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Abstract .,

Electromagnet c reflection from the walls of the vacuum chamber of a

sat ellite simulator may be reduced by placing one or more grids of

wires having known impedances just inside the conducting wall. This

note presents the results of a parameter study on the effect of wire

spacing and wire resistance and inductance on the frequency dependence

of the reflection coefficient of a wall with such a grid in front of it.

This data should be useful in helping to choose good values of the de-

sign parameters of reflection reducing grids in satellite simulators.
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I. INTRODUCTION

A general technique for simulating the system generated electromagnetic

pulse resulting from an exoatmospheric nuclear weapon radiation envi-

ronment has been described in a previous note in this series [1]. The

general form that a simulator would take, if its design were based on

this technique, is shown in Fig. 1, taken from Ref. [1 ]. The region of

sparse wires with resistors to absorb electromagnetic energy, shown

only symbolically in Fig. 1, is shown semi-realistically in Fig. 2, which

is also taken from Ref. [1]. In this note we will be interested only in the

reflection reduction properties of such a grid. Resonance damping prop-

erties are a separate subject which has been, and will be, considered

elsewhere by other workers.

Since our sole concern here is with reflection reduction, we are prirrarily

concerned with the higher frequencies of the electromagnetic pulse gener-

ated by the system under test. This in turn implies that the exact shape

of the wall of the vacuum enclosure makes very little difference, and that

we can get a very good estimate of the reflection reducing properties of

any particular grid by assuming the wall to be an infinite conducting plane

and the grid to be an infinite periodic structure in front of the plane.

Figure 2 can also be considered as a representation of a small portion of

this infinite plane structure.

We will make one further basic assumption i~~ our treatment of reflection

reduction. Since the actual generator of the electromagnetic pulse, i. e.

the system under test, will be rather small compared to the size of the

vacuum chamber, and since the vacuum chamber will be approximately

spherical, most of the high frequency electromagnetic energy that reaches

the walls will be almost normally incident. Accordingly, we will not

vary the angle of incidence in our parameter studies; all waves will be

normally incident. The assumption of normal incidence has an additional

benefit besides restricting the parameter study. This assumption greatly

simplifies the calculational problem, the reason being that at normal in-

cidence the coupling between the perpendicular sets of wires in the grid
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becomes quite small (disappearing in the limit of small wire radius),

and so this coupling can be neglected. An analytical demonstration of

this decoupling of wire sets at normal incidence (although it should

clearly be the case on physical grounds) has appeared in the recent

open literature [2].

We are left, then, with the problem of calculating the reflection co-

efficient of a plane wave normally incident on a perfectly conducting

plane when there are one or more impedance–loaded parallel-wire grids

in front of the plane. Because of the above mentioned decoupling, it is

sufficient to consider the electric field of the incident wave to be parallel

to the wires of the grids.

One analytical treatment of the single resistive grid problem was pub-

lished twenty years ago by Wait [3]. We will extend these results to the

case of several parallel grids of arbitrary internal impedance and derive

an effective distance from the plane of an equivalent uniform sheet in the

case of a single grid. This analytical work, based on an approach slightly

different from that of Wait, is presented in Section II.

But the main purpose of the present note is to present the parameter study

of Section III. In this study, we will vary the spacing, radius, resistance

and inductance of the wires of the grid and plot the reflection coefficient

of the grid-plane system as a function of frequency. Enough values of the

various parameters will be given that a good idea of what can be accom-

plished with a single grid will become evident.

In the last section we will give a brief discussion of the data presented in

Section III.
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II. ANALYSIS

●
The structure we wish to analyze is shown in Fig. 3. One or more

parallel-wire grids are placed in front of a perfectly conducting plane.

A plane wave, whose electric vector is parallel to the wires of the grids,

is normally incident on the structure. We wish to calculate the fraction

of the incident energy that is reflected, as a function of frequency. The

parameters of the problem are the spacing between wires in a grid, the

radius and impedance of an individual grid wire, and the spacing between

grids.

We will first formulate the general problem, then specialize to the case

of one grid, then discuss several topics having to do with the uniform

sheet approximation to a single grid, and finally go into a little more

detail on the meaning of the equatims for the single grid case.

11.A. General App roach

● [n a previous note [4] we have discussed the reflection of a plane wave

from N rows of dielectric posts. In that note the posts were character-

ized by an impedance per unit length, Z . The present problem would
P

be almost identical to the previous one if the conducting plane were re-

moved. The only difference would be the different orders of magnitude

of z and Z This makes no difference to the algebra.
P w“

Thus from

the work of Ref. [4] we can say (there are slight changes in the appear-

ance of the equations since we are now numbering the rows backwards

from the origin rather than forward), if the conducting plane were not

present and if all D’s were equal (this restriction on the D’s is not

necessary, but it simplifies the following formulae),

(1)

where the Xn, defined by
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are to be found from the solution of the equations

N
ikD /n-m lx = e-inkD

‘* ~ ‘In-mlxmZ~Xn+* ~ e
m

[l<n<N] (3)
m. 1 m= 1

where

(4)

i. e. the wires within a single grid are equivalent, although there may be

variations from grid to grid. The Pn of Eqs. 3 are defined by

( )11&-: “)
-nkD~(m k/d)2 - 1

Pn=2i ~ e $ n>O
m.1

#(ml/d) 2-l

(6)

Now the presence of the conducting plane in the problem at hand can be

taken into account by adding the wave reflected from the plane (with no

grids present) to the forcing term of Eqs. 3, and at the same time adding

negative image currents at the image position (with respect to the con-

ducting plane) of each grid wire. This results in the reflection coeffi-

cient now being given by

N
R=- 1 + i ~ Xn sin (nkD)

n= 1

where the Xn are now given by the solution of the set

(7)
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N
Z:xn++ d ,iln-m]kD iln+mlkD-e ) Xm = -“ 2i sin nkD

m. 1

‘; ~~1 (Pin-m]-pn+m)xm
[l<n<N] (8)

Equations 7 and 8 constitute the general formulation of the reflection re -

ducing grid problem. In the following subsections

cases and approximations in order to get a feeling

expected from such a grid.

we will study particular

for just what can be

11. B The Single Grid Case

The major simplification we will impose on Eqs. 8 is that, in the present

note, we will consider only the case where N is one. This allows us to

write down reasonably simple explicit solutions and to give a detailed

study of the effect of wire spacing and wire impedance. Such a grid would

also, of course, be the easiest to construct. Should the single-grid re-

flection reducer prove inadequate for satellite simulators, a numerical

study of Eqs. 7 and 8 could be performed at some later time. It is felt,

however, that the single-grid reducer may be good enough, or at least

that the gains to be obtained from extra grids may not be enough tc make

up for the additional complexity of the construction.

If N is unity, Eq. 8 reduces immediately to

and so

1
Zwx + —

12 ( 1- e2ikD ) Xl = -2i sinkD+~(Po - P2) Xl

i. e.

-2i sin kD
xl = ikD

z - ie sin kD - ~ (PO-P2)
w

R= -l+
2 sin2 kD

ikD
z-ie sin kD

10
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where we have defined

1P
z +2. —

(2 0-
P2)=z +iz

w r i

Some simple manipulations of Eq. 11 change it to the form

[

R = e-2ikD ‘z~~ + i ‘in ‘D
ze i sin kD 1

and so

sin’ kD + IZ12 - 2 sin kD (zr sin kD + Zi cos kD)
IR12 =

sin’ kD + \z\2+ 2 sin kD (zr sin kD - z. COS kD)
1

1 -a
‘E

where

2Z sin2 kD
r

a=
sin2kD + IZ12 - Zi sin 2kD

and, from Eqs. 4, 5, 6 and 12

d
z= —Re Zw -

r Z.
: (d/X)

d d
z.=—

1 Z. ‘tiw - T
[

, +~n(~) +:, ‘1 -:

n - (d/k)’ ]

-2nkD _ 1

+~e
“=1 d- “

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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II. C A Closer Examination of z

Before we proceed further, it is necessary to give a more precise meaning

to the quantity we have designated as Zw, and thus to give a more precise

meaning to the z defined in the previous section.

Actually, from the derivations in Ref. [4], it is clear that Zw is the total

impedance per unit length of the grid wires, including both “internal” and

“external” impedances per unit length. The “external “ impedance of the

wire is the impedance of a perfectly conducting wire of the same radius.

If the wire is circular, of radius “a”, this “external” impedance is easily

shown to be

e xt ‘ZO ~(l) (ka)Zw =7
o

where H(’) (ka) is the cylindrical Hankel function of order zero. For the
o

sizes of wire we are talking about, Eq. 19 reduces to

(19)

●
(20)

where

~=ey=l. 77+. (21)

ext
The real part of Zw is the radiation resistance per unit length of wire.

It is independent of the exact shape of the wire’s cross-section (as long

as this cross-section is small), as can be seen by the little calculation

Re (Z:t) 1~1’= lim + ‘mlbrad]2rdco
r+w f00

Lu’lJ:\I/’ 2n
. lim &

16
I

lH(l)(kr) 12 rdv
o

r+w o
0

12



1 U12 U2 11/2 2
=—

Z. 1;
—.211

“ nk

kZ
= 1112+

The imaginary part of Z
ext

does depend to a slight extent on the shape
w

of the wire’s cross section, but there will always be some “equivalent”

radius, and, since this equivalent radius appears only as an argument

of a Ln, its exact value is fairly unimportant.

It is now clear that if we write Zw as the sum of the internal and ex-

ternal impedances, i. e. if

Zw = Zy + Z:t ,

then from Eqs. 17, 18 and 20 it follows that

d“
z =—

Z.
Re Z~t

r

~-2nkD (n A/d ) -

+2 e
n. 1

~(n~/d)2 - 1

II. D Equivalent Uniform Sheet Reflection Reducers

(22)

(23)

(24)

The effect of the discreteness of the wires making up the grid makes the

above equations look a little messy. It would be nice if one could design

a reflection reducer by assuming it to be a uniform sheet, imposing the

fact that it is actually constructed of a set of wires by a slight subsequent

13
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adjustment of the distance of the wires from the conducting plane or a

slight change in a parameter of the uniform sheet. This distance adjust-

ment method proves to be possible if we restrict our attention to the very

low frequency (small kD) region. In that case U, as given by Eq. 16,

reduces to

2zr(kD)2
a=

(kD - Zi)2 + Z:
(25)

Thus if Zi is decreased by the noninternal impedance portion of Eq. 24,

this can be compensated for, to order kD, by decreasing kD by a sim-

ilar amount. In other words

[

m

) q5(kD) =-~ ln(~a +
1 1-—

n
n= 1

n 2- (d/k)2 )

n=l 1
or, since we are in the region where (d/A ) is small,

[

-4 Trn(D/d)
5(kD) =-~ Ln(+a)- ~ e n

n=l 1
i. e.

If D is greater, or of the same size, as d, the above equation reduces

quite accurately to

●
(26)

(27)

(28)

(29)

●
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Equation 29 is the same as that derived from static considerations in

Ref. [5], for the case of an isolated set of wires in space (note that the

“d” of Ref. [5], Eq. 88, is twice. the “d” of the present note, and that

the wire radius is denoted by “c” in Ref. [5]). The conditions for the

validity of Eq. 28 are that both d/1 and D/l be small. The further

condition for the validity of Eq. 29 is that D be of the sarr, e order as

d, or larger.

,
An objection to the above method of compensating for wire discreteness

is the necessity that kD be very small. For such frequencies there can

be very little energy absorption, as can be seen from Eqs. 15 and 25.

The distance adjustment mostly just corrects the phase of the reflected

wave to that predicted by a uniform sheet analysis.

Perhaps a better way to go from a uniform sheet to a set of wires is to

accept the fact that the wires inevitably represent an inductance at low

frequency. The result of this acceptance is that we can use uniform

sheet designs by requiring only d/k to be small, D/A being unre-

stricted. We design a uniform sheet and then load the wires by the re-

quired inductance per unit length minus the unavoidable inductance.

From Eq. 24, the unavoidable inductance per unit length is given, for

small d/X, by

U.

(– (
d ~ - ~ -4~D/d

‘o = 21-r ‘n 211a )} . (30)

This inductance can be made quite small by choosing appropriate values

of lldll and “a”, or it can be allowed for in the uniform sheet design.

The condition for the validity of Eq. 30 is that d/k be small.

II. E Resistive Sheets for Minimum Average Reflection

If resistive sheets can be fabricated as a set of resistive wires by some

method such as making sure d/1 is small, they are just about the easiest

reflection reducer to construct. For this reason it behooves us to find

out just what can be done with resistive sheets.

15
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One criterion for a resistive sheet could be that it minimizes the average

reflected energy over a broad frequency band. Let us see what value of

Zr (assumed to be frequency-independent) accomplishes this. [f Zi is

zero, Eq. 14 reduces to

2
+ sinz kD (1 - Zzr)

IR12 = ‘~
Zr + sinz kD (1 + 2zr)

The right hand side of this equation is periodic in (kD). Integrating it

with respect to (kD) from zero to 21T and dividing by 21T , we obtain

The value of Zr for which this expression attains its minimum is given

by

z= 1/c
r

at which point

—— “3137

(31)

(32)

(33)

(34)

II. F Resistive Sheets for Minimum Reflection at a Given Frequency

Another possible way of designing a resistive sheet is to minimize the

reflected energy for a particular chosen value of kD (this might cor-

respond roughly to some external resonant frequency of the system under

test). It is a simple matter to find the minimum of the right hand side

of Eq. 31 for some fixed kD (= koD). This minimum occurs when

z = sin koD
r (35)

16
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and is given by

II. G Optimum Resistive Sheets for Particular Pulses

In Sec. 11. E we discussed minimizing the average reflected energy over

a broad frequency band. This is equivalent to minimizing the reflected

energy for very short, or delta-function, incident pulses. A more gen-

eral way to minimize the reflected energy if something more definite

is known about the incident pulse comes readily to mind. One merely

minimizes the integral of Eq. 31 multiplied by the energy spectrum of

the incident pulse by an appropriate choice of Zr (keeping the incident

energy constant).

For example,
-tl T

suppose our incident pulse is given by U(t)e , where

U(t) is a unit step function. The Fourier transform of this pulse is just

(iUJ - l/’r)-J, and thus the incident energy spectrum is proportional to

(7-2 2-1, i.e.+Ul) to (X: + (kD)2)-1, where X = (D/~c). Thus we must
o

minimize the ratio of integrals

f.

f=

The integral in the denominator of Eq. 37 is trivial, while the one in the

numerator can be split into one that is the same as the denominator and

a tabulated integral ([6], p. 440, No. 3.813. 2). The result, after alge-

braic simplification is that

4zr T
f=l -

z:(T+l)+3zr T+T

(36)

(37)

(38)

17



where

T = tanh Xo.

Minimizing f with respect to Zr we find that the appropriate value of

z r is given by

z
r

.~~=J-

and that the minimum f is given by

IT

(39) a

(40)

f=
-d l;T

min

‘r
2+3

T
l+T

d -2x
‘n - l-c”——

‘G+ 3P

(41)

By numerical evaluation it can be shown that fmin is less than .5 as

long as Xo(~ D/~c) is greater than “ 089.

II. H Resistive Sheets at Low Frequency

Reflection reducing sheets can not help much at very low frequency. The

reflection coefficients of any finite number of resistive sheets in front of

a perfectly conducting plane must approach unity as the frequency ap-

proaches zero. Nevertheless, because the expected incident pulse has

a significant low energy content, one should try to bring the reflection

coefficient down from unity as rapidly as possible with increasing fre-

quency. A way to partially achieve this with resistive sheets can be seen

from the low frequency expansion of Eq. (31 ), which is

18
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IR12+ 1. 4fD)2
r

(42)

Thus a low value of Zr will increase the initial quadratic drop-off of

lR12 with W. Unfortunately this is paid for by raising the value to which

IR \2 eventually drops. This kind of minimum for IR12 is given by

(43)

From this we see that, if we restrict ourselves to resistive sheets, we

can have either a fast drop-off to a fairly high value of IR(2 or a fairly

slow drop-off to a very low value of IRI 2, and thus some compromise

must be made. Another kind of price one can pay for a fast initial drop-

off is discussed in Sec. 11. J.

IT. I Inductive-Resistive Null -Desipn Sheets

Another possible way of designing irrpedance sheets is to create a cQm -

plete null in the reflection coefficient for some particular frequency for

which, for any reason, we expect a great deal of the incident energy to

be concentrated. This can be accomplished by inductive-resistive sheets

(to be fabricated by inserting series inductive elements in resistive wires)

if the critical values of kD is between lT/2 and n.

To determine the appropriate sheet impedance let us see what values of

z and z i will make the u of Eq. 16 equal to unity for k = ko. Forr
these values of u and k, Eq. 16 can be rewritten as

sin2 koD + z: + z: - 2zi sin koD cos koD - 2zr sin2 koD = O (44)

or, rearranging the terms, as

19



(z= - sin2 koD)2 + (Z.
1

- sin koD cos koD)2 = O (45)

Both terms of the above equation are non-negative. Therefore, for a com-
0

plete null at k we must necessarily have
o

z = sin2 koD
r

z. = sin koD cos koD
1

(46)

-iult
We have chosen a time variation of e , making the reactance of an

inductance negative. For Zi to be negative (and for koD to be less than

l-r, which is the most probable place for a null to be necessary) we must

have n/2 ~ koD < ~. Assuming a series resistance and inductance per

unit length in the grid wires, of values R and L
w

we have from Eqs. 23,
w’

24 and 46 (for the small d/X implicit in the sheet assumption),

R = (Zo/d) sin2 koD
w

Lw = (Zo/d) (sin koD cos koD/Wo)
(47)

a

Using these values of R and Lw, the equation for u can be written as
w

2
u = (2 sin2 kD sin2 koD)/(sin2

()
kD + sin4 koD + & sin2 koD COS2 koD

o
2W
~ sin koD cos koD sin kD cos kD) (48)

o

from which IR12 can be written as

(
2

)(
sin2 kD - sin2 koD + #- sin koD cos koD -

)

2
sin kD cos kD

IR12 = o

( )2 (

~ (49)
sin2 kD + sin2 koD + & sin koD cos koD -

- ‘)
sin kD cos kD

o

2(I



This equation for IR 12 is plotted ver sus D/l in Fig. 4 for several values

of D/l o (note that D/X . kD/2n). The most striking thing about Fig. 4 is

that the more we shove D/A. toward ~, the sharper and deeper the null

becomes. The simple resistive sheet has a natural null when D/A is ~.
,0

The more we try to avoid this natural null position by reactive loading the

less effective the sheet is in a broad-band sense. Nevertheless, the present

analysis indicates a quick way of adjusting for unpredicted peaks in the in-

cident radiation once the grid structure is in place. This is especially true

since the exact value of R is not too critical.
w

This can be seen from Fig. 5,

where the value of Lw is chosen according to Eq. 24, but the value of Rw

is always set at (zO/d). It can be seen that the “nulls” thus created are

not precisely zero, but that the approximate null can be shifted somewhat

(although rather sluggishly) by varying Lw alone. This method has the

added benefit that the shifted “nulls” are still fairly broad.

II. J Capacitive-Resistive Null-Design Sheets

To create a null for koD less than n/2, a sheet made up of resistive ele-

ments in parallel with capacitive elements is one possibility. This is so

because, rewriting the equation for a in terms of sheet admittance, we have

2 sin2 kD yr
a= 9

1 + jy12 sin2 kD + 2 yi sin kD cos kD

and from this, if u is to be unity at k we must have
o’

sin2 koD ( y - 1)2 + (yi sin koD + cos koD)2 = o.
r

(50)

(51)

The above equation, for a parallel Rw - Cw combination, can only be valid

if we set

Yr =1

Yi=- cot koD, (52)

21
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I

and thus

Rw = Zo/d

cot k D
Cw = (dDco) ~ ; .

0

With these values of R and Cw, u can be written as
w

u = (2 sin2 kD)/(1 + sin2 kD + (W/UIo)2 cot2 koD sin2 kD

2( UI/Wo) cot koD sin kD cos kD)

= (2 sin2 kD)/(2 sin2 kD +
(

\2
))#- cot koD sin kD - cos kD ,

0

from which it follows easily that

(
2

# cot koD sin kD - cos kD

jR12 =
o )

4 sin2 kD +
(

2“
& cot koD sin kD - cos kD

o )

(53)

(54)

(55)

The plots of Eq. 55 versus D/l for D/~ less than ~ are almost exactly

like the left half of Fig. 4, if we reflect about the D/l = ~ point and set

the new D/X o equal to ~ minus the D/ k. of Fig. 4. Thus if we wish to

have a null at D/}. = “ 025, the resulting curve is very similar to the

D/l. = -475 curve of Fig. 4, reflected about the D/~ = ~ point. Thus

we see that we can achieve deep nulls at moderately low frequencies, but

that this is paid for in the narrowness of the null (and also in the size of

the capacitors necessary, as can be seen from Eq. 53). The width of the

null is of the order of koD.

II. K Explicit Equations for Parameter Study

For the past several subsections we have been discussing impedance sheets,

with the implicit assumption that d/ k is small. We now turn to a determin-

ation of just what effect d/A has if it is not so small. This is useful in

24
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judging just what are the limitations of an impedance sheet analysis and

also in choosing, from a data presentation, appropriate grid impedances

by sight and judgement. This data presentation is given in Sec. 111 of

this not e. The explicit equations used in the calculation of this data were

lR12=+=&

where

2Z= sin2 (2nD/1)
a.

Iz 12+ sin2 (2nD/~) . 2zi sin (2nD/A) cos (211D/X)

and

z= Rwd/Z
r o

{44
4nD n2-—

d
- (d/~)2

- (d/k) An (d/2na) - (d/k) ~ 1 - e
1

z. = -—
1

n.1
n

n 2- (d/1)2 }

Thus the parameter study is restricted to grids with resistive loading

only. The parameters of the study are (d/D), (d/a) and Zr.
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111. DATA

The following twenty- one sets of curves may be divided into one group

of three sets and two groups of nine sets each.

The first group (Figs. 6 through 8) are intended primarily to demon-

strate the effect of (d/D) on [R 12. For each of the three, Zr is unity

and d/D is the curve-labeling parameter. The three sets are distin-

guished by different d/a values: 20, 100 and 500.

The next group, of nine curve sets (Figs. 9 through 17) is presented to
2

show the effect of Zr on IR I . The value of Zr is the curve-labeling

parameter in each set. The nine sets represent all combinations of three

d/a values (20, 100, 500) and three d/D values (1, .5, . 1).

The next group of nine curve sets (Figs. 18 through 26) demonstrate the
.2

effect of d/a on IR I (and, for the left half of these curves, the effect

of d/a is quite accurately that of an equivalent inductance given by

Eq. 30). The nine sets represent all combinations of three z values
r

(.5, 1, 2) and three d/D values (1, “5, . 1).
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IV. DISCUSSION

There are several points that can now be made in summarizing the re-

sults of Sec. II and by surveying the curves of Sec. III.

1. The resistive sheet that minimizes the average reflected energy

over a broad band is the one that has Zr = o707. With- this value

of Zr, 31?70 of the energy is reflected.

2. The resistive sheet that minimizes the energy in the reflected
-t/T

pulse, if the incident pulse is given by U(t) 4 , is the one

with

z=
r

The fraction of the energy reflected is

d -2x
2fi - 1-4

f=
min

*2fi+3 l-l 0

where X o = (D/T c). fmin iy less than; for X. greater than

“ 089. fmin is less than ~ for X
o

greater than 1°1.

3. The resistive sheet that minimizes the fraction of energy reflected

at a given frequency, wo, is one with

z
r

= sin (W D/c)
o

The fraction of the energy reflected at UJo is then equal to

1- sin (UIOD/C)

1 + sin (~ D/cj
o

4. One can increase the initial drop-off of

using small values of z (if the sheet is
r

48

\R12 at low frequency by

purely resistive). The



price is that IR 12 does not drop very far, just fast.

5. One can create a null in the reflected energy at U.Jo, if n/2 <

(Wo D/c) < rr, by using a sheet made up of inductance and resis-

tance in series. The appropriate values are Zr = sinz ( WoD/c)

and Zi(wo) = ~ sin (2 UIoD/c). The null gets sharper the closer

it is’ forced toward n.

6. One can create a null in the reflected energy at w ifO<
o’

(UIOD/C) < Tr/2, by using a sheet made up of capacitance and

resistance in parallel. The appropriate values are yr = 1 and

yi(ulo)= - cot(wo D/c). The null gets sharper the closer it is

forced toward O.

7. A grid of wires with d/D < 02 gives energy reflection coeffi-

cients differing very little from those for d/D = O as long as

z is of order 1 and d/a is less than about 50.
r

8. A grid of wires with d/D < .5 has an energy reflection coeffi-

cient different from that for d/D = O by not much more than

-lifzr is of order 1 and d/a is less than about 50.

9. The energy reflection curves for ;<z r < 2 are grouped rather

closely together for D/i < ~ .

10. The effect of d/a (as long as it is less than about 50) is quite

small if d/D is less than about - 1.

All in all, if sufficient importance is given to simplicity (i. e. ease of

construction) the single-grid reflection reducer could be quite adequate.

However, two further factors that must be considered before a final de-

cision on the number of grids can be made are:

1. What we have done throughout this note is to restrict ourselves

to frequencies high enough that an infinite planar grid analysis
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is adequate. At the lower frequencies, where cavity mode damping

may become important, more than one grid may be optimum.

2. If frequencies high enough for D/A to be of order ~ are important,

a second grid could be useful in cutting out the periodic return of

IR12 to unity. This second grid should be placed so that Dl # D2.

Perhaps D2 << D1 would be a good choice for both mode damping

and destroying the periodicity of IR 12.
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