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Abstract

and fields of a planar array

progressive-phase manner are

array consists of infinitely long wires, with each
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with the sources excited in

derived and evaluated. The

wire containing uniformly-

“ spaced voltage sources. It is demonstrated that the propagating wave contains

many lobes, each being a TEM plane wave propagating in a direction dependent

on the frequency. The radiation field has non-vanishing low frequency components
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I. Introduction
:

The sources of some

[1], [2]. As pointed out

EMP simulators are often in the form of pulser arrays

by Baum [3], the series modules in these arrays are

usually connected by conductors so that the radiated pulses contain the desired

low frequency components. The sources of the array are excited in such a manner

that at frequencies with wavelengths large compared to the module size, a

plane wave is launched in a desired direction.

For a large array with many modules, the performance is close to that

of an infinite array [4]. In this note, we consider an infinitely large planar

array of infinitely long wires, with each wire containing uniformly spaced

voltage sources. The geometry and the coordinate system are shown in Fig.1.

.MacFarlane [5], Wait [6] and Wright [7] have treated the scattering problem

of the same geometry; some of their results share the same physical insight

as the present problem. Baum [3] has obtained the very early time results

for the far field. Here, the field of the array is expressed in terms of a set

of E-type modes [8]. With this representation, it is possible to evaluate the

current and the field components everywhere. The result clearly shows that

at low frequencies, there is a TEM plane wave propagating in the desired

direction, dictated by the phasing of the sources. The magnitude of this

plane wave does not deteriorate with the distance from the source plane.

The formulation will be detailed in Section 11. In

examine the expressions for the fields, calculating their

and magnitudes and phases. The driving-point admittances

admittances are presented in Section IV.

,,

section )_~~,we

scanning properties

and the surface
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II. Formulation
, 4 k

m.

“:%

We start the formulation with the Pocklington’s equation in the C-

domain, where L is the Fourier transform variable of the coordinate z.

The multiple sources and the plane wave sequence excitation are taken into

account. The current and the vector potential contain a series of delta

functions in g. This series, in performing the inverse Fourier transform,

enables explicit expressions to be obtained in the space-domain. A Poisson

summation formula is then applied and the resultant expressions are in the

space harmonic form. Throughout this note, the time factor e
–iut

is used.

The planar array, as shown in Fig.1, contains a two-dimensional periodic

structure. The linear antennas are separated by a distance b, whereas the

sources along an antenna are separated by a spacing d. We choose a source

point as the origin of the coordinate system, and we des.ignatethe m-th

antenna as the antenna that is at a distance y = mb from the origin. The

source on the m-th antenna at a distance z=nd is designated as the

(m,n)-th source. Delta-gap sources are first assumed in the derivation,

however, in Section IV, we present the results for finite gap sources so that

the driving-point admittances remain finite.

The planewave sequence excitation [3] , which launches a TEM plane wave

in a desired direction at low frequencies with wavelengths large compared

with the module dimensions, b and d, is re–defined in the frequency–domain

as phase delays among the sources. For the (m,n)-th source, which is located

at (O;, mb~, nd~), the phase delay with respect to the source at the origin

is

Phase delay = exp[ik~o”(mb~ + nd~)]

where k is the wave number of free space, r.
,.

is the unit position vector in

the desired radiation direction: 0 = 00 + $..and = This above expression is

re-written as:

Phase delay = exp[i(m~y + n~z)]

3
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where the incremental phase delay B in the y-direction is
~ Y ,

#
By=kbsineosin@

o

.

“c

-m

and the incremental phase delay ,6Z in the z-direction is

i3 =kdcoseo
z

For convenience, b is chosen to be the basic dimension and d is expressed

in terms of b by the ratio

n = b/d

thus

@z=:kbcose
o

(2)

(3)

(4)

(5)

For the special geometry, as shown in Fig.1 the Pocklington’s integral

equation [9] for the z–directed total current on the zero–th wire, I, is given

by:

where a is the radius of the wire, the voltages applied across the delta gaps

are assumed to be of constant amplitude V, and d(z) is the delta function.

The function Gfl in (6), in general, is given by

Zm eiklr-r’l

I

——

G~(r;r’) =——
0 ~ado”— —

(7)

5



where both r and—

wire, respectively.

r’ are on the surface of the E-th and the zero-th—

More specifically,

2+

I
27Tei~(Rb)2+(z-z’) ]

GL(~;~’) = — ad~’
o

2!5
4T[(1b)2+(z-z’) ]

for!+O

J
2T eilJ4a2 sin2 {($-$’)/2}+(z-z’)2]%

Go(~;~’) = ad$’
o 4~[4a2 sin2 {(1$1-$’)/2}+(z-z’)2]%

for ~=o

The following Fourier transform pair is defined:

It is observed that Gg(~;r_’) is a function of z-z’, and by the convolution

theorem, Fourier transform of (6) becomes

(9)

The Fourier transforms of (8) are readily found in [10]:

%
G&) = . Ko(l~lbW), ~+o

,

,

(8)

(lo)

.

*

(11)

●
and



. where I. 0
and K are the modified Bessel functions of the first and the second

o
kind, respectively, of order zero. From (lO)to (12), we have

,

-i

1(g) = ----=----- -

[
(~2-k2) I (a<C-)

o

The denominator deserves

1

in(f3z-Cd)
21TWOV ye

n.-m

r ‘“y K. ( ]@= )Ko(a C-k)+ ~e
9.+0 1

further study. We observe that

(?-k2)I~a4’)Ko(ad-) (~-k2)’

where 11 and K, are the modified Bessel

(13)

functions of the first and the second

● kind, re~ectively~ of order one. As is inherent with the electric field formula–
%

tion, the current I(L) in (13) contains two components: an external current

(i.e., current on the outside wall of the wire), that contributes to radiation

and an internal current (i.e., current on the inside wall of the wire), that

contributes to the waveguide modes but not to radiation. Since we are interested

in the radiation problem, the internal current should be left out* [10]. This

corresponds to neglecting the first term in (14). The transformed current

(external) now becomes

-i 2nauEoV K,(aJ=) i fl(’;’d)%

1(’) ‘(C2-k2~ [Ko( a~~j + Ijl (a~ti~ Jo ~’ey K. ( ]~lbJ~)]

.

Where the function I~l(z) is defined to be l/Io(z). The summation in the

,. numerator can be converted into a summation of delta functions by applying the

(15)

●
☛
In the magnetic field formulation, one gets only one component of the current

and does not have to make a choice.

7



Poisson’s summation formula [11]: .

~ f(n)= ~ ~m f(n) e-i’mqdn
n=-.w ‘=-m -m

(16) ●

Therefore

in(dz-cd) o m
~e

in(~z-gd)

If

e-i2mnq ,. e dn
n=-c.a ‘.43 -co

=% ~ (,+Z-2.’))
‘=-.33

Equation (15) is now re-written as:

The delta function is non-zero at

= k(cos 60-qA/d) (18)

where A is the wavelength corresponding to the wave number k. A new quantity

is defined so that
“

= Cos e‘q o
-qI/d

From (5), we have

= Cos e‘~ o-oq?Jb (19)

.

%
The inverse Fourier transform of I(c), as defined by (lO)~can be readily

evaluated using the integration property of the delta function,

8



.

,

.

.

‘m

+ I;+’..G)JO (20)

where Z is the wave impedance of free space.
o We now have an explicit

expression for the curren~ on the wires.

The field quantities can be conveniently expressed in terms of the magnetic

vector potential, which will now be derived. The vector potential A(r) is——

parallel to the z-directed currents of the wires; hence

For an infinitely large array, we have

mm

AZ(Z) = PO
~1

dz’ Gm(~;~’)”(2na)
-1

l(m)(z’)m..m -m

where
1(m)

(z) is the z-directed current on the m-th wire, and Gm is given

by (7), i.e.

2%

~

2m ei~x2+(y-mb)2+(z-z’) ]
Gm(~;~’) = ad$’

o 4n[x2+(y-mb)2+(z-z’)2]%

The periodic nature of the structure requires

im~

l(m) ‘z)
= I(z) e ‘.

(21)

(22)

9



Hence
.

.

By the convolution theorem

= (2?T)-1p. 1(c)
f eim~y ~.

(
[x2-t-(y-rob)2]~ C2-k2]%

m.-co )

From (17)

Again, utilizing the delta function integration property, the inverse Fourier

transform becomes

10



.

,

(23)

We now apply the Poisson’s summation formula to the m-series. From (16), we have

m imf3
~ e ‘K.

(
k(x2+(y-mb)2]% [K2 - 1]%

,rn.-m )

mm im~
=

If
dm e

( )

y .0 ~x2+(y-mb)2]% [K2 - 1]+ e-i2Tmp
p.-co -m ~

The integral is evaluated with the aid of pair 868, Campbell and Foster [12] .

Also from (2), we get

.

i =+ i e:ky(sineQ–~’ypA’b)‘-kd”~‘(sineo‘inoo-pa’b)2 -1]$

(24). m=-m p.-m [Kq +(sin 0
0

sin $o-pl/b)2-l_j%

11



From (23) and (24), it

propagating wave, then

is observed that if AZ(Z) is associated with a

the square roots in (24) must be negative imaginary. In

parallel with (19) we define the following quantities

= sin 0
‘P o

sin ~o-pA/b

and

(26)

.

#

(25)

(27)

12



●
This expression is known to be in the space-harmonic form. We are now ready

“
to express the field quantities through the following equations:

.

E.—

and

H.—

where

A(r) =——

Introducing a normalization

this value will be detailed

and

—

-(iwpoeo)-l [V(V.~) +k2AJ (28)

VXAP;l _ (29)

Az (~)i

factor [V/(d sin O.)]-l (the reason for using

in Section III), such that

~(~) = E(r)/[V/(d sin O.)]——

~(r) = Z#(~)/[V/(d sin 6.)].—

We now summarize all the expressions as follows:

ik “r
Tx = ~ ~ F . e-7q -

p=-w q.-ca q q

ik .r
z= ~ ~ Fq[.p .q/.p~ e ‘q -
Y p=-m q.-ca

i = - ~ ~ F [ (1-.2)/.pJ e’~pq”xz
p.-m q.-m q q

(30)

(31)

(32)

13



b

iiz=o

2rlv
I(z) =——

Z. sin 0
~ Fq eik’qz

o q.-co

w

(33)

+w=k(~pq; + Kpqj + ‘q;)

‘Pq
‘[1-K2 - K;]%

P

K
P
= sin 00 sin $0 - pA/b

K
a = Cos e – nqA/b

o

rI= b/d

(36)

14



Equations (30) to (37) completely specify the performance of the array.

In the following two sections, physical interpretation and numerical results

will be given.

15
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III. Fields

In this section, we point out that the expressions for the field quantities

are associated with modes, and some properties of the modes are presented.

111.1 Orthogonality of the modes

The exponential factor in (32) and (33) can be shown to possess orthogonal

properties over one module of the periodic

Then, from (36), integrating over a module

structure. Let

(38)

of the array gives

uz+d/2 y+b/2

z–d/2 y-b/2 ‘Plql ‘;2q2 ‘y ‘z

ik(K ‘K )x
P~q~ P2q2

~

z+d/2
i2~(q2-ql)z/d

. e dz e
z–d/2

~

y+b/2 i2~(p1-p2)y/d
. dy e

y-b/2

The factor + is thus a mode function.
Pq

The fields can now be written in the

modal expressions.

8

(39)

.

16
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ii = ~j(,,j,, qq—

From (32), (33) and (40), ~ and R are easily identified in terms of the
–Pq –Pq

mode functions and the coefficients. It can be easily demonstrated that the

fields i and E of each individual mode (p,q) satisfy Maxwell’s equations.
--Pq -Pq

From (33), it is observed that the H-field has no z–component. This type

of modes, characterized by the vanishing of a magnetic field ccmponent parallel

to the axial direction of a two–dimensional array,is called the E-type mode

by Altschuler and Goldstone [8]. Sometimes, it is also called the longitudinal–

section magnetic (LSM) mode [II].

111.2 Discussion of the field expressions

● It can be easily verified that each mode behaves as a TEM wave, i.e.,

and

“E=o
~Pq -pq

At a sufficiently large distance 1119 some modes are greatly attenuated and

constitute the evanescent waves. The propagating modes must have real K
Pq “

From (36), this implies

.
22

+K<l
‘P P

(41)

This further demands the following relationships:

17



. .

sin O s
o

Cos e -
0

These expressions impose the condition

nflo– pJ/bl z 1

~qA/b] < 1

that at very low frequency, i.e., very

large A, the only propagating mode is the (0,0) mode.

Another fact not observed in small arrays is that the magnitudes of the

fields do not depend on the distance 111.

111.3 Direction and frequency span of the main beam

Mode (p,q) is associated with a propagation constant Let this
‘~q“

wave propagate in a direction f)=o and $ = $ Then, from (36)
q Pq “

COS 8 = K = Cos e
qq o

- qqA/b

sin e sin $ =K = sin 00 sin ~ – pA/b
q Pq P o

(42)

(43)

It is clear that 6 and ~)pq
c1

are functions of frequency for q # O and

P+o, respectively. This property is referred to as scanning. Each mode is

associated with a single radiated beam in a specific direction. We call the

(0,0) mode the main beam and all others the grating lobes

The main beam corresponds to the (0,0) mode and is

at all frequencies in the direction fj=fj
o

and ~ = 4
o’

This is the desired direction as defined by the plane-wave

Of specific interest is the low frequency (and hence

[4].

a propagating wave

as indicated in (43).

excitation sequence.

the late time)

behavior of this main beam. As pointed out in (42), the (0,0) mode is the

only propagating wave at low frequency and is of particular importance to EMP

simulation.

The frequency span of the (0,0) mode, from O to c/Xp~

the velocity of light, is the range within which only this mode

quantity J.c is the cut-off wavelength of the second mode. and
Pq

18
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.

from (36) by setting K = O. This yields
Pq

b/A;q = {[(p sin e
2

~ sin @o+rlqcos O.) + (p2+~2q2) sin200 cosz+o]~

-(p sin 00 sin $o+~q cos 00)}/[sin2(30 COS2$O]

The second mode corresponds to the grating lobe with the smallest value of

Ac Let us restrict our investigation to the region
Pq“

0° s e. s 90° and 0° s e. z 90°

For other regions, we would obtain results similar to the following

because (44) shows definite symmetry in p, q, e and $0 for certain
o

combinations of positive and negative values of these quantities. This is

illustrated partially in Fig.2 and Fig.5. These figures are described in the

following paragraphs.

With the condition (45), it is observed in (44) that the second mode is

either (0,1) or (1,0), and

b/A;. = (l-sin $o)/kin e. cos2$ol

b/& = n[(l-sin2eo
%sin2@o) - cos 60]/[sin2eo COS2$O]

In fact, there are break-off values of T-I,denoted by ~b, at which one mode

takes over from the other as the second mode

sin Oo(l-sin $.)
~b =

(1-sin2f30sin2@o)%-cos 00 “

(44)

(45)

(46)

(47)

19
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For e. = 90°, nb is plotted as a function of @ in Fig.2. Above the
o

curve, the (1,0) mode is the second mode, and below the curve, the (0,+1)—

modes. On the same figure, the corresponding case for -90°< $0 s 0°

is shown for the two modes (-1,0) and (0,-1). This serves to illustrate the

symmetry nature of p,q,o and 00. In ~ig.s, the cut-off frequency of the

second mode expressed as ‘b/lc is plotted as a function of n
Pq ‘

With

‘$0 as a parameter. Again we set 00 = 90° in this case. The horizontal

section is where the (1,0) mode is the second mode; and the sloped section,

the (0,1) mode. The region under the (0,1) and (1,0) curves, for a particular

409 is where only the (0,0) mode propagates. In Fig.4, for the same eo,

b/~c of the second mode is plotted versus
Pq

$., with rI being the parameter.

In this graph, for a particular q, the region under the (0,1) and (1,0) curves

is where only the (0,0) mode propagates.

We now present similar curves for the other principal plane @o = OO.

Figs.5 to 7 are in exact correspondence to Figs.2 to 4, respectively, with 00

replacing $0 as the parameter.

111.4 Frequency scanning of the grating lobes

Equations (43) indicate that the directions of the grating lobes are

frequency dependent. From (36) and (43), the cut–off frequency of the (p,q)

mode is given by the condition K = O, which demands
Pq

sin 0 Cos $ = o
q Pq

Restricting to the +x direction, this implies

e =OOor@ = 90°
q cut-off pq cut-off

(48)
.

This condition means that the grating lobes always start scanning in the source

plane, either in the +Z direction or the i-y direction.

For very high frequency such that p~ = O and qa = o, we have

21
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‘q]k- “ ‘o

i.e., the grating lobes propagate

and

in the

$Pq]k- = ‘$0

desired direction.

(49)

In Fig.8, we present the scanning of (0,1) and (1,0) modes as a function

of frequency, in the form of b/A. In this case, (3 = 90° and 00 = 0°,0
with n as the parameter. The cut-off frequency directions and the high

frequency directions are observed to behave as indicated by (48) and (49).

In Figs.9-12, we present the scanning for various values of 00 and ~o.

111.5 Field Magnitudes

We are now in the position to investigate the magnitudes of the fields

of the propagating waves. It is found that the basic problem in the evaluation

is to calculate the amplitude factor F Of particular interest is the low
q“

frequency behavior of the field, which corresponds to the late time behavior of

●
the simulated EMP.

For a particular geometry at a particular frequency, the number of

propagating modes is first determined using (41) and (42). The total field

is then obtained by the double sums in (32) and (33). The method of evaluating

F is detailed in Appendix A.
q

The low frequency (and hence late time) behavior of the fields is of

interest. As pointed out earlier, there is only the (0,0) mode that propagates

at this frequency. Hence, from (32) and (36)

~lk.jo= F. {COS e. Ax+[(sin(3 o sin $.) cos eo/(sin e. sin I+o)]j

ik ‘r

-[(sin2 80)/(sin e. cos f$o)]; }”e7q–

and

la ~+o= \Fol/cos$o

27



90(

Oq- eo

60’

30°

0“0

o’

-30”

-60°

--- –-(1,0) Mode -

all b/d
I I J 1 1 1 1 L J

1.0 2.0 3.0 4.0
b/A

5.0

‘(0,1) Mode

I
I
I
/
I
I

m-

“-b-
/d (1,0) Mode

-90° I I I I 1 1 I I
o 1.0

Fig.8. Frequency

(#).= OO.

2.0 3.0 4.0

.—

(0,1) and

28

b/A

(1,0) mode for 90 = 90°,

!

--”

5.0

.

,0

., !,,!. ,. ,, I



120”

eq-eo

g 90”

60°

300

0°

0°

●
-30°

-60°

-90°
0

I I

(??.= 60°

— (O,l)Mode
--- (1,0) Mode

b/d = 0.5
all Wd

Lo 2.0 3.0 4.0 ~,x 5.0

‘(0,1) Mode

0
#

0
/

/

/
/

//

/

/

‘ ‘all bh (1,0) Mode

1.0

Fig.9. Frequency scanning of

2.0

(0,1) and (1,0)

3.0 4“0b/A 5“0

mode for 13 = 60°,
0

$0 = OO.

29



120°

Oq-o.

90°

60°

30°

.

I

————

b/d = 0.5

ail bid,

(0,0 Mode

(l, O)Mode

o

0’

+’~+

-30”

-60”

-90”0

Lo 2.0 3.0 4“0b/)i 5“0

‘h I 1 I 1 I 1 1 1

~(0,1) Mode

i

/

I
I

/

‘all b/d(l, O) Mode

_-”

1.0 2.0

Fig.10. Frequency scanning of (O,1) and

3.0 4.0 5.0
b/A

(1,0) mode for 130= 45°, $0 = OO.

●

30



150”

Q#o

120°

90°

60”

30°

0°

0°

-60°

-90°

~

80= 30°

- --- (1,0) Mode

b/d =0.5

all b/dNI i 1 t I 1 (
o 1.0

L
2.0 3.0 4.0 ~/~

—

~(ol) Mode

0
0

/
/

/
/

/’/
1
I

1 I 1 I I 1—

,0

0 1.0 2.0 3.0
4“0 bj ~ 5“0

Fig.11. Frequency scanning of (0,1) and (1,0) mode for e. = 30°, $0 = 0=-” -

31



45”

19q-eo

30”

I5°

0°
0

0°

-60°

-120°

0

I

=0.5

all b/d,

b/d

I J

Lo 2.0 3*O 4.0 .
b/A

-—
----

/“
/-

/
/ ali b/d(i,O) Mode/

0-
0

/

/
/

/’
/
/
I
I

_—— —

— (O,i) Mode
———— (i, O) Mode

00 = 90°

+0 = 45”

5.0

i.o 2.0 3.0 4“0b/A 5“0

o
Fig.12. Frequency scanning of (0,1) and (1,0) mode for e. = 90°, $0 = 45°.
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●
From (A.7) of Appendix A, we get

la k+() = 1 (50)
.

This gives the reason for choosing the normalization constant V/(d sin O.) in

(30) and (31). From (32)

X2

i E
z

This corresponds to the average

k+()= -sin f3
o

k+()= -Vld

E- on the source plane.
&

The amplitude factor can be readily evaluated by the method outlined in

Appendix A. As is evident from (35) and (36), for q = O, F. is independent

of d. However, in general, d does affect the values of F“ for q + O.
Y

●
We present the following plots of Fo: b/a = 100, $0 = 0°, e. = 90°, 60°, 45°,

and 30° in Figs.13-16; and $0 = 45° and 130= 90° for the same b/a value in

Fig.17. It is noticed that the magnitude is considerably iarger at lower

frequencies. There are frequencies at which F. vanishes. These correspond to

the values when the series in the denominator of F. is infinite. In the

broadside radiation case (80 = 90°, $0 = 00), this phenomenon is easily

identified to be associated with the resonance condition. A careful examination

of Figs.13-16 reveals that for a smaller value of O., the value b/A where

F. first vanishes becomes larger. This provides a technique to broaden the

low frequency bandwidth of the array by sloping the source plane with respect

to the radiation direction.

In Fig.18, we show the effect of varying ~ for a broadside radiation.

Wires with smaller C, i.e., thicker wires, have larger oIF \; they are more

efficient radiators.
.

A careful examination of (32), (33), and (35) reveals that there are

frequencies at which some field components become infinite. Specifically, these

occur when either K = o or K = 1.
Pq

The first condition is equivalent to
q

= sin 0
‘Pq q

Cos $ = o
Pq

., .,, .,,
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and the second condition, by (43), is

=Cose=l
‘q q

these conditions imply that at the cut-off frequency of a

some field components are infinite in the representations

propagating mode,

of (32) and (33).

At the cut-off frequency, the mode is propagating along the source plane. This

kind of result is not unusual in this type of modal representation, and at

these frequencies, an alternative modal description should be employed [8].

At very high frequency, such that pA-M3 and qA+O, (36) shows that

=k
~Pq –00

and (32) shows that

the total field thus contains many modes propagating in the same direction and

with the same amplitude and phase as the main beam, plus contributions from the

modes that do not meet the above conditions. It is expected that the field

value is very high.
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IV. Admittances

In this section, we investigate the driving-point admittances, (which

is the same at all source points) , and the surface admittances. The latter

quantities define the driving requirements of the array in an average sense

and is useful at low frequencies.

The current on a wire, as given in (20), is a superposition of many

traveling waves. The

Y
in

From (34), we have

Z* Yin =

,

The series in (51)

an inherent result

=

is

of

driving-point admittance at y = O, z = nd is given by

in~z
= I(z)/V(z)lz=nd= I(z)/(Ve ‘lz~d

(2~/sin eo) ~ Fq eik’qnd - ‘tid Cos 00

~=.m

(2n/sin 6.) ~ Fq = ~ 20 Yq

q=-m q=-co

divergent, giving an infinite admittance value. This is

antenna problems with delta gaps. However, the field

quantities presented in Section 111, remain finite because they are evaluated

away from the singular source points. In the following, we outline the steps.

and review the result of re-deriving (51) for an array with finite source gaps

having a uniform gap width w. Assuming a uniform electric field V/w across

each gap, (6) becomes

= ihlf.o (v/w) ~
n=.-m

y Gg(>;~’)

inf3z

[U(z-nd+w/2) - U(z-nd-w/2)] e

(51)

(52)
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where U(z) is the unit step function. After applying Fourier transform (9)

to (52), we have

Equation (53) differs from (10) by the factor sin(Cw/2)/(gw/2) on the right

hand side. The rest of the derivation is along the same line leading from (11)

to (20), with c finally replaced by ktc
q

as in (18) and (19). The driving-

point admittance for the finite gap case is

m sin(kK w/2)
= (2~/sin O.)

~ (kKq~/2) ‘q‘o ‘in q=_CV
(54)

Because of the

converges. In

qs regardless

coefficient [sin (kicqw/2)/(kKq~7/~)], the series in (54) now

evaluating (54), the series has to be summed for all values of
*

of the condition of K This process is described in Appendfix
Pq “

A. We choose to investigate the case of a small gap width, i.e., kKqw << 1,
t

and so the effect of the gap width does not appear in the numerical results .

For the case of broadside radiation with n = 1 and ~ = 100, the driving-

point admittance is presented in Fig.19. At K2 - 1 = O, i.e., at b/A
q

being integers, the admittance is infinite. This is a phenomenon discussed

earlier. The sudden change of admittance at b/A = @ occurs when oneof the

F values
q

(q = 1 in this case) vanishes due to the infinite value of the

series in F . A similar plot for the broadsideradiation case with n = 5 and
q

‘5= 1000 is presented in Fig.20.

A quantity of interest is the surface admittance of the source sheet. We

define it as the ratio of the average of H
Y

over a module divided by the ‘

average of E over the same area, i.e.,
z

* This is different from the case of wave propagation, where only the terms with

being real are summed.
‘Pq

‘Equation (52) can also give the results of the effect of the gap width.
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Y==- H iidy dz
~Y /1/

~zdydz at x=O
s

(55)

where S is the area of one module. This quantity is of particular interest

at low frequencies as it defines the admittance of the source array of one side

in an average sense. For the low frequency, only the (0,0) mode propagates.

Then from (32) and (33), we have

zoY~=(l-K2
q

Hence

Z. Ys = sin O./(

q=o) ’00

0s $0

For the broadside radiation, Ys = + l/Zo. The total average surface admittance

of the source array is simply twice the value of Ys given by (55).
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v. Conclusions and Remarks

In the text, we have derived explicit expressions in terms of the E-type

modes for a source array excited in a constant-amplitude, progressive-phase

fashion. At low frequencies, a TEM plane wave is launched in the desired

direction, with amplitude independent of the distance. At higher frequencies,

the radiation consists of many TElfplane waves propagating in different directions.

It is demonstrated that the propagation directions of the so-called grating

lobes change with frequency. The scanning starts at the source plane and ends

up in the desired direction. The magnitudes and phases of some field

components are calculated. Similar efforts have been carried out for the

admittances.

The present work can be expanded into investigating higher frequency

behaviors of the fields by carrying out the double summations. The time

domain behaviors of the fields

careful analytical approach or

results. It is also important

an infinite array into a large

practical case.

and admittances can be examined either by a

numerical inversion of the frequency domain

to investigate the edge effects due to truncating

but finite one; this corresponds more to the
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Appendix A

Amplitude Factor F
q

In this appendix, we describe the method of evaluating the amplitude

factor F which is defined by (35) and re-stated here,
q’

From (32) and (33), the propagating modes demand

2 -1<0,
‘q

(Al)

(A.2)

whereas the driving point admittance, as given by (34), does not require this

above condition. The method given here is applicable to both cases, provided

the proper sign of the square root is taken.

Basically, the problem lies in the series , which has slow convergence. It

is possible, however, to transform this into a more convergent series by using

the Poisson summation formula. This has been carried out by Wait [13].

Let us denote the series by S .
q

Using the Poisson summation formula (16),
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we have

1’

.

.

!L+O

(A.3)

#
The result so obtained is similar to that of Wait, and is given by

‘q=+(b’wm+‘ ‘+(b”r’[Si+‘i;oo+‘~- ‘)1 “

++ y
{[ 1

+
[j-(b/A) sin 80 sin $.]2+ (b/A)’(K’ - 1)

j =1 q

[
+ [j+(b/A) sin 60 sin $.]2+ (b/a)’(K’

q -‘r-2“/
.

where y = 0.57721- -*- is Euler’s constant. The series behaves as j‘~ for

large j, and

s expression
,

has relatively fast convergence. It remains to investigate the

for the propagating modes.

(A.4)

#
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For K2 -1 < 0, we choose
q,z

L

so that the radiation condition is met. Equation (A.4) now becomes

++ ~
{[

[j-(b/X) sin 90 sin $.]2 - (b/~)2(1-K~ ) 1
-%

j=1

[
+ [j+(b/X) sin f30sin

We have to determine the sign when any

imaginary. The mathematical reasoning

appendix, the result is as follows

1/-~2$.12 - (b/A)2(l-~; ) -2/j (A.5)

of the three inverse square roots becomes

will be given in the later part of this

(fz - g’)-%= i(g’ - fz)-%

As pointed out in the main text,6 at low frequency, only the (0,0) mode

is propagating. In this case,

, small argument expressions for

approximation is equivalent to

we can evaluate F
o

the modified Bessel

the use of the thin

using (A.5), (A.6) and the

functions. This asymptotic

wire approximation, and

(A.6)

mathematically
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and

Ko(f) = - J?mf

Kl(f) = l/f

Io(f) = 1

.

From (A.5) and (A.6)

1im

[

-1

Solk+o = k+o 9.n[~(b/A) sin 6.] + y + ~ i (b/A) sin e. cos $.] -in/2

++ : 1[ 1-%[j-(b/A) sin (Jo sin $.]2 - [(b/A) sin ~jo]2
j=l ●

[
‘ 11

-g

+ [j +(b/J)sin 80 sin $.]2 -[(b/})sin 60]2J - 2/j

.1
~ i [(b/A) sin 8

-1
Cos 4.]

o

and

1im
-i7r sin 0

I:O/k/o =
o 1

[

———— –Y,n(-ika sin 8.)
l/A-+o (b/a)(-i sin 60J - ka(-i sin O.)

2i

)

-1

+ (b/A.)sin00 Cos $10
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.

We now return to

They are the result of

investigate the sign of the inverse square roots in (A.5).

the integration in (A.3), and we write

-m –

&-2where, g‘ corresponds to - 1, and f to 2mj-13y.
q

We now try to evaluate I when

g’ = -M

where g is positive and real

I
m

i~ -ifJ?.
H(l) Illg) e d!12=—
0(-w

when
%

is large,

+
~

h
H(l)(l,tlg) e‘ifE dg

-Ll 0 I
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For g + f positive, as required by (A.6), the second integrand is oscillatory

and averages to zero. With the knowledge that

I
g+f + m

and that the third integral is finite, we know that the main contribution of

I comes from the first integral, and

Let us take the case g - f being positive and let

2
~u = g - f,
2

then,

(A.6)

This integral is in the form of Fresnel integrals and is readily evaluated [14].

I
gzf

= in[2g(g–f)]–2

For consistency, we take the positive sign when any of the three inverse square

roots are imaginary, i.e.

(f2-g2)-4= i(g2-f2)-%.
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