the foHowing recurrence relation for

of the relations given
———

the current in each

for zlc Azn (A. 26)

Z’-z n + (z f-zn)’
Xn(z’)= - —

2AZ s ztcAz
2Az2

n

(z’-z )2
Yn(z’)= 1-

n
9

AZ2
Z’CAZ

n

21-Z (z’-zn?
Zn(z’) = ~+

2Az J Z’CAZ .
2Az2

n

(A. 27)

(A. 29)

where it has been assumed that each subsection is of equal length A z. In view

of the fact that in Eq. (A. 26) the value of the current in section A z is related to
n

the currents In+l, In ~ in the centers of the adjacent sections A z and A zn+l n-1
respectively, the current values at the center and hence the entire two end sections

Azl and AZN should be treated separately. For this purpose we make use of the

two sets of current coefficients I-L, 11, 12 and I
N-1’ lN ‘ lL ‘or ‘btiiting ‘e

currents in the sections A z
1

and A zN respectively. Using these two sets of

current coefficients we obtain the following from Eq. (A. 24) to determine the currents

in the two end sections:

I(z’) =IIYI’(z ~)+12Z; (z1) , forz’c Azl (A. 30)

I(z’) =INY~(zt)+IN ~x; (z’) , for z!~AzN , (A. 31)

where,

76



(Z’-zl) (Z’- zl)z
‘\(Z’)’l+— —

Az ‘2 )
AZ2

(Z’-zl) 2(zf-z#
Zi(z t)= — ——

3Az + /
3Az2

Z1-z

N
2( Z’-ZN)2

y~(z!)=l- —
Az ‘— J

A Z2

(z’-zN) 2( ZI-ZN)2
x~(zl)=_.

3Az
+— $

3Az2

Z’CAZ
1’ (A, 32)

Z’CAZ
1’ (A. 33)

ZrEAZ
N’

(A. 34)

zfe Az
N“

(A. 35)

After substituting Eqs. (A. 26)-(A. 35) into Eq. (A. 17) the following set of N simul-

taneous equations are obtained:

11
[J

Y\ (Z1)G(Z~,zj)dzf+
J

1

X2( Z1)G(Z1, zj)dzt

Azl AZ2

+1
2 [$

!Z:(zt)G(zt, z.)dzr +
J

y2(zt)@zf, z.)dz~ +
J J 1

x3(z~)G(zf, zj)dzt
J

N-2

+
z

In

n=3

r
+1

N-1 ,

Azl AZ2 AZ3

szn#)G(z’, zj)dzf +
s

Yn(z~)G(zl, zj)dzt +
s 1

Xn+l(z’)G(z’,zj)dz’

“ Azn ~ Azn Az n+l

r zN-c-jz’)G(z’, zj)dz’ +
J

Y (z’) G(z’, z.)dz’ +
N-1 J

AZN ~

+
J

1

x~(zl)@zt, zj)dzf +

AZN
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+1
N [sy~(z’)~(zr, z.)dzf +

.l s
z ~-l(z’)G(z’, z.)dz’

AZN J

‘zN-l

jV

1~ k {H,~l[~Y~(zf)F(z)dzt+~~ 2(z)F(z)dz]
=Bcoskz. -#sink z. +~

J o

1

[s

2
I

+H

2j12 zi (z f)F(Zf)dz~ +
s

Y2(zl)F(zI)dz! +

AZ2 $ x$~’’””l1
3

+$; [$I
n,j n Zn-l(z’)F(z’)dz’ +

J
Yn(z?)F(zf)dzl

Azn ~ Azn

i-
s

1}

Xn+l(zr)F(z’)dzf , for j < N/2

[

+ j“o ~ ‘~Jjl~[l ‘n-l(z’)F(z’)dz’+ A~ytil(z)F~zr)dzr+ ~ Xn+l(Z)F(Z%IZJ 0
-~+ 1 Azn ~

‘2
Azn Azn+l

+H
N-1, j ‘N-1

[s
z

N-2 (z’) F(z’)dzt +
s-

YN ~(z’)F(z’)dzf
AZN z AZN ~

+
J

1

X~(zr)F(z!)dz?

N

+H
N, j lN [s

z

‘ZJ 1

~-l(zr)F(zr)dz’ + Y~(z?)F(zf)dz~ , (A.36)

‘zN-l AZN
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for j > N/2 ,....— —.

j(asthe subscript )=1,2,3, .,. ,N

where

{

1, for j~m
H

m, j o, for j<m

F(z’)= +
L-lz~

sink(z. -z’) .
3

(A. 37)

The above is a set of N algebraic equations involving the N unknown current

coefficients 11’ 12’ ““ - “‘ k
and the extra unknown constant B which is to be

determined by applying the end condition I (- L ) = O. By using Taylorrs expansion

for the currents at the centers of the first three sections we obtain the following:

(Z1+L)2
I(z1)=I1= (Z1+L)I’ (-L)+ z I’f(-L) , (A. 38)

n

(Z2+L)’
I(z2) =12= (Z2+L)I’(-L)+ z I“( -L) ,

(Z3+L)2
I(z3) =13= (Z3+L)11(-L)+ z I“(-L) ,

where we have already used the fac:t I ( -L ) = O. The derivative terms in

(A. 38)-(A. 40) can be eliminated and we obtain the following extra equation:

313- 1012+1511 = O .

(A. 39)

(A. 40)

(A. 41)

—

Thus Eqs. (A. 36) and (A. 41 ) constitute a set of N+ 1 equations for the N+ 1 unknowns

(i. e., 11, 12, . . . .. IN. B ) . The system can now be solved by standard means.

If the end condition is applied at the other end of the antenna, i.e.

I(+L) = O, then the following equations should be used instead of Eq. (A, 41):
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151N- 10IN ~+31N ~ = O . (A,4,2)

Eqs. (A. 41) and (A. 42) wiIl be referred to as the 3-point end condition f ormula. In

order to estimate the accuracy of the results, computation has also been done

by using 4-point and 2-point end condition expressions. These have been obtained

by applying the end condition I ( +L ) = O and retaining 4 and 2 terms in the Tay-

lor’s expansion respectively. The relevant expressions for these two cases are:

‘51N-3 + 21 %-2 - 351N-1 + 351N =
o,

31N-INl=o .

(A. 43)

(A. 44)

The above completes the theoretical discussion on the numerical procedure

to be followed in the determination of the current distribution for the loaded

linear antenna.

6. EVALUATION OF THE TRANSFER FUNCTION ~’ ( 6, W)

.

In the previous section we discussed the numerical method of obtaining the

current distribution I ( z, u ) on the antenna for the harmonic time dependence

case. After introducing the sampled values of 1( z, w) in Eq. (A. 7), fO( d, w)

is obtained numerically with the help of the following equation:

(A,45}

n
.

where we have used the notation I(zn) =Inandzt=zn is the coordinate at

the center of the section A z The pulse approximation is good for transfer
n“

function calculation because the current distribution is linear as mentioned before.

7. PRELIMINARY NUMERICAL RESULTS

In this section we discuss briefly some preliminary numerical results
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obtained for a few simple cases. The motivation behind

mainly to ascertain the correctness and accuracy of the

for later investigation.

this section has been

munerical technique used

7.1 Uniformly Loaded Antenna L = l/2.

For the case of uniformly loaded dipole of total length 2L = A, there is no

variation of loading along the antenna, i. e., Rs ( z ) = riohms/meter. Fig. A-2

shows the real and imaginary parts of the current distribution on a uniformly

loaded dipole for two values of r“ . These results have been obtained by using
.

Eqs. (21 ) -(23) with N = 30. In Fig. A-2 we have used the notation ~.= 2krl/qo
1

where k is the wavelength and 77 is the intrinsic impedance of free space.
o

The results shown here compare very well with those of King, et. aL
12

. Thus

it proves the correctnesss of the computation followed here.

7.2 Non-Reflecting Loaded Case L = k.

Here consider a one wavelength long linear antenna non-uniformly loaded

according to Eq. (A, 16). The radius a of the antenna element is chosen such
2L

that f2=2in~ =11.5 . This value of Q is chosen so that our results may

be compared with some available published results. Wu and King3 predicted

from theoretical considerations that a purely outgoing traveling wave of current

is sustained on the antenna loadecl according to Eq. (A. 16) provided the constant

C is chosen to be equal to 60 @cYwith @@= 5.3 . In other words the antenna

considered in this section is loaded as follows:

RS(Z) = _ ,
L-]zl

(A. 46)

with @a = 5.3 (Note: in this notation, ro= 60 @a/L). The ~a notation is used

here to correspond to that used in Wu and Kingg. Figure A-3 gives the amplitude

of the current distribution

using pulse approximation
23

same antenna by Taylor

on the antenna as obtained by numerical computation

with N = 30. The current distributions obtained for the
18

and Shen are also shown in Figure A-3 for compari-
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z/:

Ic

@i=l

-2 -1

1.0

FIG. A-2: Real (I ) and imaginary (I ) parts of the current distribu~ion
on unif&mly loaded dipol~. L=x /2, Q=9.92, fli= 2~ r /t?o.
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FIG. A-3: Current distribution on non-reflectively loaded monopole. !i2=11.5, wL/c =2T, @a =5.3.



sGn. The results of Shen have been obtained experimentally and those of Taylor

have been obtained by numerical solution of Pocklington integral equation for

the current distribution. Figure A-3 indicates that our computed results agree

fairly well with Shen’s experimental values.

7.3 Exponentially Loaded Case

Fig. A-4 shows the current distributions on a one wavelength long monopole

loaded exponentially. The loading function used is

(A. 47)

where c‘ is a constant and a is another constant which determines the rate

of loading. In order to compare the results of Fig. A-4 with those of Fig. A-3 the

constant c! is chosen to be c’ = 604a = 60 x 5.3. Fig. A-4 shows the current dis-

tributions obtained numerically with the help of Eqs. ~(A. 21 )-(A. 23) with N = 30 for

two cases with a = 2.2 and a = -2.2. The case with a = 2,2 corresponds approx-
18

imately to Shenfs and it clearly shows the existence of a traveling wave type of

current distribution. For a = -2.2, the loading decreases towards the end and

the current distribution. obtained is of standing wave nature.

7.4 Phase Distribution of the Current

Fig. A-5 shows the phase variations of the current along the Iength of the an-

tenna for the different non-uniformly loaded cases considered above. The pro-

gressive linear variations of phase for the non-reflecting case indicates the exis-

tence of a pure traveling wave of current in the antenna. It is interesting to ob-

serve from Fig. A-4 that for the exponentially loaded case with c’ = 60 x 5.3,

a = 2.2 the antenna may be considered to be approximately non-reflecting. This

observation may have significant implications for theoretical analysis of such

antennas. No such conclusion can be made from the phase variation for the

exponentially loaded antenna with CY= -2.2.

7.5 Results for a Long Antenna 2 L = 5X

In the previous sections numerical results have been given for an antenna

84



●

HI
mA

5

4

3

%

2

1

L
/

-2.2 lZ1/L. ~60@ue

X60@cze2”2izl/Lx—

x

\
x

k \
.

‘x

\ x

~i
\

.

.

i I I
➤ ‘~L

0.25 0.5 0.75 1.0

FIG. A-4: Current distribution on exponentially loaded monopole. Q=ll.5, @=5.3, wL/c =27T.



&
180 -

160 -

140 _

120 –

100 –

80 –

60 –

x

\
k’
\
\
h \

40 L o

0
20

~

\ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 z /L

go ‘
I I I I I I I I b

a
s

-20
$

‘h
2
PI

-40 – \

\

-60 . h
\

-80J _

-1oo –

-120 –

-140 _

-160 –

-180 _

FIG. A-5: Phase variaticm of the current alcmg the antenna.

86



having total length 2 L = 2%. During the process of obtaining the transfer func-

tion of the antenna as a function of frequency, the effective length of the antenna

becomes very large at the high frequency end. The computer capacity as well

as the accuracy of the numerical results restrict the highest frequency for which

the transfer function can be evaluated. For long antennas, the computer program

should be modified for retaining satisfactory accuracy of the results without tax-

ing the computer. For small antenna length the usual pulse approximation for

the current in each section A Zn provides sufficient accuracy as has been found

in the previous sections. As discussed in Section 4, for long antennas we use the

quadratic approximation to the current during the numerical evaluation of the

current. We study the accuracy of this procedure in this section. In addition

to this we also investigate the use of 4-, 3- and 2-point end conditions for the

long antenna case. The results of a sample computation done for the case with

2 L = 5 i with different values of the loading parameter in Eq. (A. 16) are discussed

in the present section.

Figs. A-6 -- A-8 show the current amplitude distribution, the current phase

distribution and the transfer function respectively of the non-reflecting loaded

linear antenna of length 2 L = 5 k with the loading parameter C = 60 x 5.3. All

these curves have been obtained by using Eqs, (A. 36) with N = 30. In each case

the results obtained by using 4-, 3- and 2-point end condition expressions are

also shown in Figs. A-5 -A-7. It can be seen from Figs. A-5 -- A-7 that the results are

not appreciably different among the three cases. However, near the end of the

antenna the results are found to differ with each other slightly. From a study of

Figs. A-5 and A-6, in particular, the phase variation near the end of the antenna as

shown in Fig. A-6 it is concluded that the 4-point end condition expression given by

Eq. (A. 43) is more accurate and hence should be used during the numerical com -

putation of the transfer function of the antenna for high frequencies. Figure A-9 ‘shows
—.—.

the amplitude of the current distribution on the antenna as a function of the loading

parameter C = 60 ~a obtained by Eq. (A. 36) with N = 30 and the 4-point end condition.
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It is interesting to observe here that on the basis of Kingts work, the ex-

pansion factor ~ is a fixed value for one particular size and frequency. That

means only at this specific value of loading { [;O@a ) and specific frequency, we

can have m reflectionless current wave on the antenna. For C < 60x5, the

reflection effects on the current distribution become quite appreciable as expected.

While C >60 x 7, Fig. A-9 tells us the nonreflective nature. The higher value of load-

ing on the antenna supres ses the small amount of reflection that occurs due to the use

of a value of ~ slightly different from the specific value referred to above.

On the basis of the results given in this section, we have decided to use the

4-point end-condition expression during the numerical computation. Six subsections

per wavelength to divide the antenna is required to guarantee the accuracy.

8. CURRENT DISTRIBUTION I ( Z,u ) ON THE LOADED ANTENNA

In this section we give the numerical results obtained for the amplitude of the

current distribution I ( z, w ) for the harmonically excited loaded antenna. The

loading used is of the form given by Eq. {A. 16) with C variable. Figures A-1 CJa-

A-1 Od show the amplitude of the current distribution on the antenna with antenna

length as parameter for different values of the loading.

The amplitude of the current in general increases as the frequency is in-

creased. The value of the magnitude at the same frequency is suppressed by the

higher loading as expected. The current distribution is not strictly linear as

those of the transmission line found by Baum. It is due to the factor @ which is

a function of the thickness ratio of the antenna and the frequency used. So it is

not possible to excite a traveling current wave for all frequencies on an antenna

of fixed size.

9. TRANSFER FUNCTION OF THE LOADED ANTENNA ~Q( 0, u ) .

.

In this section the magnitude and phase of the transfer function of the antenna

are given as functions of wL/c for different values of the loading parameter C.
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These have been obtained numerically with the help of Eq. (A. 45) and the sam-

pled values of the current distributions discussed in tie previous section. Figures

A-1 la-A- 1Id give the variations of the magnitude and phase of the transfer func-

tion in the broadside direction ( 6 = r/2 ) of the antenna and for four values of

the loading parameter c. Similar results are given for O= 7r/3, @= m/4,

e = 7r/6 in Figs. A-12 -- A-14 respectively. Each figure contains four different

values of the loading factor C . h all the curves shown, I~6 ( d, w ) approaches

zero as u approaches zero, which corresponds to the fact that there is no

radiation at zero frequency. For higher frequencies, I%( d, u)l appears to be

an oscillating function and tends to decrease with increase of the frequency. The

phase of ye ( 6, u ) falls steadily to a positive constant. Wu and King3 proved that

the asympotatic value of the transfer function is a constant. However, within

the range of the computations covered here the transfer function in Figs. A-11 -- A-14

does not reach its asymptotic value especially for 6 = 7r/6. I?or an unloaded

thin linear antenna, we know that the transfer function would be zero for L = nk

at the broadside direction ( where n is an integer ) when the current is sinu-

soidal. Fig. A-ha shows that the values at k L = 2 r, 47r, 67r, 87 are minimal.

For higher values of C, the loading reduces the ringing which is due to the

reflection from the end.

It is appropriate to mention here that the impulse response of the antenna

may be obtained by numerically carrying out the inverse Fourier transform.

However, the data for ?0 ( 0, u ) obtained so far is not sufficient to get reasonably
14

good results. Taylor has shown that the transfer function reaches its asymptotic

value at a certain frequency which j.s beyond the value uL/c = 25 considered here.

10. NUMERICAL RESULTS

In this section we discuss the numerical results for two different shapes of

voltage input. Spectral density is obtained by multiplying the transfer function

with the input pulse spectrum. The waveform of the radiated signal is then
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obtained by using Fast Fourier inversion technique.

10.1 Spectral Density ‘%o~(3, w ) nnd the Time Domain Solution ee ( e, t ) of the

Radiated Field Excited by Gaussian Type Pulse

In this section, results are given for the spectral density %0(6, w ) and the

time domain solution &o ( 6, t ) excited by a Gaussian pulse input. The form of

the input pulse and its Fourier transform are given by Eqs. (A. lW) and (A. ha). For

the time domain results shown here, the antenna length is taken to be L = 1 meter.

This implies that the transit time on the antenna for centerfed case is r= L/c = 3“ 33

nanosecond. The radius a of the antenna element is chosen such that

f2=2 In $= 11.5 in all cases.

The spectral density %0( 0, u ) of the radiated waveform shown here has

been obtained by multiplying the transfer function of the antenna by the Fourier

spectrum density function of the input signal. The waveform e. ( 8, t ) of the

radiation field produced by the antenna excited by the Gaussian signal has been

obtained by numerically carrying out the integral in Eq. (A. 8) with the aid of Fast

Fourier inversion technique.

The results shown here have been calculated in the directions 6 = n /2,

r/3, r/4 and m/6 from the antenna, where i3= n/2 corresponds to the broadside

direction. Three different values of the width of the Gaussian pulse have been

considered for 8 = n/2, while only a narrow pulse has been obtained for the other

directions. These pulses are chosen such that the spectral density will converge

to zero at high frequencies. Four different values of the loading constant are used

in each case. Figs. A-15-A-17 show %(7r/2, w) versus kL and ee (n/2, t ) ver-

sus t for these cases with o = O.471 nsec. , 1 nsec. , 3.33 nsec. resp@ctive~y.

From the frequency domain results, we observe that for a wider pulse only the

low frequency portion of the transfer function is responsible for the overall

response. For example, when a = 3.33 n sec. , we only have to consider the

frequency spectrum up to kL = 3.5 as shown in Fig, A-17. For a narrow pulse,

a wider frequency domain of the antenna transfer function has to be considered.

However, if the width of the pulse is too narrow, then the computing time re-

.
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quired becomes excessive. For practical consideration of the computing time, we

we have chosen G = O.471 n sec. such that the upper frequency spectrum limit

corresponds to kL = 25.

Fig. A-15a shows e6(7r/2, w) for a = 0.471 nsec. For values of C = 60 x 4

and C = GOx 5, the ringing phenomenon enters the picture. For C exceeds 60 x 8

the ringing disappears.

From the time domain results shown in Fig. A-15b, it appears that the

initial part of the waveform represents predominantly the time derivative of the

input Gaussian pulse. The general shape of the waveform depends on the radio

c/T as expected. It is also seen that after the second zero crossing, e(7r/2, t)

remains positive for all positive values of t and the magnitude decreases with

the increasing C of the resistive loading.

Corresponding results are shown in Figs. A-18 -- A-20 for three other directions

with a = O.471 n sec. and for four different resistive loading. The general charac-

teristics are similar to those discussed above. Due to the difference of the path

length, the reflection occurs at different frequencies ~%0( 8, w ) I . The strer@h

of the far field is maximum at O = ~/2 and decreases as 6 deviates from the

broadside direction. In every case, the effect of loading in general reduces or

eliminates the ringing.

10, 2 Spectral Density % ( 0, w ) and the Time Domain Solution ee ( 6, t ) of the
G

R~diated Field Excited by a Gamma Pulse

In this section, we consider an input voltage function represented by a Gamma

pulse. The equations which define this pulse and its transform are given by Eqs. (A. 10b)

and (A, 1lb). Unlike the Gaussian pulse, the Gamma pulse is defined here for positive

values of t only.

The spectral density %6( 6, u ) shown here, again, has been obtained by

multiplying the transfer function of the antenna with the Fourier Spectrum of the

input signal. Then Fast Fourier inversion technique is used as before.

The results shown in Figs. A-22 --A-25, correspond to one particular pulse width
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at four different directions. For each direction in space, four values of loading

have been considered. The width d of the gamma pulse is chosen to be

1.7 x 109/ sec. which approximates the same width as that of a Gaussian puIse

with 0= 0.47. Figure A-2 1 shows the input gamma pulse reproduced by using the

Fast Fourier inversion program. This computation is to show the round-off

error involved in the F. F. T. program for sharply rising puIse. The truncation

of the high frequency portion of the spectrum also induces error. The error

results in the oscillating portion for negative value of t and the shift of the

starting point to the left instead of at zero. Similar error would be introduced

in computing the time domain solutions based on gamma pulse input.

Since gamma pulse does not converge to zero as fast as Gaussian pulse,

the spectral density shows small oscillation at high frequencies as shown in

Figs. A-22 -- A-25. The truncation of a gamma puLse also introduces a larger error

than that of a Gaussian at the same truncation frequency. Except for these minor

variations, the generaI behavior of the time domain solution presented previously

for the Gaussian pulse also applies to the gamma pulse.

11. CONCLUSION

The waveform of the far-zone field radiated by a non-uniform resistively

loaded linear antenna excited by a voltage pulse has been investigated by numeri-

cal means. Results have been obtained for a Gaussian pulse with three different

pulse width and for one particular gamma pulse at four directions of observation.

Various values of the loading parameter have been considered.

In general, the resuItant waveform corresponds to the convolution of the

harmonic response and the input signaL The initial portion of the resultant wave

however, appears to be proportional to time derivative of the input signal.

The result shows that the ampIitude of the current distribution on the har-

monically excited antenna is almost Iinear, being independent of the loading resis-
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tance when the latter exceeds certain value. The phase of the current represents

the characteristics of a traveling wave. Thus, the analysis of Bauml based on the

transmission line model appears to be a valid description of the current for a

resistively loaded antenna too. Our study also verifies the work of Wu and

King3 who examined the problem only for one particular loading at a single

frequency. In the broadside direction, the waveform exhibits a compression

in pulse width as the loading resistance is increased. No general trend is ob-

served in other directions.

For a Gaussian pulse, our numerical results check very well with the

analytical solution which indicates that the computing program has been properly

executed. To simulate practical problems, we have considered the excitation

to be presented by gamma pulse. In general, much of the result obtained using

the Gaussian pulse also applies to the gamma pulse. One significant difference

concerns the computing error involved in the two cases. For a gamma pulse,

the truncation error appears to be prominent. As a whole, it appears that a

“critical” damping can be achieved when the loading resistance attains a certain

sufficiently high value, corresponding to C ~ 60 x 10.
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APPENDIX B

ANALYTICAL INVESTIGATION OF WAVEFORMS RADIATED
BY A RESISTIVELY LOADED LINEAR ANTENNA

EXCITED BY A GAUSSIAN PULSE

ABSTRACT

The far field waveforms radiated by linear antennas loaded non-uniformly and
continuously with resistance are investigated analytically. The antennas considered
are symmetrical and excited at the centers by slice generators having Gaussian
pulse type of time dependence. Expressions have been developed for the far field
waveforms produced by such antennas in any direction. The analytic results have
been compared with those obtained by direct numerical means. The general agree-
ment between the two results has been found to be satisfactory. It is thus concluded
that the various expressions given may be used to study the behavior of waveforms
radiated by a resistive~y loaded linear antenna excited by Gaussian pulse type signals.
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1. INTRODUCTION

The present report discusses analytically the far field waveforms produced by

symmetrical linear antennas loaded non-uniformly and continuously with resistance.

The antennas considered are thin cylinders and excited at the centers by slice genera-

tors having Gaussian pulse type of time dependence. Emphasis is given here to a

specific type of loading in which the amount of loading increases continuously towards

the antenna end-points.

Direct numerical investigation of such a problem has been discussed in

Appendix A. Here we derive theoretical expressions for the waveforms produced by

the loaded linear antenna excited by Gaussian pulse type time dependent signals.

Fourier transform technique is utilized in obtaining the final time dependent results.

Numerical results are obtained by cc~mputing the various expressions derived. These

re suits are then compared

2. BASIC RELATIONS

with those obtained by direct numerical means.

Let us assume that the linear antenna of length 2 L be aligned along the z-axis

of a rectangular coordinate system with the origin located at the center of the antenna

and that it is excited by a slice generator located at the origin. The far electric

field produced by the antenna when excited by a harmonically time dependent slice

generator of unit strength consists of only a &component and is given by the following

expression:

where,

(B. 1)

w
L

jwqosine e-j ~]:

s

J‘:z’cose
Y(r, 6,w) = —-

47TC
I(z:, u)e dz! , (B.2)

r

-L
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IHo L
Uo=y is the intrinsic impedance of free space,

1
c =—

r is the velocity of light in free space,
, ~oeo

r,6, @ are the spherical polar coordinates of the far field point with origin

located at the center of the antenna,

w
I ( z’, u ) is the current distribution on the antenna due to the harmonically

time dependent slice generator,

76( r, 6, u ) is the time independent far electric field produced by the antenna and

may be looked upon as the transfer function of the antenna. For convenience we de-

fine the following modified form for the antenna transfer function:

#
i~ r76(6’,W) = -rF6(r, 6,u) e

L
jwrfosin6

J

j~z~cose
=

4TC
~(zt, w)e dzf ,

.

(B. 3)

-L

Notice that in the modified transfer function given by Eq.l(B. 3), the dependence on the

factor r as well as the phase shift suffered by the signal in traveling from tie an-

tenna to the field point are both suppressed.

Let the time waveform of the input voltage signal be given by:

- t2/2 ~z
V(t)= e s

where a is proportional to the width of the input Gaussian pulse. The Fourier
&

transform V ( u ) of V ( t ) is obtained as follows:

(B.4)

(B. 5)

.
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By making use of the linearity of the system along with superposition theorem and

the concepts of Fourier transform technique, it can be shown that the modified time

dependent far field produced by the antenna excited by a Gaussian voltage pulse is

given by the following:

(B. 6)

In Eq. (B. 6) the quantity” SO ( 0, u ) = ?; ( 8, w ) ~ ( u ) may be looked upon as the spectral

density of the far field wave. Notice that by defititien ee ( 6, t ) and so ( O, u ) are

related to each other by the following transform relationship

86(6,LJ) =
f

e6(f3, t)e
-jwt dt

-co

= 7e(e,w)mJ) . (B. 7)

3. TRANSFER FUNCTION OF THE ANTENNA 76( e, u).

In this section we discuss the evaluation of the modified transfer function of the
*

antenna as given by Eq. (B. 3)0 To obtain f. (6, u) it is necessary to know the current
N

distribution I (z, u ) on the antenna excited by the harmonically time dependent unit

slice generator.

Let the antenna be resistively loaded in the following fashion:

c
rs(z)=————

L-~zl
ohms/meter , (B. 8)
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where C is a constant expressed in ohms. For some special value

linear antenna sustains a pure outward traveling wave of current for
~ase3, 4,24

. In particular, for the non-reflecting case the necessary

of C, the loaded
o

the time harmonic

loading is,

(B. 9]

‘o’
which means that the constant C = —

271 ‘
where ~ is obtained from the expansion

parameter as defined by King and Wu 2.( Note: in this notation r o= C/L). As diS-

cussed in the references cited, the current distribution on the antenna loaded

according to Eq. (B. 8) and excited by a harmonically time dependent unit slice

generator is given by:

7( z, w) = $[-][,y] e-j:,zrla (B. 10)

We shall not go into more discussion of the current distribution on the antenna. The

parameter ~ in Eq. (B. 10) is very slowly varying function3 of u and will be assumed o

from now on that ~ is a constant for an antenna of given Iength L and Q = 2 I n ~ ,
2L

where a is the radius of the antenna element. For the non-reflecting case5

~= 5.3. Thus Eq. (B. 10) gives the complete description of the current distribution

on the non-reflectively loaded linear antenna excited by a harmonically time depen-

dent slice generator of unit strength.

After introducing Eq. (B. 10) into EqO (B. 3) the following expression is obtained for

the antenna transfer function:
.

.

(B. 11)
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where,

L
T= — = is the transit time of the signal on the antenna.c

The integral involved in Eq. (B. 11) can be carried out in closed form and is

given by the following:

1

J

(1-[ vl)e
-jwlvlejmv cos 8 dv

-1

1 re-jur( 1- cos 6)- ~

= jfd T(l-cos O) ~T(l-cos O) 1
+1

L

r-

1
e-”jw7(l+cos6~1

+
ju~ (l+cos8) ‘ju7 (l+cos6)

L 1+1 . (B. 12)

After introducing Eq. (B. 12) into Eq, (B. 11) we obtain the complete expression for the

antenna transfer function 70( 19,W).

4. SPECTRAL DENSITY OF THE FAR FIELD WAVEFORM: ~d~ 6, W) .

In this section we obtain the spectral density function %0( 6, u ) for the antenna

when excited by a Gaussian pulse. This is done by making use of Eqs. (B. 5), (B. 7)

(B. 11) and (B. 12) and the final result is given by the following expression:

1 1

{

e-jwr(l-cose)-l

x —.
Fr 1 - Cos 6’ (j UT) (1-cos6)

L

+1 )
-1

1 1+——-
ju~ 1+COS6 {

e-ju~(l+cose)-l

}]
(j MT) (l+cosf3) ‘1 “

(B. 13)

—

—
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In particular, in the broadside direction of the antenna O= T/2 and we obtain the

following simplified expression for the spectral density of the far field waveform:

Qo

l+jwT ““

[

1 1
x —-—

jw~ jklr 1SWZ!?.e-j”Tf2. (B. 14)
iJ 7/2

results pertinent to the antenna may be obtainedAll the important frequency domain

from Eq. (B. 13). It is useful to investigate the high and low frequency behavior of

~. ( 6, w ) analfiically. After studying the behavior of %6( 13,w) as given by Eq. (13)

in the low and high frequency limits it is found that

.

(B. 15)
.

0.
22

;~
1 e-a ‘/2

%6(e, w)- for WT>~l . (B. 16)
sin e J

The above two relations indicate that for all 6 #O, %fi( 0, w ) e O as w+ O and m.

After study Eq. (B. 13) for O 0 it is found that ee (6, u)= O. Thus it is concluded

that for all values 0, the spectral density function tends to zero in both the low and

high frequency limits.

5. EVALUATION OF THE FAR FIELD WAVEFORM ee ( 0, t).

After introducing

far field waveform can

Eq. (B. 13) into Eq. (B. 6) and some algebraic manipulations the

be written in the following form:

r -1

.

.

(B. 17)
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where

v =1- COS6’

L“=
}

l+cose “

The integral in Eq. (B. 18) may be carried out by applying

For this purpose it has been found convenient to write Eq.

form:
I (V, t) = ll(v, t)+12(v, t)

(B. 19)

the convolution theorem.

(B. 18) in the following

.

als“02w?2( j~~) (j(.L)T) e-jw-1 ejwdu
12(v, t) =&7 e

I+jwr
.

( jm)2 V2
-m

Let us consider the integral given by Eq. (B. 21) first. It can be shown that

11 (v, t ) can be written as follows:

Il(v, t) ‘I; (v,t)+ I;’(v,t) ,

where,
m

J

22
‘o ‘/2 ejw~ dw

I;(v$t)=&~ (jw)+ e s
++U2

-co
T

We now make use of the following two Fourier transform relations: 25
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(B. 20)

(B.21)

(B. 22)

(B. 23)

(B. 24)

(B. 25)



T Te

(B. 26)

(B.27)

After using the relations (B. 26) and (B. 27) and making use of the convolution

theorem Eq. (B. 24) can be transformed into the following form:

(B. 28)

-m

From Eq. (B. 25) we obtain I!; (v, t) as follows:

r ~2 m

s

+-+2G2 -14/7 da
(B. 29)I;(v, t)=- &&— e e .

a t2
-m

Before evaluating the integrals in Eqs. (B. 28) and (B. 29) we discuss the integral

12 (v, t ) given by Eq. (B. 22). It has been found convenient tO wrik 12 (v, t)

in the following form:

12(v, t)= 121(v, t)-12@t-~v) (B.30)

where,
a)

s

-02u~2
1 e

12@t) = -—
ejw~ ~u

2TV2 l+jw7

-03

It can be shown that 12~ I(v, t ) can be written as follows:

121(v, t)= I~l(v, t)+ IJ1(v, t) ,

(B. 31)

(B. 32)
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where

—

(B. 33)

(B. 34)

Following the similar procedure as before, Eq. (B. 33) can be transformed into the

following form:

1~1 ( v, t ) can be evaluated by making use of Eqs. (B. 33) and (B. 34).

It can be shown that I; (v, t ) as given by Eq. (B. 28) maybe expressed in the

following form:

[{ }

v~
x- 1 + erf ~++$) e

r

.

where the error function is defined as follows

x

J

2
erf x = &

fir ‘-t ‘t
o

(B. 36)

(B. 37)
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After using Eqs. (B. 36) and (B. 29), I? (v, t) is obtained as in the following

Introducing Eqs. (B. 38) and (B. 36) into Eq. (B. 23 ), we obtain the following expression

for 11( v, t):

I ~1 ( v, t ) as given by Eq. (B. 35) can be evaluated in closed form and is given

by:

(+2;
I~l(v, t)= -f---+ e

[{ 1
-t/T

‘(~-$) e
VT

l+erffi

+
{

1

After using Eqs. (B. 34) and (B. 40)

1]%,-L($+!Z) e

- “fG
I~l(v, t) is obtained as follows:

(B, 40) *

[{ _}

- t/T

- l+erfM-:) e

0



By making use of Eqs. (B. 40), (B. 41) and (B. 32) we obtain:

—

—

—

Introducing Eq, (B. 42) into Eq. (B. 30) we obtain:

After introducing Eqs. (B. 42) and (B, 43) into Eq. (B. 20) we finally obtain the following:

Changing v to v t in Eq. (B. 44) we obtain:

“y~+
{

t-TZ/l}1-—+&e
V’T

‘(--$) e 7 .1+‘rffi

Thus we obtain the following expression

(B.45)

for I(v, t)+ I(v’, t):

[

2
-t /2a2

I(v, t)+ I(v’, t)=~ ‘(A+A) e
fivv’
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L
kJ’T~ 7_—

t-Vt T 5
+(l+erf L(—

fi~
-;)) e 2T

V1 }1
(B. 46)

Introducing Eq. (B. 40) into Eq. (B. 17) we

field waveform produced by the antenna:

J-I

obtain the following expression for the far

L

where,

v= 1+ COS6,

~t=l -cOse,

In the direction 6 = ~/.2, V“v *= 1 and we obtain from Eq. (B. 47):
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At time t = O the Eq. (B. 47) reduces to the following:

1-

The broadside field produced by the antenna at time t = O is obtained by setting

0=~/2 and V=Vr= 1 in Eq. (B. 48) and is given by:

(B. 50)
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For both large positive and negative time, i. e, , t >>T, and T>o-, it canbe

shown that Eq. (B. 48) can be approximated by the following:

It can be seen from Eq. (B. 50) that e. (7r/2, t)+O as t~co which is as it should be.

It can be seen from Eqs. (B.. 47) and (B, 48) that the radiated waveform is different

from Gaussian and also that it is a function of the parameter a/T. It is thus antici-

pated that the radiated pulse shape will strongly depend on the ratio of the input

pulse width to the transit time on the antenna,

o
6. TIME DEPENDENT CURRENT DISTRIBUTION i ( z, t )

In some cases it maybe of interest to know explicitly the time dependent current

distribution on the Gaussian pulse excited loaded antenna. The current distribution

on the antenna excited by a harmonically time dependent unit slice generator is given

by Eq, (B. 10). For a Gaussian input signal of the form given by Eqs. (B. 4) and (B. 5),

the time dependent current distribution on the antenna is obtained by using the follow-

ing relations:
.

(B. 52)

w

where 1( z. u ) and Y(u) are given by Eqs, (B. 10) and (B. 5) respectively. The integral

in Eq. (B. 52) can be evaluated in closed form in a manner discussed in Section 5. The

final expression for the time dependent current distribution is given by the following:
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1- -7
7r4-57

H

~-~1i(z, t)=— x
??oti L

[

-( t- \z\)/c)2/20?

e
x —-

fi

The input current i ( O, t ) on the antenna when excited by an input signal of the form

- t2/202
V(t)= e is given by:

7. NUMERICAL RESULTS

In this section we discuss some of the selected results obtained by numerical

computation of the waveform expressions derived in section 5. Figs. B-1 and B-2 show

ee($, t) vs t for 0= 1.0 ns and a = 0.471 ns respectively and for two different

values of the parameter @. In both cases the transit time on the antenna is r= 3.33 ns.

The corresponding values of e~ ( ~ , t ) obtained by direct numerical investigation

are also shown in the same figures for comparison.

The direct numerical investiga.tion of the problem has been discussed in a

Appendix A. However, it is apl?ropriate here to give a very brief outline of the
w

numerical method. In this method, at first, the current distribution I ( z, w ) on the

harmonically excited loaded antenna is obtained by numerically solving an appropriate
*

form of Hallenfs integral equation. The transfer function f. ( f3, u ) of the antenna and
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the spectral density %6( 6, u ) of the radiated waveform are then obtained by

mrnerically evaluating Eq. ( 6 ) with the help of fast Fourier inversion technique.

The results shown in Figs. B-1 and B-2 indicate that the agreement between the

analytical and numerical solutions may be considered to be satisfactory. In particu-

lar, in the main pulse region the two results agree very well.

Figs. B-3 and B-4 show the radiated waveforms obtained from Eq. (B. 47) for

three different vaIues of 8 and for a = 1 ns, and a = 0.471 m.. The transit time on

the antenna is 7= 3.33 ns.

8: CONCLUSION

In the above we have developed analytic expressions for the waveforms radiated

by a resistively loaded linear antenna excited by Gaussian pulse. The antenna is

assumed to be loaded such that it sustains a pure traveling wave of current. The

analytic results have been compared with those obtained by direct numerical means.

The general agreement between the two results has been found to be satisfactory.

It is thus concluded that the various expressions given above may be used to study

the behavior of waveforms radiated by a resistively loaded linear antenna excited

by a Gaussian pulse.

.
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