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1. Introduction

There are four problem areas of practical interest that

geometricallyas a half ellipsoid symmetrically resting on an

can be described

infinite ground

plane. They are: (1) blade antennas on an aircraft; (2) electric-field sensors;

(3) field distortions by a ground plane of finite thickness; (4) protrusions on ‘“

a large aeronautical system or within an EFIFsimulator. This note places r
particular emphasis on problem (1), whereas the other three problems will be

discussed briefly and with sufficient quantitative results.

When we began our investigation into the response of aircraft deliberate

antennas to EM, it was thought useful to report the results of our investigation

in two different formats. One format would be a series of technical memos which

contain, for any particular antenna chosen for study, (1) elaborate drawings of

the antenna depicting clearly its physical shape and the electrical connections

(e.g., the driving point, the conducting paths), (2) a brief description as to

how the antenna works, and (3) numerical and graphical results for the effective

height (or the equivalent area) and the input impedance at the nearest accessible

terminals of the antenna. Between the accessible terminals and the “tem.inals”

usually referred to in the antenna theory there are always many different kinds Q

of matching (compensating)networks which often require ingenuity and antenna

engineer~s experience to figure out what they are intended to match with.

Another format to present the results of our investigationwould be to

ferret out the features that are common to a class of antennas and then a

detailed elaborate analysis for each feature would be carried out, including

derivations of all the formulas and a parametric study of the antenna geometry.

The results presen~ed in this format would then be applicable to areas not

necessarily restricted to aircraft deliberate antennas. The present note is

the first of a series of notes in this format, while several technical memos

have already been completed and are now being circulated.

This note deals with the electromagneticresponse of a half ellipsoid

resting on a infinite ground plane or, if one wishes, a whole ellipsoid in free

space. For aerodynamic reasons, aircraft antennas are often of the shape of a

blade. A blade is nothing moze than just one of ‘themany limiting forms of an

ellipsoid, or simply an elliptic disk. An ellipsoid can be said to be the most

general three-dimensionalobject which can degenerate

a sphere, an oblate spheroid, an elliptic disk, and a

into a prolate

circular disk.

spheroid,

Apart
e
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from being flexible in shape, an ellipsoid lends itself to analytical treatment

because the Laplacian operator is separable in ellipsoidal coordinates and

because elliptic integrals and elliptic functions, which always crop up in this

analysis, have been well studied and even tabulated. In this note the Laplac,e

equation is all that needs to be solved, since we will concern ourselves only

with electrically small ellipsoids,

The “complementary”problem of our present problem (i.e., an infinite

ground plane with an ellipsoidal boss) is that of an ellipsoidal depression in

an infinite ground plane (i.e., an ellipsoidal bowl with an infinite flange).

Unfortunately, it is complementary only in the sense of geometry but not in

their respective electromagneticcharacteristics, and so one cannot.really relate

the electrical properties of the two. The “complementary” antenna is often used

in aircraft and warrants a detailed

involved for such an antenna will be

the problem considered in this note.

value problems.

analysis in the future. The analysis

more complex and much more numerical than

It belongs to the class of mixed boundas-y-

The boundary-value problems that we will solve below are simple enough that

we can afford to do several things which are otherwise impossible in a note form.

First, the analysis will be self-contained. Second, we will get as much as possible

by performing different simple operations on the solution of the problem and arrive

at different useful quantities; such as the equivalent area, the radiation

resistance, the polarizabilities, the field enhancement factors, etc. Third, all

possible parameters will be varied–to cover all possible geometric shapes. Fourth,

extensive tables and curves will be given. Fifth, we will point out several

related problems and concepts.

It should be pointed out that here, we will not make any calculations on the

antenna capacitance, although capacitance (sometimes, inductance) is one of the

two important parameters that characterize an electrically

other parameter being the equivalent (effective) height or

The capacitance value is very sensitive to the size of the

small antenna, the
1

the equivalent area.

antenna’s excitation

gap and is usually very large and needs to be tuned out for the frequency range

of interest. The capacitance problem can be easily formulated but will require

considerable numerical work. However, once the capacitance problem has been
2

solved all other parameters of an electrically small antenna can be obtained.

This note may-as well be entitled “Electrically-Small Ellipsoidal EMP

Sensors.”

3



II. An Ellipsoid in Uniform Fields

We will first give some pertinent formulas that connect the rectangular @

coordinates (x,y,z) and the ellipsoidal coordinates (~,n,~), and then derive

the induced charge density on an ellipsoidal boss on an infinite ground plane

in a uniform electric field.
3 4,5

For the two coordinate systems mentioned above we have (Fig. 1) ‘

2 (&+a2)(r@a2)(C+a2)
x=

(b2-a2)(c2-a2)

(&+b2)(n+b2)(<+b2)
Y2 =

(c2-b2](a2-b2)

2 = (:+c2)(n+c2)(c+c2)z
(a2-c2)(b2-c2)

2 2,2
x

(

hyperboloids of one sheet

2
+++&= 1
b+~ 2

2 2
a +il c +rl -c >~>-b

)

●

✃

(1)

(2)

2 2 2

(

hyperboloids of two sheets
x ++++= 1
a2+< b +< c +C -b2 > ~ z -a2

)

where, without loss of generality,we have assumed a>

discussions it will be helpful if one can picture the

constant values of C, ~ and ~ in the three planes

x= O, y=O, and 2=0.

In the x = O plane we have

geometry traced out by *

defined respectively by

.

.,, ●
4



z

tx

b
Y“

Figure la. Ellipsoid.

-.——

z

k
----

\

\

\

——— —

/
/

/
f

,,

I
\ k ,pl=const

\ la
1
\

l!!- /’
\ ,~ /

——..
Y

#
/ i ‘,

/ I
I

\

Figure lb. The x’= O plane.

Figure Id. The z = O plane.

Fi~ure 1. Ellipsoidal and rectongul.arcoordinates.
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L_’z (hyperbolas: bz > 1~1 > C2)

bz-l~[ Inl-cz= 1

The geometry is shown in Fig.

2 ~z
x

‘--Z--=
a2i-& c +g

The geometry is shown in Fig.

2/2+--Y--=

a2-lrI/ bz-ln[

lb. In the y = Clplane we have

1 (ellipses: E > -cz)

1 (hyperbolas: b2 > 1~~ > C2)

1 (hyperbolas: az > Icl > bz)

[c. In the z = O plane we have

1 (ellipses: g > -c2)

1 (ellipses: bz > /q\ > cz)

1 (hyperbolas: az > IcI > b2)

The geometry is shown in Fig.

To complete the geometry we include the line element d!L and the metric

*

.



coefficients hl~ h2 and h :
3

s

,

(d!)z = (dx)2+ (dy)2+ (dz)z

h; = (t-n)(t-%)

4R:

h: = (n-c)(n-c)

4R;

(3)

R*= (s +a2)(s+b2)(s+c2), (s= ~,~,~)
s

We ncm have all the necessary formulas and geometry we need for the followin~;

calculations and discussions.

As evident from (2), the surface- t = O corresponds to the surface
2 2

defined by (x/a) -1-(y/b)* + (z/c) = 1, which is the surface of our ellipsoidal

antenna in Fig. la.

Let us now consider the ellipsoid in Fig. la

field ~ parallel to the x-axis or, equivalently,

resting on an infinite ground plane (Fig. 2). The

immersed in a uniform electric

a half ellipsoidal boss

incident potential $ is
o

$=-EX=-EEZRF(4)

where (1) has been used. Outside the ellipsoid the total potential ~ is given

by$=$o+$s, $s being the scattered potential. Noticing that $0 and $s

are solutions of the Laplace equation and $0 is explicitly given by (4) onl~can

then easily find $ by the method of–variation of parameters. In that method

one writes $s = $.%, where the unknown fu>ction F depends only on <,

7
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Ground Plane

Figure 2. Infinite ground plane with an ellipsoidal
boss in a uniform field.
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as is obvious from the geometry of--theproblem. Substituting this form of

$s in the Laplace equation one gets

2
~+~-&lflRC(g + a2)] = O
d(

the solutien of-which is found to be, by direct integration,

J
m

+s = c+
ds

0 ~ (s+a2)R
s

*

(5:1

where C is a constant. At large distances (5) behaves as

+s
2

‘“-CEX —
~r3 ‘

asr= ~+. (6’)

~,hichis a dipole field, as it should be. The constant C is determined from

the boundary condition that $ = 00 + $s = O at & = 0. Thus

\

c
[ds/(s+a2)R~

$= $.: Y R2 = (s + a2)(s + b2)(s + C2)

J

(7)
s

[ds/(s+a2)R~
o

which vanishes at C = O as well as at x = O. So (7) applies to an ellipsoid

in free space as well as a half ellipsoidal boss on an infinite ground plane,

The induced surface charge density G on the ellipsoid is obtained by

differentiating (7):

~= -.[%],=O=-’[ij$lc=o

EEbcN
=

a-
~a2-b2)(a2-c2)

(8)

9



where

+

co
1

e
abc ds .$J[m dx—=

Na 2 2 Jo (x+l)s’z(x+~z)+(x~z)~
, (6=:, Y=:) (9)

o (s+a2)R~

A quantity of interest is the electric-field enhancement factor f
E

at the tip (a,O,O) of the ellip~~id, From (8) one i~ediateIY has
u

[1‘E=;
‘N

a (10)
tip

which will be graphed and tabulated in the next section.

Let us point out in passing an interesting observation. For a freely

charged ellipsoidwith total charge Q the surface charge density Of is
3,4,5,13

given by

Q.—
‘f 4mabc

Writing Q = CV and using

I
(11)

x2/a4+y2/b4+z2/c4

for the capacitance C of an ellipsoid, one has the following interesting

result upon comparing (8) and (11):

The quantity inside the square bracket is just a constan~ symmetric wi~h respect

to B and y. The simple looking formula given in (12) may be understood from

the integral equation approach. For the forced problem one has, on the surface

S of an ellipsoid,

IoGdA = Ex (Forced}
s



making the total potential on S zero. For the freely charged problem one has

\ s~fGd* = v
(Free)

making the total potential on S equal to V. The kernel G is,of course,the

static Green’s function. This way of looking at things is familiar to those who are

~,ellversed with the ideas of SEM.

11



111. Equivalent Area

In Fig. 3 we again show a half ellipsoid resting on a ground plane with o

a uniform electric field. But this time we also include in the figure an antenna

gap togetherwith a simple driving mechanism (feeding by a coaxial line). The

short-circuitcurrent that the gap “sees” is equal to the time rate of change of .

the total charge collected by that part of antenna above the gap. This is a

simple consequenceof t-hecontinuity equation and holds for all frequencies. The *

short-circuitcurrent is, in turn, proportional to the time rate of change of the

displacement current of the incident field, and this proportionality has the

dimension of area and has been termed the equivalent area A
1

At low
eq”

frequencies, A approaches a definite limit depending only on the geo~etry
eq

of the antenna.

For LF antennas the antenna engineer often talks about a quantity called

“sensitivity product,” which is the product of the effective height he times

the capacitance C (or the equivalent length times the inductance in the case
a

6,7of loop antennas) of the antenna. This product is nothirigmore than the

product of equivalent zrea A times the permittivity s
eq

of the ambient

medium (see, Ref. 1). So all the desirable properties that the sensitivitj-
0

product has from the antenns designer’s viewpoint also apply to the equivalent’

area. Among them the most often quoted feature by the antenna engineer is that

the sensitivityproduct has extremely simple transformationproperties through

some typical antenna matching networks, which always exist. For instance,

heCa = h:C; across a shunt matching capacitance and he~= h~~ across

a transformermatching network, the primed and unprimed quanfiitiesreferring

to values measured at the terminals on the two different sides of a matching

network. We may also add that the sensitivity product can be accurately

calculated from a mathematically well-defined boundary-value problem because

one need not worry about the local geometry of the feed point which has many

unsettled theoretical questions (or questions which will never be settled to

the satisfactionof those who have been concerned with the “gap problem” in

the antenna theory).

.Let Q(xo) be the total charge collected by that part of antenna above

the gap with surface area S (see Fig. 3). Then, from (8) we have
o

12
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Figure 3. Ellipsoidal antenna with a driving gap at x = Xo.
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Q(xO) =
a~dA = —
11

xdA

so a’ so x2/a4+y2/b4+z2/c4

Projecting cIAonto the xy-plane we have

dA=@k
n
z

where

n = the
z

[

1
‘~

z-component of the outward unit normal to S
o

az
1

2
z/c

x= &=o
x2/a4+y2/b4+z2/c4

Thus, (13) becomes (Fig. 3)

2C2N
Q—=
CE ~a“ P ~dxdy

o

(P. = projection of So)

2CN
a

~~

xdxdy.—

a’
(z/c = ~ - (x/a)’ - (y/b)2)

P.
l-x2/a2-y2/b2

4cNa va“ b l-(x/a)

1~

xdxdy=—
2

a Xo
0 l-(x/a)2-(y/b)2

.

.

= mbcN
()

al-$ (14)

.

Let us define the equivalent area Aeq(xo) as

\

Aeq(xo) = fibcNa(l- x~/a2) (15)

Then N is simply the normalized equivalent area when the antenna gap is at
a

the ground plane, i.e.,

A (0)
Na ‘ J&-

14
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The short-circuitcurrent I~c
-iut

is given by, with time convention e 9

Isc(xo) = -iucEAeq(xo) (16)

As evident”from (15), the position of the gap is factored out as (1 - xf/a2),

which is so simple that it requires no further considerations.

We will now study in detail the normalized area Na, which is also

equal to the electric-field enhancement factor fE according to (10). Let us

rewrite (9) as

A (0)
Na=~

This integral will be evaluated

= fE

1
-1

dx

(X+1)312(x+f12)~(x+y2)~
(9’)

in three different ranges for the values of $

and y: (a) 13~1, y~l; (b) B~l,y s1;(c)6z1,Y>1. Becauseof

Na(&Y) = Na(Y,B) these ranges cover ali positive values of B and y.

(a). 8~l,y~l (b~a, c~a)

Substitute

2 _ l-y2
z

X+l

in the integral (9). Then

1 @y

~

rl-y2 2
Z dz

()

1-62—=
Na

m=—
(1-y2)3’2 o

~(1-z2)(l-mz2)
l-y2

BY
rl-y2= u 1 /7l-mz2 dz

2 3/2
m(l-y ) o

41-z2)(l-mz2) 1-22

—

15



-1 Jf~, r-1 1-B2
cp= sin c1= sin —

I-yz

where F and E are respectively the incomplete elliptic integrals of Ehe

first and secondkind~ Note that when 6 + 1, equation (17) becomes

1

[ 1
-l@- ~Y2 sin—=

Na
20-y2) ry l-y2

Substitute

2 _ y2-1
z

X+l

in the integral (9). Then

1 J
1Y2-1 2

Z dz
~=

(?:;’/2 o (’2=*) ~
V (1-k2z2)(l+z2)

q = sin-~(l - 62/y2)%,
()

4
-1 y2-1

a = sin
Y2-$2

where we have used Formula (3.153.2) in Ref. [9]. Note that when y + 1,
equation (18) becomes

1 B

[

—-,m
-1 B—=

Na 2(l_82)3/2 $- ‘an
r1-62 1

and when y + CO, equation (18) becomes

16



Use the same substitution as in case (b). Then

1

~

/-y2-1—=
Na (Y2%0

2
Z dz

()

m = $2-1

&mz2) (1+22) Y2-1

C - E((p\a)1 (19)

where Formula (3.153.1) in Ref. [9] has been used. Note-that when ~ + 1,.
equation (19) becomes o

Figures 4-6 and Tables 1-3 were obtained by numerically evaluating formulas

(17), (18) and (19).

Before proceeding further let us make some pertinent remarks about equations

(18) and (19). Equation (18) applies to the case where c > a > b, while equation

(19) applies to the case where b > c > a. It is also important tO remember

that in these cases the electric field ~ is always directed along the a-axis

of the ellipsoid. From geometry considerations, these two cases must correspond

to other cases where ~ is directed along the other two axes of the ellipsoid

if one maintains a k b L c for ellipsoids. Indeed, the case where c Z a 2 b

with ~ parallel to the a-axis corresponds exactly to the case where a 2 b L c

with E parallel to the b-axis, and the case where b 2 c 2 a with ~ parallel—

to the a-axis corresponds precisely to the case where b 2 c 2 z with E—

parallel to the c-axis. Of course, the corrcspondance holds only for ellipsoids

in free space because an in5inite ground plane does not allow a parallel static

1.7



0 off-l 04 06 08 I0
.

. .- * I&@ ● ● ●

Figure 4. Normalized equivalent area for b/a < 1, c/a < 1.

Na = Aeq(0)/(~bc)

.



.

+

.

2

N*-2

10

8

6

4

2

0

~~

.

. 0.15

03●

I—. I I I I I I

o

0 02● 0.4 ~lc 0.6 0.8 1.0-,

Figure 5. Normalized equivalent area for b/a ~ 1, c/a s 1,
~ = Aeq(0)/(~bc)
a

19



20.

Iva-l

16●

12●

08●

04●

o # I 1 I I I I I I I

o 02● 04 00 08 10
“ (Vb “p “

.

.

.

Figure 6. Normalized equivalent area for b/a a 1, c/a > 1.

Na = Aeq(0)/(nbc)



. ,

Table 1

Normalized Equivalent Area, Aeq(0)/(vbc)’, of an Ellipsoidal Antenna

for case (b): b~a, c~a

.05 I 0.1 I 0.2 I 0.3
I 0.4

I 0.5 1 0.6
I

0.7
I

0.8
I

0.9
I

1.0
I

~

.05 148.1685 86.7434 54.7057 43.5257 37.7722 34.2552 31.8828 30.1765 28.8920 27.8922 27.1646

0.1 49.2954 30.2159 23.7060 20.4003 18.3976 17.0552 16.0942 15.3735 14.8141 14.3683

~

0.2 17.9144 13.7901 11.7217 10.4800 9.6534 9.0649 8.6254 8.2856 8.0155
N
P

0.3 10.4855 8.8363 7.8502 7.1959 6.7312 6.3851 6.1178 5.9058

1“
0.4 The 7.3994 6.5418 5.9737 5.5708 5.2709 5.0396 4.8562

0.5 normalized 5.7616 5.2450 4.8789 4.6066 4.3965 4.2301

0.6 equivalent area is 4.7628 4.4210 4.1668 3.9708 3.8155

0.7 “ a symmetric function of b/a and c/a 4.0965 3.8551 3.6690 3.5215

i

0.8
.

3.6233 3.4444 3.3027

0.9 3.2713 3.1339

1.0 3.0000



Table 2

Normalized Equivalent Area, Aeq(0)/(nbc), of an Ellipsoidal Antenna

for case (b): b~a, c~a

a/c .05 I 0.1 I 0.2 I 0.3 I 0.4 I 0.5 I 0.6 I 0.7 I 0.8 I 0.9 I 1.0
I

.05
—

0.1
—

w
M 0.2

0.3

0.4

0.5

0.6

0.7

0.8
—

0.9

1.0

21.0800

21.2470

21.7155

22.2852

22.9120

23.5737

24.2575

24.9557

25.6632

26.3768

27.0291

11.0438

11.1354

11.3925

li.7055

12.0505

12.4154

12.7933

13.1798

13.5723

13.9690

14.3683

,

6.0260

6.0803

6.2326

6.4185

6.6238

6.8415

7.0674

7.2992

7.5352

7.7743

8.0155

4.3536 “3.5175 3.0160 2.6817

4.3957 3.5539 3.0490 2.7127

4.5141 3.6559 3.1417 2.7995

4.6585 3.7802 3.2545 2.9049

4.8182 3.9177 3.3791 3.0214

4.9877 4.0638 3.51.15 3.1449

5.1640 4.2157 3.6492 3.2735

5.3450 4.3718 3.7907 3.4055

5.5295 4.5311 3.9352 3.5403

5.7166 4.6928 4.0818 3.6771

5.9058 4.8562 4.2301 3.8155

0

2.4430

2.4727

2.5555

2.6560

2.7669

2.8844

3.0065

3.1321

3.2601

3.3901

3.5215

2.2640

2.2929

2.3729

2.4699

2.5768

2.6900

2.8076

2.9283

3.0515

3.1764

3.3027

2.1249

2.1531

2.2312

2.3258

2.4297

2.5396

2.6538

2.7709

2.8904

3.0115

3.1339

2.0136

2.0414

2.1182

2.2108

2.3125

2.4200

2.5315

2.6459

2.7624

2.8806

3.0000



Table 3

Normalized Equivalent Area, Aeq(0)/(mbc), of an Ellipsoidal Antenna

for case(c): b~a,caa

a/b .05 I 0.1 I 0.2 I 0.3 I 0.4 1
0.5 I 0.6 I 0.7 I 0.8 I 0.9 I 1.0

I
.05

0.1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0797 1.1233 1.2180 1.3158 1.4146

1.1617 1.2508 1.3458 1.4432

1.3325 1.4234 1.5186

1.5121 1.6062

The 1.7002

normalized

equivalent area is

a symmetric function of a/b and a/c

1.5140 1.6137 1.7135

1.5418 1.6411 1.7408

1.6162 1.7151 1.8151

1.7036 1.8030 1.9037

1.7980 1.8983 2.0003

1.8968 1.9984 2.1020

2.1016 2.2070

2.3145

1.8135

1.8408

1.9157

2.0054

2.1036

2.2070

2.3140

2.4237

2.5352

1.9135

1.9410

2.0168

2.1079

2.2077

2.3131

2.4223

2.5342

2.6482

2.7638

2.0136

2.0414

2.1182

2.2108

2.3125

2.4200

2.5315

2.6459

2.7624

2.8806

3.0000



~ field. Thus, our numerical results just presented apply to all possible

orientationsof ~ field and all possible sizes of ellipsoids. Because the o

results for other field orientations are quite useful in other areas of

application (such as the depolarization effects of an ellipsoid) it is worth-

while to see exactly how to interpret our results so as to apply to other field .

orientations.

●

(b’). Conversion of c 2 a 2 b and E IIa-axis to a>b>c and g ~]b-axis—

In equation (18) we replace a by b, b by c, and c by a. Then we

have, calling Na by Nb after conversion,

I 6Y [F(cp\a)- E(cp\a)]+ $Y—=-

‘b (1-62)(1-y2)+ (62-Y2)(1-Y2)%

IBY m dx=-
2 2 3/2

o (X+1)%(X+6 ) (x+y2)~

2
E(cp\a)-—

~2yy2

“(20)

●

r-1 1-+2
a = sin —

l-y2

where B=b/a, y=c/a a~d lZBZY. The first term in (20} is equal to

minus expression (17). It can be verified that equation (20) can be obtained

directly by solving the problem depicted in Fig. 7a, i.e., by evaluating the

integral in (20) directly. Our numerical results presented above for case (b)

thus apply direccly to case (b’), Fig. 7a, if the values f3 and y in case

(b) are to be interpreted, respectively, to be the vzlues y/#3 and 1/6 in

case (b!).

(c’)* Conversion of b 2 c 2 a and g IIa-axis to a2b2c and ~ IIc-axis

In equation (19) we simply replace c by b, b by a, and abyc

and arrive at, with N in place of Na,
c
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Figure 7a. ~ IIy-axis and a > b > C.
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Figure 7b. ~ [1z-axis and a > b a c.



/

By m dx=—
+ 2 3/2

2 c1(X+l) (x+B2)%xti )

(21)

-qj, r-1 1-62~=sin a = sin —
l-y2

where 6=b/a,y=c/sand l~f3~Y. Again, it can be easily verified that

expression (21) can be obtained directly by solving the problem depicted in

Fig. 7b. Our extensive numerical results presented for case (c) thus apply

directly to case (c’), Fig. 7b, if one simply interprets the values 6 and

y in case (c) to be, respectively, the values I/y and B/y in c== (c’).

Before we conclude this section, let us discuss some important, special,

degenerate cases of an ellipsoid: sphere, prolate spheroid, ob~ate spheroid,

elliptic disk (blade).

Firstly, for a sphere we set @=y= 1 in (17), (18) and (19) and they

all give

Na=3 (sphere) (22)

as is expected. This value is marked on the curves in Figs. 4-6.

Secondly, for a prolate spheroLd we set $=y<l in (17) and get

1
-1~, m= 1 - $2

,

In terms of the eccentricity e, s = m, this expression becomes

o
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.

~2
Na

[ I

.=+lng.l--~ (prolate spheroid)
l-c

L
1‘%

b ln(2a/b)-l
(thin rod:

which have been obtained by Maxwell in his investigation

10effects of a perneable body. Expression (23) is shown

Thirdly, for an oblate spheroid we set ~ = y > 1

of the demagnetization

in Fig. 4.

in (19) and obtain

-1

1which, in terms of the eccentricity c = 1 - a2/b2, becomes

[

r
2

Na=c2 l--@--
1

-1 ‘1
sin s , (oblate spheroid)E (24)

10a form originally due to Maxwell. Expression (24) is plotted in Fig. 6.

Fourthly, for an elliptic disk or blade (Fig. 8) we set y = O in (17)

and introduce the normalized equivalent area ~blade
defined asa

~blade Aeq(0)

a = yNa = Tab

Thus,

Nblade ‘1 1=— .
a K(ml)-E(ml)

(blade: as b)
J1-ml

a/b
‘1n(4a/b)-1 ‘ for a >> b

(25)

(26a)

(26a’)

where
‘1=1 - b2/a2, b~a, K and E are respectively the complete

elliptic integrals of the first and second kind. For ~= 1, we first inter-
change the role of 6 and y in (18) and then set y = O. Thus,

~blade ‘2
a (blade: a~b)= E(m2)-(1-n12)K(m2) (26b)
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Connector

Figure 8. A typical airc~aft blade antenna.
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where ‘2=l-
aL/bL and b ~ a. Expressions (26a) and (26b) reduce to 4/n

for a circular disk as they should. Since many aircraft antennas are of the

form of a blade we present in Fig. 9 and Table 4 extensive numerical results

based on equations (26a) and (26b). Notice that the curve in Fig, 9 is

continuous and has a continuous first derivative at a = b, as can be verified

by differentiating (26a) and (26b).

Finally, we examine expression (19) for the case where ~ >> 1 and

y >> 1. This limiting case corresponds to the problem of field distortions

by a ground plane of finite thickness.
14

From (19) we have

~=1- c2/b2

When b = c, this gives

(26d)

in agreement with ‘theresult in Reference [14],

(26c)
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Table 4

Normalized Equivalent Area of an Elliptic Disk (Blade Antenna)

Aeq(0)

nab

137.0980

20.0328

3.6945

2.4420

1.9890

1.7376

1.5865

1.4836

1.4091

1,3527

1.3087

1.2732

b

:La t

10-3

10-2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

l.O

1.0000

1.0002

1,0112

1.0324

1.0581

1.0864

1.1162

1.1469

1.1782

1.2100

1.2413

1.2732



IV. PolarizabiliCies

The response of an electrically small body to an incident wave is

predominantlyof elec~ric and magnetic-dipole type. Hence it is justified

to characterizean electrically small object by its electric and magnetic

polari.zabilities,This characterizationof small objects has been widely used

in EM’ interaction calculations. We will in this section calculate Ehe electric

and magnetic polarizabilitiesof a half ellipsoid on an infinite ground plane

from.the solutions of an electrostatic and a magnetostatic problem. The

results will apply to surface protrusions on a complex structure such as an
11

aircraft or a missile y and various “junk” inside an EMP simulator.

Let us first calculate the electric dipole ~ and, hence, the electric

polarizability ae for Fig. 2. Clearly, ~ is parallel to the external

field & and we write

P = aecE

which defines ae. To find p we use the induced charge density o given

by (8) and perform the following surface integral:

p=
~ /]

x2/a2 dA
x~dA = NaEE

s s
x2/a4+y2/b4+z2/c4

where S is the surface of the half ellipsoid (Fig. 2). Evaluating this

integral along the same line as from (13) to (14) we get

P = ‘hNa&E’

and so ,

c1
e = ‘hNa

(27)

(28) .

.

(29)

where” Vh = 2/3 mabc, the volume of a half ellipsoid. The dipole moment p

can also be obtained from the scattered potential at large distances, which is

given by (6) for a whole ellipsoid in free space. We rewrite (6) as, with o
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the appropriate expression for the constant C,

(30)

from which we deduce that the dipole moment is twice the value given by (28).

The factor 2 is obvious because when one uses (28) to calculate the field one

must not forget the ground plane, whereas (30) applies to free space.

If one compares (29) with (10) and (15), one gets the following interesting

relation

a
e

A (0)
—= ~—=f=N

‘h
Ea ,

(31)

that is, the normalized electric polarizability, the normalized equivalent

area,and the electric-field enhancement factbr at the tip are all equal.

For an elliptic blade we have

CY
,

.!s#!=f = ~blade
(2a/~)nab Ea (32)

Thus, the numerical results in Section III apply directly to the electric

polarlzability.

Let us now calculate the coefficients of the magnetic polarizability

tensor ~:

m= a ●H
m—

where m is the magnetic dipole moment and H is the external magnetic field— —
(Fig. 10), Let us first take ~ parallel to the y-axis and calculate the

yy-component of the tensor ~. Then we will take H parallel to the z-axis

and calculate the zz-compo.nentof a . These two diagonal elements def.ine
%

uniquely.

To solve our magnetostatic problem we introduce the magnetic scalar

33
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boss in a uniform magnetic field.



potential
‘2

such that

H = -V02

v%2 = o

xi2 on the plane x = O and on
—=0,h-i

the ellipsoid ~

$22-Q ~ = -Hoy

Following almost the

case we find for the

where

same procedure as in Section II for the electrostatic

total potential R,,

i22=f20+

= -H2y

1

L

!-2
s

abc

/

‘b m dsl+——

2 ‘b-l ~ (s+b2)R
s1

/

m
J. abc ds—. —

‘b 2 0 (s+b2)Rs

Comparing this

a ground plane

abcN
Q b~=- ~H —
s 3 2 Nb-l 3 ‘

r

(33a)

(33b)

which has been evaluated in equation (20) in the previous section. At large
distances the scattered potential Q is given bys

(34)

with the potential of a y-directed

we then deduce the yy-component of

(.33C)

(33d)

r+- (3!5)

magnetic dipole just above

a, which will be denoted
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by a:, to be o
~b = 2~abc ‘b.—

3 Nb-l
(36)

m

When the external magnetic field is along the z-axis, we find the total
.

magnetic potential
‘3

to be

‘3 =

c
a =
m

-~

a
abc ds
2

0 (s+c2)Rs

2xabc
N=

_— —
3 NC--l

ds

(s+c2)Rs1
,

(37)

(38) 6

m denotes the zz-component of ~, and Nwhere a’ has been evaluated in
c

equation (21) of Section III.

A comparison of (29), (36) and (38) revealssome very interesting

relationship between the electric and magnetic polarizabilities of an ellipsoid.

Let us first introduce the.normalized polarizabilities ~ and @m:

i i
~_ae

a
-i m
a =—

e
‘h ‘

m
‘h

(39)

where, as before, Vh = 2/3 mabc, i.e., the volume of the ellipsoidal boss under

consideration. If one considers a whole ellipsoid in free space one simply uses

the

are

the

total volume, 4/3 rabc, as normalizing factor, and the following relations

unchanged. The superscript i can be any of the three principal axes of

ellipsoid. Then, we can rewrite (29), (36) and (38) as
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-#
=’ Ni

e

(40)

‘i~=
m Ni-l

from which we get

1— 1—
-#

m

(41)

or, in un-normalized form,

111
-J-~=T’
e m

(42)

a surprisingly simple relationship between the electric and magnetic polariz~bilities!

Also, summing over directions along the three principal axes a,b,c we have

(43)

which can be easily seen from the integral definitions of N as given in (!3),
i

(20), and (21). Equations (41) and (43) imply that

Equation (41) makes it evident that the numerical results of Section III are

also applicable to the calculation of magnetic polarizabilities.

The electric polarizability coefficient we have just found for a perfectly

conducting ellipsoid can be applied directly to a dielectric ellipsoid in a

uniform electric field and to a permeable ellipsoid in a uniform magnetic field,

In the case of a dielectric ellipsoid of permittivity c in a

field ~ (Fig. ha) the interior field E can be expressed
—i

p. 213]

uniform external

as [Ref. 4,

E G-E
-1=

—i
o l&P

—i (45)
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Figure Ila. Dielectric ellipsoid in uniform field.

.

Figure llb. Permeable ellipsoid in uniform field.
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where D is the so-called depolarization tensor, and P
- is the induced-i

polarization and related to ~ in the usual way, that is,

~=(E-E)E
o-i

Elimination of ~ in (45) gives, with E = E/E and ~ =
r o unit dyad,

%= ,o[+.+q-’.~
Interestingly enough, it turns out that

(46)

(47)

i.e., D is the inverse of the normalized electric polarizability tensor ; .
Y %

When (47) is referred to the principal axes of the ellipsoid one has

(i = a,b,c)

In the case of an ellipsoid of permeability p in,a uniform external

field ~ (Fig. llb) the interior field H~ can be expressed as [Ref, 4,

p. 258]

where ~ is the so-called demagnetization tensor, and M is the induced
●

+
magnetization. Elimination of ~ in (49) by means of

~i = (Pr - 1)%, Pr = llh.lo

gives

(48)

(49)

(50)

Again, it turns out that
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Thus, the electric polarizability tensor of a conducting ellipsoid is

the inverse of the depolarization tensor of the corresponding dielectric

eLlipsoid and also is the inverse of the demagnetization tensor of the

corresponding permeable ellipsoid.

Before concluding this sec~ion let us calculate the magnetic-field

enhancement factors from (34) for a y-directed field, and from (37) for a

z-directed field (see Fig. 10). Let us differentiate (34) and evaluate the

resulting expression on the surface of the ellipsoid: c = O. We have

(52)

Let us observe that H has a maximum ac (x = O, y = O, z = *c) which

correspond to (<=o,n~=-bz, C= -a2) in ellipsoidal corrdinates~ or at

the tip. Let us first examine those points at the base (Fig. 12), At these

points (Fig. 12a) we find

[1
ola~an~=~=1

~=-b2

C=-a2

Hence,
fb

for the magnetic-field enhancement factor ~ we have

where

LL

[1

~b % _ ‘b
H = ~max Nb-l

. --
m

?m is the normalized magnetic polarizability as defined by (39).

Similarly, for a z-directed field (Fig. 12b) we find from (37)

[1H N=
f;=$ =—

3 max
Nc-l

(53)

(54) 9
--c= -a

m
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\ !\ (, (x = O plane) of the ellipsoidal antenna of Fig. 10.
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Just as in the electrostatic case, we find that the field enhancement

factor is directly related to the Polarizability in the magnetic case.

Equations (10), (53) and (54) can be written in the concise form:

(55)

where, as before, the superscript i denotes direction of external field along

any of the three principal axes of an ellipsoid.

Finally, let us evaluate the magnetic field at

(Fig. 10). The total magnetostatic potential Q is

the tip of the ellipsoid

given by the sum of

expressions (34) and (37). Differentiating fl and evaluating the resulting

expression at the tip (x = a, y = O, z = O) we get

—

%ip = ‘%”%
(56)

—
where = $jPm -i-;21:

%
when referred to the b, c axes of the ellipsoid; I&

is the incident magnetic field. If one introduces the induced magnetic moment

~ into (56), one gets the extremely interesting result

.
(57)

which is analogous to the electrostatic

GE
-tTp “

case, (10) and (28),

1
yE (58)

where V is the volume of the ellipsoid or the volume of the half ellipsoid
.

if the latter is resting on a ground plane. Comparing (56) with (53) and (54)

we have the following interesting result: the magnetic-field enhancement factor ~

at the tip is the same as those at the base (Fig. 12) . In fact, the magnetic-

field enhancement factor is the same for all points on the surface of the ellipsoid

where the incident magnetic field is tangent to the ellipsoid.

ye will now evaluate the enhancement factors,f~ and f~, for a flat

ellipsoidal boss, i.e., a<<b and a << c (Fig. 10), which may model a

ground plane of finite thickness. Taking the limiting value of (17) and re-

interpreting the symbols we get
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~b
H

— [K(m )
= 1 + b2a:2 .1 - ‘(ml)]’

b>c, 22
‘l=l-c’b

ab
= 1 + c2-b2

[$ ‘(m2) 1-K(m2) , c>b,
‘2=1 - b2/c2 (59)

n

‘l+;; (flat oblate spheroid: b = c)

For f; one simply replaces b by c, and c by b in (59),
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‘v. Radiation Resistance

We will make use of the results derived in the previous sections to obtain

the radiation resistance of an ellipsoidal antenna with an infinite ground plane.

It may sound surprising that we are able at all to calculate the radiation

resistance from the low-frequency solution of the scattering problem of an

ellipsoid, since radiation resistance is intimately associated with the trans-

mitting antenna problem where the excitation of the ellipsoid is completely

different from that of the scattering problem. One may then say that the

current distributions on the antenna in the transmitting and scattering cases

are so different that one can hardly expect to get a reliable answer for the

radiation resistance solely from the scattering problem. But the difference

in current distributionswould not affect much the Poynting vector at large

distances, especially when the antennas are electrically small. Indeed, a

close relationship exists between the radiation resistance and the scattering

cross section of an antenna as implied by the reciprocity theorem. This
12relationship has been discussed in great detail by Slater. The following

method of calculation is primarily his.

Let Rr be the radiation resistance when our ellipsoidal antenna is

driven at its base with respect to an infinite ground plane (Fig. 3). ‘l’hen

the average scat~ered power P
Sc

is given by

P
1 2 2]E12A2 ~

=~\ISc12R =-WCSc r 2’ eq r

where we have used equation (16). On the other hand, Psc can be computed

from the electric and magnetic moments ~ and ~ of Section IV. From the

well-known dipole formulas one has

(60)

(61)

where Z. = 120T ohms and the factor % accounts for the presence of the infinite

ground plane. The values for p and m in (61) should be twice the values

in Seqtion IV because of the images. Using (29), (36), (38) and taking the

average of incident magnetic-field direction we find from (61)
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P =
Sc

with V = (4rabc)/3.

R=
r

[

N; N2u41.1fi 2 2
~V&lE12N~+ c~+—

2(1-Nb) 2(1-NC)21
Equating (60)

L

and (62) we get

2
‘b

N2
‘+ c

iN~(l-Nb) 12N:(1-NC)2

(62)

(63)

where A is the wavelength and (15) has been used for Aeq at x = O. If
o

the driving point is at xo # O, then

Rr(xo) = 1 z Rr(0)
l-(xo/a)

where Rr(0) is given by (63).

In the case of a prolate spheroid (a > b = c) we find from (43)

2N

‘b
=Nc=— Na~l ~

and from (63)

Rr =7(I) Zo[I+ (-&----] (prolatespheroid)
161T a 2

When a >> b, equation (23), gives

1 ~ ln(2a/b)-l
K

a a2/b2

and hence

Rr
16T a 2

“y (~) Z. (thin rod)

(64)

(65)

(66)

One can find from any standard book on antennas the following approximate

formulas for the radiation resistance of a thin short rod of length a above a

ground plane:
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for a triangular current distribution, and

for a uniform current distribution. By comparison, we have R; > Rr > R:
7

which

was somewhat expected, since the current distribution that we have used on the K
thin rod is parabola, as is shown by (16).
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VI. Summary

Let us summarize what we have found in this note. We have calculated the

following quantities of an electrically-small ellipsoid or a half ellipsoid

symmetrically resting on a ground plane:

A=
eq

=
—%

=
%

2=

m=

fE =

fH =

Rr =

The results

equivalent area, the ratio of short-circuit current–to the time

derivative of the incident displacement current.

electric polarizability tensor.

magnetic polarizability tensor.

induced electric dipole moment.

induced magnetic dipole moment.

electric-field enhancement f-actor,the ratio of maximum electric

field on the ellipsoid to the inciden~electric field.

magnetic-field enhancement factor, the ratio of maximum magnetic

field on the ellipsoid to the incident magnetic field.

radiation resistance.

obtained for these quantities are applicable to (1) blade antennas

on aircraft; (2) EMP electric-field sensors; (3) field distortions of a ground

plane of finite thickness; (4) scattering from protrusions of–aircraft or

missiles or within an EMP simulator. With respect to the direction of any o=

the three principal axes of the ellipsoid the following relations exist among

the calculated quantities:

i i

L=L=fi
AVE

(1)

i i
a a

?=~=
-f;

e

(11)

(III)
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Rr ~ ~

[

i2 ~2

~=~ 12(ae) + (a~)z + (am) , i#j#k
(AA~q)2

(Iv) 0

where i, j, k denote the directions of the principal axes; V is the total

volume of the antenna (sensor); A is the cross-sectionalarea perpendicular

to the i-axis;
ii

ae, am, etc. are the components of the tensors ~ and a
a

when Che incidnet fields (~ and IJ) are parallel to the i-axis; E H2<. ? d:.

are the fields at the tip of the ellipsoid at

field is tangent to and the external electric

ellipsoid; h is the wavelength; Z.

case where the antenna is resting on a

the ellipsoidal boss and equation (IV)

4 --- the factor 2 is due to radiation

is due to the images.

is the

ground

should

LLp LLp

which point the external magnetic

field is perpendicular to the

free-space impedance. In the

plane, V will be the volume of

be divided by 2 and multiplied by

only in half-space, while the factor 4
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