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Abstract

closed form solution in terms of elementary

the fields radiated by an impulsively excited

functions is

electric or

A new

developed for

magnetic dipole oriented arbitrarily in the presence of a perfectly

conducting wedge. Previously, this type of solution has been available only

for dipoles oriented parallel to the edge. The solution for the required two-

component FIertz vector is constructed by an image method utilizing an in-

finitely extended angular space, and expressions for the electromagnetic field

components are derived therefrom. It is shown that the new result reduces

properly to known solutions in the limiting cases where a) the wedge degenerates

into a half plane and b) the source is moved to infinity to generate an incident

plane pulse. For application to parallel plane waveguide simulators fed by a

conical transmission line, it is of interest to examine temporal sourc e functions

that lead to local simulation of an incident step function plane wave field by

transient dipoles. Such temporal ,source profiles are derived and are employed

for riumerical evaluation of the resulting diffracted field. The field plots are

compared with those obtained previously for plane wave incidence and permit

an assessment of the effect of, source location.



L Introduction

One type of parallel plane simulator for EMP diffraction involves a

conical, two-conductor feed region that is joined to the parallel plane region

by a bend in the conductors. Since the junction affects the incoming electro-

magnetic field, it is necessary to understand the efiect, of the bend on the

field transmitted into the parallel plane test region. Because of the complexity

of the actual junction problem, attention has been given to the simplest con-

‘ stituent con-figuration,
T

an interior or exterior bend in a single, infinite, plane,

perfectly conducting sheet. For large exter-ior bend angles, a sharp edge is
,

produced and the re suiting configuration, a wedge, is of interest for applications

involving terminated ground planes. In previous studies in this series [1, 2] ,

the incident electromagnetic field was assumed to be a plane pulse incident ..

perpendicularly to the edge, along one face of the wedge. For applications

involving parallel plane simulators or finite. ground planes, a more realistic

incident field is provided by a spherical pulse generated for example, by an

arbitrarily oriented electric or magnetic dipole source. The present note is

concerned with the solution of dipole diffraction b_y a wedge.

The wedge diffraction _problem is one of the first to have been treated

by rigorous analysis. While the early concern was with the time-harmonic

r egime, the solution for which could be represented variously by integral

transform and eigenfunction expansions, it was found subsequently that pulse

diffraction results were sometimes obtainable in closed form. An excellent

summary of the history of wedge diffraction may be found in the paper by

Oberhettinger r3J . It is shown there that the scalar field solutions for plane

and spherical delta function pulses incident on a wecl~c with IMrichlet or

Neumann boundary conditions can be obtained in terms of clemcnt:~ry functionti,

Since the electromagnetic fields radiated by axial’% electric and magnetic

dipoles can be derived by differentiation from the scalar Dirichlet and Neumann

solutions, respectively, it follows that these fields are also expressible in

closed form. However, closed form results have not previously been presented

* The ~erms 1’axialn and “transverse~’ denote directions parallel and perpen-
dicular, respectively, to the edge of the wedge.
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for the non-. scalarizable fields radiated by transverse dipoles. It is shown

here that-such solutions may indeed be developed, by a fundamental procedure

utilizing an image representation in an infi+tely extended angular space, Thus,

a principal new result of the present study is the construction of a closed form
\

solution of the time-dependent dyadic Green’s function for a perfectly conduct-

ing wedge. For the special case when the wedge degenerates into a half plane,

a closed form for the dyadic Green’s function has recently been given r41 . It

is shown that our wedge solution reduces properly to the half-plane limit. By

moving the dipole source “to infinity, one may generate near the edge an incident

plane wave field. Our solution reduces to the known results also in that limit.

In establishing a connection with the previous numerical solutions of

Baum P j and Higgins [22, it is of interest to explore the deviation of the spherical

pulse solutions from the idealized plane pulse solutions. We have therefore

considered simultaneous excitation by electric and magnetic dipoles with a time

dependence such that the incident field at a selected point on the edge is the
..

same as for a unit step incident plane wave. Plots of numerical results for

the field near the edge have been made for some of the parameters used in

r 17 and ~] sothat direct assessment of the influence of the source point dis -

tance from the edge is possible.

,,
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H. Formulation of the Problem—
1. Use of Hertz potentials

The transient fields due to vector source distributions with arbitrary

space -time dependence may be derived by integration of space -time dyadic

Green’s functions, which provide the fields excited by arbitrarily oriented

electric and magnetic dipole sources with impulsive time dependence. If

&e(z, s ‘;t, t’) and ~m(z, s ‘:t, t‘) denote electric and :magnetic dyadic Green’s
-;

functiofis, respectively, then the vector electric field &J~, ~’; t, t‘) due to an
.

impulsive electric dipole with moment density
.,<.

qr, t) = ~(:’)?)(~-g’) ti(t-t’)

is given by

$e(~, r’; t, t’) = - ~e(r, r’”t, t’) ● p ,.-

(1)

(2)

while the vector magnetic field fim(~, ~‘; t, t ‘) due to an impulsive magnetic

dipole with moment density

I!J(r, t) = q(~’) 5 (#) 5 (t-t’) (3)

is given by

fim(r, ~’; t,t’) = - &J,l/;t, t’) “ nJ . (4)

Here, p and ~ are (generally non-coinciding) unit vectors at the source

point ry. T-he magnetic field & corresponding to & in (2) and the electric
-e ,-e

field &“m corresponding to &m in (4) are then obtained from the time -depen -

dent Maxwell field equations. According to causality, all fields vanish identically

for t< t’.

In the present treatment, it will be more convenient to deal directly
A 0.

w$th the fields E and 11 instead of the dyaclic C,reenl u functions, Cal culation

of the former is simplified through utie of the electric and magnetic II(:rtx
A

vectors ~e(r, q’; t, t’) and fiw(~, ~’; t, t ‘), respectively, which are solutions

of the time-dependent wave equations

M(r, t)
. .

.

(5)

(6)

●

!
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Then [ 5 J

.L.
$e(+;t,t’) = 7V. ~e(:,:’:t, t’) .lM~- r (r, r’; t, t’)

~t2&..
(7)

~e(r, r’; t, t’) = 6’VX a;r
m*e(&:t’ t’),

(8)
. .

and

~z .
;m(:,:’; t,t’)=vv” ~m(~, r’; t, t’) -pc=~m(r, r’; t,t’) , (9)

at-w-

(lo)

with e and Q representing the (dispersionless) permittivity and permeability

in the homogeneous medium.

If the electric and magnetic dipole moments are distributed throughout

a volume V with density functions fe (~) and fm(~), respectively, then the

corresponding electromagnetic -fields are

o
~i(~;t, t’) = J’ fi(r’) &.(r, r’; t,t’)dr’ , i=e or m (11)

-1 .-.. .4 ?

v“

and similarly for &i. Note that the orientation of p(r ‘) and m(r ‘) may changeN. .-
with r ‘. Alternatively, if the electric and magnetic dipole moments have the

respective temporal variations Fe(t) and Fro(t) for t -> 0, with Fe ~ = O for

t ~ O, then the corresponding electromagnetic fields are
Y

t

~i(:, :’,t) = ~Fi(t’) ;i(~, ~’;t, t’)dt’, i.e or m, (12)

o

and similarly for ~i. Finally, if the dipole moments are spatially distributed

and are active over a specified time interval, the correspon(]ing fields are

obtained on integration of ~i and &i over the appropriate space-time volume.

2.. Boundary conditions for a perfectly concluctjn~~$.~—————.-c— .—— — ——z——— — .—

When the dipole sources in (1) and (3) are located in the presence of a

perfectly conducting wedge,

●
the tangential electric field on the wedge must

vanish, and an “edge condition” must be satisfied, for all t. If the wedge

faces are located on the half planes ~ = O and ~ = ~ in a cylindrical (p, ~, z)

5



coordinate system (see Fig. 1), then the required conditions are E = Ez = O
P

at~=O, a. Expanding the right hand side of (7) into cylindrical components,

one may show that the boundary conditions are satisfied if

;
‘“’+; e+’o’ ‘ez=o’ at4=0’a”

(13)
ep

Simila rily, it follows from ( 10) that the magnetic potential must satisfy

3;~mP=O, ~mJ=O, ~~mz=O, at+:O,fl. (14)

It will be convenient to represent the Hertz vectors in rectangular rather

than cylindrical component form. Since

one may write (13) and (14) as

(15)

iexCos ~-1-;ey‘in4 =‘, +[- ‘exsind+‘~ycos+]=‘f‘e~=‘J ’16)

at~=Oand~=a. These rectangular component-s then satisfy the wave equa-

tions [see (1), (3), (5) and (6)]: a

I

-1 I
1
~ Cos Ve Cos Q

@A e

6(r-r’) 6(t-t’) ,- .,(v%#ne x’-

Cos vmcos elm

II

1t ~ sinve cos 6
e

( )72 a2 ; =-->~ e — 6(r-r ‘) /i(t-t’) ,
at2 ‘y ‘ sin v

- .?
my mcos e

m

H
1~sin8

~z, .
e

(
~(r-r’) fi(t. -t’) ,vLcz)flez=-

rnz sin 6
m

(18)

(19)

I

(20)

where vi and 0., with i=e, m, determine the dipole orientation at r ‘ :
1 I

F
I
b

@

I

6
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p.x cos ve cos Oe +–10 sin ve cos 6e + ~. sin @e’,
.0 (21)

m=x Cos Vm Cos e~-t~osinv
.0

~ Cos e + ~. sin 0
. m“

Ve and v are “the orientation angles of the projections of the electric and
m

magnetic dipoles , respectively, on the x-y plane, while Oe and Om are the

angles of inclination of the dipoles with the x-y plane; v is measured
e,m

counterclockwise from the positive x-axis. When 13eand Om equals Tr/2

(z-directecl dipole), the electromagnetic field is derivable solely from the

single component fi ez or fimz of the Hertz potential. When ee or em equals

zero (trantiverse dipole), one requir-es the two transverse components

6 or F1 , which are coupled by the boundary conditions.
ex, y mx, y

The preceding formulation has previously been presented for time-

harmonic problems [61, and its extension to the time-dependent case has

beefi straightforward.

.’
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111. Relation Between a Class of Time-Harmonic and Time - Dependent Problems— . . —

For some diffraction problems, the time -dependent solution turns out

to be simpler in form than the time-harmonic solution, In particular, it has

been noted [ 7 ] that for certain integral representations of the time-harmonic

field, there exists a direct inversion yielding a closed form for the transient

field, If a time-harmonic scalar Green’s function G(r, r ‘; W) (i. e, , the time-. .
harmonic response to pbint source excitati-on at r ‘) can be expressed as a

Somrnerfeld integral
*:

(22)

c

where C is the inte ration path in Fig.
#

2 (symmetrical about w= O), UI is the

frequency, c=(U c)-~ is the speed of light, and an exp(-iW) dependence is sup-

pressed, then the time-dependent scalar Green’ s_function &(r, r ‘;t, t ~) cor-
-.

re spending to excitation by a point source at r ‘ with impulsive behavior
.-

b(t-t’) is given by:

&(r; r’:t, t’) = 0, t-t’<:, R= y(r, r’, (.1)
-.

Re[i?(r, r~, - i~)]
=. 2c—-_” —_ , t-t’>;

(d/d~) Y (~, ~’, - i ~)

Here, $ = ~(r, r’ , t-t ‘) is defined implicitly by
. .

c(t-t’) =y(r, r’ - i13) ,
-.

and it has been assumed that i F(r, r ‘, w) is real for real w, and that-. .
y(r, r’, - ip) is real for real 9.

.-

(23a)

(23b)

(24)

It has been shown previously [ 7] that the scalar time-harmonic GreenTs

functions for a wedge with Dirichlet (G=O) and Newmnn (aG/ai ‘ ~} Wpe

boundary conditions can be expressed in the form (22) whence the corresponding

time-dependent Green’s functions are given explicitly by (23). It may be noted

from (16) and from (18) - (20) that for a z -directed electric dipole, which

generates a Hertz vector ; = z fi the scalar function c ~ez is equal to the
-e NO ez’

,Greenls function with Dirichlet boundary conditions. Similarly, from (17) and

from ( 18} - (20), a z-directed magnetic dipole generates a H&rtz vector

!

1

,
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s.

●
~m=:ofi with the scalar function ‘ii equal to the Green!s function satis -,mz’ mz
is fying the Neumann boundary conditions. When the dipoles are not oriented

parallel to the edge of the wedge (z-axis), the required transverse components

of-the Hertz vector are not directly expressible in terms of scalar Greents

functions, as is evident from (16) - (19), Nevertheless, it is found to be pOS -

sible to express nix and II. i.eorm,—— ly ‘ in the form of an integral as in (22)

and thus to provide the transient solutions fi. and ;.
* lx

in the elementary form
ly

(2.3). Moreover, one may relate- 11. and II. to the scalar Neumann and
lx ly

Dirichlet Greenfs functions, but not in a simple fashion. These aspects are

considered subsequently.

,—
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IV. Construction of the Solution by Image Method.— —.

Since the perfectly conducting wedge is a “I’separable~t boundary surface

in a cylindrical or spherical coordinate system, the method of separation of

variables can be employed to construct a variety of alternative representations

of the field solution. Such representations have been discussed in [ 7 ], and

the choice of a particular representation depends on the parameter range under

consideration. For construction of the transient solutian in closed form, an

image representation in an infinitely extended angular space [71 is highly suit-

able since the time-harmonic field generated by a typical scalar source in

such a space is expressible in the form (22): the corresponding transient field

is therefore given simply as in (23). Moreover, it has been found that the

scalar images caq be summed into a closed form. This has led to the known

result, in terms of elementary functions, for the transient field generated

when an incident scalar spherical pulse is diffracted hy a wedge [ 3 ], In view

of-the remarks made previously, these scalar solutions may he employed

directly for calculation of the field due to a pulsed electric or magnetic dipole

directed parallel to the z-axis,

For transversely oriented pulsed dipoles, :Lclosed form solution in

terms of elementary functions has not been reported previously when the

wedge angle ct is arbitrary; for the special case of a thin half plane (~ ❑ 2Tr),

such a solution has been published recently [ 4 ]. We shall demonstrate below

that the image method is successful in dealing with the vector problem and in

providing a closed form re suit for arbitrary wedge angles.

1. Time -harmonic solution

An arbitrarily oriented electric or magnetic. dipole may be regarded

as a superposition of longitudinal and transverse dipoles. For ccmvenience,

we list first the known result for the longitudinal ca,se; we then construct the

solution for the transverse case. A time dependence exp(. iW) i~ suppres~ed

throughout. Equations ( 16) - (21) apply to the time-harmonic problem pro-

vided that 32/%2. - - LU2and the b(t-t’) factor is omitted.

a) longitudinal d~oles— —c

The electromagnetic fields due to a longitudinal electric dipole of . .
unit moment strength (i. e. , p=~o) may be derived from the z-component of

the electric Hertz potential, ~ez(~, r ‘, w), This potential may be separated

@ “ @into a geometric optical part,
ez’”

and a diffracted part, ez :

10

e

@
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e n= IIg + ITd
ez ez ez “ (25)

The geometric - optical part accounts for rays that emanate from the source

and are multiply reflected between the wedge faces:

U(V-14- ‘4nl)

—

- -EL —- u’(~-14- 4nl) ,
4nlr-~nl

n

where k = UI/c, and U(a) = 1 or O for a > 0 and a < 0, respectively, while

(26)

‘~ =Zn~+~’, ~n=2na,-~’, n=O, +1, ~2...
n —

en= (P’,4n, z’), ;n=r (P’, Tn, z’), :.=:’= (P’, ~’, z’) .

(27)

(28)

The diffracted part, which accounts for radiation scattered by the edge, may

e
be written in the form of the integral (22), with

y(r, r’, w) = [pz+ p
12 ++ (Z-z’)z+ 2pp’cos w] (29).-

~(r r’, w) = i E(&&; W) - “B(4,. ~’; W)- —— (30)-’ -
8Tr2C Y(r, r ‘;W)

TT2 ‘1 -
B(~, ~’;w) =; sin ~ —

—----Z-’
Cos[:(w -4 + 4’)] - Cos +
—

where Im v >0 on c,

Similarly, the electromagnetic fields due to a longitudinal magnetic

dipole of unit moment strength (i. e. , m=z ) may be derived from the z-
.0

component of the magnetic Hertz potential, 11~m(r, r’, u~):--

iiem = 11~ I i-. ( ,
em em

where the giometric optical part is given by

,0

(31)



.

~(~ -14- &J)

Um- M’-inl}.

The diffracted part may be written in the form of the integral (22), with

“ ~;w) + B(4,-4’;wI?(r, r’, w) =-~ —
.-

lln y(r, r’;w)
.-

and v(r, r ‘;w) given by (29).
.-

(32)

(33)

The preceding results for ~ez and 11~z are exact; they are especially

useful for the high-frequency range, or for large distances (in terms of wave-

length) of the source and observation points from the edge, since the diffrac -

tion integrals can then be reduced by asymptotic techniques.

b) transverse dipoles—

When the dipoles are transverse to z(6 = O in (21)), the electro -
e,m

magnetic fields are derivable from H. i=eorm. To synthesize these
lx, y’

Hertz potentials in the form of (Z2), with < given in a cloeed form, we

utilize the same image procedure as for the longitudinal dipoles (see r7 ]).

When a = TT/N, N integer, the effect of. the wedge boundaries can be accounted

for by a set of (2N- 1) image sources with appropriate orientation (Fig. 3).

For arbitrary a, the image procedure may also be utilized; however, the set

of images does not now cIose upon itself, and utilization of an infinitely ‘

extended ~-space is required. The source and images lie in the plane Z=Z ‘

on the circle p= p‘ and decompose into two sets with the angular coordinates

~ and ~ given in (27). An image at ~n has the orientation
n n

~n = :0 cos (2nct + ve) + ~. sin (2na + ve) , (34a)

while an image at ~n has the orientation

(34b)

The Hertz potentials 11~ excited by a typical ima~e source in the infinitely
ex, y

extended angular space satisfy the time-harmonic form of ( 18) and ( 19) with

1.

I

1
v
}

I

I



r.

Cos v a-rid sin v

o
e

replaced by the appropriate quantities from (34a) and (34 b).
e

Instead of (16), the boundary condition requires “outgoing waves” toward

4 = +. co, The desired field solution in the wedge region follows on summation—

over all images.

To synthesize the solution for II ~ we consider first the time-
ex, y

harmonic, outgoing-wave, scalar Greenls function G~(r, r ‘, w) in the domain
.-

“ this Greenis function is defined‘=<(~,~o)<l O<(p, p’)<=’, -Cn<z<m,

by the equation:

(V2+kz)Gm(r, ~o, W) -= - b(~-~o), r. ~ (p’, ~o, O) .

It is known that G~ is representable as follows [ 7 ]“

iklr-~ol

G~(r, ro, UI) = ~ U(TT - 1’+-4.1)
4n~r-~ol

,.

J
exp[iky(r, 10, w)]

#- ”-—
-— Am(~, ~o, w) dw,

y(r, r ,w)
C.-o

where C is the integration path in Fig. 2, y is defined in (29), and

‘1
-t ..— —. ,

n++~ol I w

(35)

(36)

(37)

(38)

Evidently, the form of (36) is the same as

(22) whence recovery of the transient solution is immediate via (23). The

source coordinate ~o may stand for ~n or ~n. The first term in (36) represents

the incident spherical wave in the geometrically illuminated region while the

second term represents the diffraction field. Since the infinite angular space

simulates boundary conditions on the face of a “perfectly absorbing” wedge,

there are no geometrically reflected contributions. Comparing the time-

harrnonic form of (18) and (19) with (35) and replacing p in (21), with ~e=O,

● by En in (34a) or En in (34 b), it follows that the time-harmonic Hertz potential

descriptive of a transverse vector dipole source at r-o in an infinite angular

space can be represented as:

?3



~~x(r, ~n, w) = ~ cos (2na + Ve) G~(r, ~n, u)) , (39a)

(39b)

(40a)

(40b}

To synthesize the Hertz potentials for the perfectly conducting wedge,

the solutions in (39) and (40) must be summed over all n. The contributions

from the first term in (36) will be finite in number and yield the geometrically

reflected fields. However, all of the images contribute to the diffracted field

as represented by the second term in (36). Since ~C1occurs only in Am, the

images may be grouped so as to be included in one or the other of the follow.

ing summable series [ 8 ]:XC

ai

~.-m

(41a)

(41b)

where jr has the form (211)-1 [~ ~ ~ ‘ ~(n+w)], with all combinations of signs

occurring. In achieving the grouping of images, and also for simplification

of the result, one may utilize the fact that y in (29) is an even function of w

and that the integration path C in (36) is syrnmetrici~l with respect to w=O;

thus, only those portions of the image sums that are even functions of w con-

tribute to the integral. Det&ils are given in Appendix A.

Performing these manipulations yields the following solutiofi for the

time-harmonic Hertz vector:

(42)

where ~i is the geometric-optical part

—— . —— ————

*While ~ has to be restricted initially for applicability of (4 la) and (4 lb), the
closed form result can subsequently be employed for O < ~ < 2TT.

14
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e exp[ikl~-~nl]
–—- U(l-r - l+-~nl)

4nlr-~nl

—.———

4111r-Zl
..n

,,

The diffracted part II: is given by

U(V- 14-Tnl) .

~d
exp[iky(r, r ‘, W)]

~x y(r,~’,w)) = - ~- 1’ –— “ “ –-AX y(~,~’,w)dw,
?- 8n c ‘C Y(r, r’, w) ?

. .

where

(43)

(44)

1’Ay =“- &{[Q2(~-~’) -Q2(~+~’)]cos V+[Q1(~-4’ )+- Ql(4+~’)] sinv , (45b)

and

Q](W =Q1(9, W) ‘ COS (~-W-ll)COt * - COS (~W+Tf) cot % , (46a)

Qt’w-tl-r
Q2(w) ‘ QZ(C$, w) = sin (~-w-n) cot ~~ - sin (L%w+n) cot

m“
(46b)

One may ve ~“ify that A
d

and hence ‘il
x, Y ex, y

satisfy the boundary conditions (16).

The form of the solution above is similar to that obtained by Malyuzhinets and

Tuz”hilin [ 6 ], who used a different procedure and different contours of integra-

tion for constructing the functions A
x) Y’

For a magnetic dipole source transverse to z the image dipoles at ~n

are the same as En Tin (34a”) while those at n are given by - En in (34 b). The

solution for the magnetic Hertz vector therefore takes the same form as c~e

In (43) and (44) pro’vided that the second sum in (43) and Q 1 ~(~+d’) in (45) are

rnultip~ied by ( - 1), and that appropriate duality replacemen~s are made when

calculating the fields.

15
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2. Transient solution— “.i

The time -dependent Hertz vector for a dipole with impulsive dipole

moment is, recovered at once on applying (22) and (23) to (25) - (30) for the

longitudinal electric dipole, to (31) - (33) for the longitudinal magnetic dipole,

to (42)- (46) for the transverse electric dipole, and to the above -noted modified

version of (42)- (46) for the transverse magnetic dipole. The electromagnetic

fields are then calculated from (7) - (1 O), The resulting expressions are

listed below.

Lon~tudinal electric dipole— ..—. —

L= i:z+iid (47)
ez ez

17
~~t-tt-Ir-~nl /c) U(U 1~ ~ 1)
——— 1- (47a)

-72
4nlr-~n~

n
n

Re B(~,~’;-ifi - Re B(~, - ~’; -i@) o
“d=&: =~-n —— .. ——— - U(t-t’ - :) (47b)

ez z
., p~’ sinh ~

‘dwhere G ~ is the diffracted part of the scalar Dirichlet Greenfs function ~7 ~ and

[

sin~(~-~ ‘-n) sin~(~-$ ‘+n)
ReB(&, $’;-i9) = - -& ‘—co Sh tir”T—— - ‘“

~-COS~(&/-IT) cosh.$ - COS:(’+-$’+~) 1

c2(t-t’)2 - p2- p ‘2 - (Z-Z’)2 ~+
cosh p = —— ..— 3 $:- [(o~~’)z+ (Z-Z’) ] . (47d)

2pp’

o
?6
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●

o

-JZ-z/ r3
~ 8’(t.4tP-P’COS(&4n)]L-5 W’->)+A - >)+ —21 ~a’’(t-t’->)]u(ldl+nlnl)‘--zi7

‘-T
n n

cr cr
n n

T -F
:n)Ju(n-1 +-Tnl)- ‘y[P-P’cos (+-JJ][:Y6 (t-t’ - :)+ +46’(t-t’- :)+ J-- b“(t-t’-. —- % ..>

r ~~ 3
n n cr

n n

(48a)
.

;:p =$; ;:z=J, - J2
9 (48b)

J = ~ (Z-;’) (P+P’)— ——
1 csch~ (S+A+ - S A ) 6’(t-t’- :)

.C A pp)
-.

~ K (Z-Z’)

{

/ pp’(p+p’)] (s+A+:s A )—–=,zcsch @ [-csch@ coth~(2p+ P’+P’cosh@)+p+
Clpp 12

--

‘p (2 P+P’+P’ cosh@)(S+A+2- S A 2)} ~(t-t’- + )- ~csch~ sinh~ --

~K(z.z’)
~3p/3

csch2@{[Pcsch@ (2coth2@+-csch2 P)+ 3P’ coth @ csch2@l(S+A4@ A )--

+ 1 Trp77 IT$
P csc@(3 coth~sinh ~ )+0’(3 cothz~ sinh~ -~coth Fcosh{~*Zsinh$)~-~CO sh—

2
+2(:) csch~sinh

2 ?@
~(ptp’coshPJ(S+A+3 - S-A 3)} U(t-t’ :)-— (48c

J2 = JI

14’--4’
(48d

it is assumed that

J2 is the same as that

for J1 provided that ~ ‘ is replaced by -4 ‘. Moreover,

s+ =sin:(&(j’TTr), A+”-= —— i ———
— — cosh~ - Cos; (&4’Tn) ‘

These expressions, while derived in a straightforward manner from (47a) and

17



(47 b), are evidently quite involved. For this reason, we shall not write out

explicitly the re suits of the differentiations required for the remaining ‘field

components, which are obtained f rorn the following: o

Longitudinal magnetic dipole— . -—

(49)

(50)

;mz=~z
*d;g+~ (51)
mz

I

fig = same as (47a), with G=1and minus sign in front of
mz

the second sum changed to plus (51a)

Iid c Re B($, +’; -
=;&:=. —

i~)+Re B($, -~’; - ‘~) u(t-tf-——— .— :) , (51b)
mz

4T2 pp’ sinh ~

where ~~ is the diffracted part of the scalar Neumann type Greenls function ~ ~.

oThe field components are given in terms of the Hertz potentials by (48a, b),

(49) and (50) with the following duality replacements:

m * A A A A

(52)

Transverse electric dipole: Special case -- vertical dipole on wedge face +=0— —

b(t-t’ - rm/c)

+ ~. ] & —y”— cos(~ - 2ma) U(’rr“- 1~ -2mU,l)

m m

(53)

(53a)



.

1

o

(53C)
Then

..32 *
1;

ep = “ e ataz ‘e~

with

The P - derivatives of II
‘:4

are then calculated from (53c), Similarly,

az ‘

..!:4- : ‘~~z q: p (55a)

;:6 “d ‘d= same as (54b) except that il is replaced by II and each term is multiplied
by (-1) e$ e~

(55b)
2 e_z_= ~(a/at)[ (l/p) (a/ap)(Ofie+)- (l/O) (a/a$)fieD] (56a)

;L2.& ~[
[

0’-0 cos($-2ma)] ~b’’(t-t’-r m/c)+ ~b’(t-t’-rez
1“

m/c) U(n - 1+-21mctl)

m cr
m r

m (56b)

“d Ccz(t.t’)He z = —— “d{[pcschz~ coth@ +-P’ csch3@] & ~e~
(PP’)2

19
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4

The electric field components are derived in a sirnil.ar manner. Because the

expres sions are quite lengthy, we shall not list them in detail:

(57)

(58)

(59)

Transverse magnetic dipole: Special case - -tangential di~ole on wedg e face ~=0
.— ——

The resulting expressions for the potentials and field components are

obtained from those for the vertical electric dipole by the following replacements:

A A“ A A

H= same as (57) with II -+n
mp e p, 4+ m p,

(60)

(61)

(62)

(63)
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●
v, Simplifications for Special Cases————

To check the validity of the results derived in Section IV, we have

considered two special cases, which have been treated previously by other

methods. In the first case, the incident pulse is planar instead of spherical

while in the second case, the spherical pulse strikes a half plane (u = 2’rr).

1. Incident plane pulse

When the location of an impulsive point source is moved to infinity,

the incident spherical wavefront appears planar in any finite observation

region. To as sure that the incident-field is non-vanishing, the source strength

must be increased appropriately; moreover, the time reference must be

shifted from the turn-on time of the dipole in order to eliminate parameters

de scrip’cive of the infinite travel” time from the source to the observation point.
..

These considerations are evid?nt from an examination of the functions

that charact~riie sp-herical and plane puises. For a scalar spherical pulse

originating at r ‘ = (P’,4’, Z’),

6[t-t’-lr-r’ \/c]
;(r, r’; t, t’) =

. .——. - (66)
. .

4nlr-r’l ‘
.-

1
where in the plane Z=Z ,

Ir-r’l ❑ [pz+ p’2 - 2pp’ cos(~-d’)]$, z=z’ .. . (67)

As the source point is move”d to infinity in the ~ ‘- direction in the plane Z=Z’,

one has

so that

l-’

(68) .

b[t+ (p/c) cos(&$’) - t’ - P%]
.—. ——. —— —.— , p’+m, (69)

4Tlp’

A plane pulse incident along the direction ~=~ ‘ is usually described by

A

u. - 8[t+(p/c) cos(&~ ‘)] , (70)---

●
LLLL

implying that time t=O corresponds to the instant when the wavefront passes
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through the origin p=O. Comparing (69) and (70), one obtains the following

prescription for converting a spherical pulse solution ~(~, r ‘; t, t‘) into a

plane pulse solution ~(~, ~~ t):

f

;(r J’, t) = lim [4np’ G(r, r’;t, - ~)] . (71)
-J w.

P ‘-

The limiting operation is now performed on the solution for a pulsed

vertical electrical dipole on the ~ ‘=0 wedge face. MTe identify C? in (71) with

(r r ‘;t, t’), and calculate first the incidentthe magnetic field component fez ~, ~

field, As the dipole is moved to infinity and the limit is calculated according

to (71), one obtains from (56a) on omitting the image contributions:

(72)

Since the incident field is the conventional scalar plane pulse operated

on by, (?12/c?lt2), the limiting form of the spherical pulse solution should be the

known plane pulse solution subjected to the same operator, Indeed, we find

from (56a) that the limiting geometric -optical field is:

(73)

Concerning the diffraction field in (56 b), we note firgt that the operation p’-~,

with et’ = - PI, yields

[

-1 cz(t-t’)2 - p2 - p’2 - (Z-Z’)2
~ = cosh –— 1-+Cosh-1(;).

Zpp’

Then one may show that :

;d = L~{-2~ ‘e B($’O;-iB) U(t-t’ -0/+ r
c atz

“d’xGzF

(74)

(75)

The expressions inside the braces in (73) and (75) are the correct plane pulse

solutions as given in [ 7 ].

2. Half Plane—

When the wedge degenerates into a half plane (cL=Zn), the general

solutions in Sec. IV. 2 simplify substantially. An interesting form of the

,
I

,

22

,’



.

● vector Hertz potential due to an arbitrarily oriented pulsed dipole in the pres-

ence of a perfectly conducting half plane has been presented recently [4 ]. It
A .

was shown that the Hertz vectors ~e or fi can be obtained as a superposition
.m

of three contributions. The first two involve respectively the Dirichlet and

Neumann scalar Green’s functions while the third resembles the form of a

line source field originating at the edge. The third contribution is required to

satisfy the edge condition on the vector field when the dipole source has trans -

verse components; thiscannot be accomplished by use of only the two scalar

Green!s functions, We shall first show how certain terms in our general

solution for a transverse electric dipole reduce when a=2n, and we shall then

c“ast the reduced solution into the form described above.

Setting ~=2n, one has from (46a) that
.—

Q#P,w) = -
rp-w-~

Cos(w. w) cot
‘%W+TT

4
+ Cos (Ww) cot—~ ,

Then setting w=-ifl, using the identity

sin 2x - i sinh 2y
cot(x+iy) =

o

cosh 2y - COS 2X ‘

and simplifying, one finds that

Re Q1(T, - i13) = 4 cos ~ P
z.

cosh — - 4 Re B(q, -i@) ,
2 _

where
-.

P Cp
cosh

2
Cos —

Re B(~~, - i@) . - --2-$-% ‘
2(cosh ~- sln ~)

Also, from (46 b), with ti’=21-r,

(76)

(’77)

(78)

(78a)

f
PRe ~z(~, - i~) = 4 sin$ coshz . (79)

When these expressions are substituted into (44), one may derive the following

form for

~d=l
ex %

o -t

the diffracted components of the Hertz vector:

Cos ve ~~(r, r’:t, t’)
. .

cosh @
1 2C 2

[
sin~sind’ ~ ~.

GT————— 12 TcOs ‘e - ‘inZcos 2 ‘lnve ‘(t-t ‘-3(80)
pp’sinh ~
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.

where ~~ and 6$ are the diffracted parts of the scalar Dirichlet and Neumann

Green’s functions given in (47b) and (51b), respectivt?ly, with Re B(+, & ~’; - ip)

in (47c) replaced by Re B(+ ~ +’, - ip) in (78a). ‘.Mor~:over) since

*
c

/
~,, (t-t’)z - (3/c)’r- (82)=
2Jp p’

-1
one may eliminate cosh (F/2) (sinh @)-l = [~ sinh (@/2)] via (82). Recalling

that the scalar line source Green’s function is [ 7 ]

1
&

[

lP-P’1]

6L(E, ~’,w’) = — u (t-t’) - =&J (83)

Zn[(t-t’)z - lP-P’12/c2]z.-

one identifies the se~ond terms in (80) and (81) as the previously mentioned

contributions due to a virtual line source at the edge. When the geometric -

optical contributions are added, one finds that fiex a,nd ;
ey

are given by (80)

and (81), respectively, provided that ?l~ and 6; are- replaced by the
* 6

complete scalar Green’s functions G1 and G 2“
The re suiting expressions

then agree with those in [ 4 ], except for a factor accounting f~r a different

normalization employed here.
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VI. Simulation of an Incident Plane Pulse-a— –-—–—–

● In order to examine the effect of an electromagnetic pulse on various

structures and equipment, it is necessary to produce a suitable pulse form.

Ideally, we would like to be able to pro&ce a step function electromagnetic,-
wave, i. e. an- electric field that, at every point in space, is zero until time

t(x, y, z) and then instantaneously changes to a fixed vector value ~o; the

corresponding magnetic field should change similarly at time t from O to
,,,

I~o , the directions’ of ICo, ~. and Vt being mutually perpendicular, with the

magnitudes of go, 130 related by the intrinsic impedance of free space, In

principle, such a field distribution can be produced by crossed electric and..>,,
magnetic dipoles whose source strength varies quadratically with time, pro-.
vialed that the test region is very far from the dipole location. In practice,

that distance is not very large, with the unfortunate cons equence that the

field amp] itud.e cannot then be independent of position. Neverthelesss, we

shall, show that it is possible to simulate plane wave behavior at a point.

With a suitably de signed, physically realizable, electric dipole alone it is

possible to produce a step-function electric field while with crossed electric

and magnetic dipoles, it is possible to synthesize step function electric and

o magnetic fields, at right angles to each other and related by the free space irn -

dance [91 . A brief discussion of a possible method of realization of such an

excitation will be given. Finally, the inhomogene!ty of the field distribution

will be. examined, so that the size of a usable test region can be estimated.

1. Electric dipole excitation

Let us consider the electromagnetic field in vacuum* clue-to a z-directed

electric dipole whose moment is p(t). We obtain at (r, O,@) in a spherical co-

ordinate system [101
—..—- ,, —-–.—.... . .... . —. —.

~-sin8 ~~+~’+~~)
;8(t+r/c) = -~ c r- ~ (84a)

— r

(841))

●
where p ‘ and “-~ denote the first and second time derivatives of the dipole moment

+
p(t), C=(covo)

/
is the velocity of light, L=(MQCo)’+ is the free space imped -

ante. The dipole is switched on a&t. O. Alternatively, the same fields can be
—. .—— —
*

Note that the coordinate system emplqyed in this section is not related to the
wedge-centered coordinate system e~mployed in Sees. II-V.

o r
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‘ generated by a current element i(t) (i denotes the product of current and

length of a short dipole ,or in a volume current density distribution j ~=ti(r)i(t)):

i(t) = p’(t). (85)

We can now ask what function p(t) will yield an electric field at (a, I_r/2,0),
A

which has a step function behavior. Since Er=O for 8=n/2, we set

~e(a,~lz,o)=E. u(t) (86)

where U(t) is the unit step function with k measured from the time of arrival of the

wave at the observation point. Thus we seek the solution of the differential equation

[
21(C]4nac) p“ + (c/a)p’ + (c/a) p~ ❑ E. U(t), (87)

subject to the initial condition p ‘ = p = O at t=O. Sol~ing this equations, we obtain

[

J3T 1 Sinm
p(t) = .4n eoa3 EoU(~) I - e-~’2(c0s ~+ —

.,B
—)]2

where ‘T = ct/.a.

The corresponding variation of i(t) and ~ ~ is

i(t) = (8_na2/c .&) EOU(T) e ‘~’z sin (fi ~/2) (89)

(90)

The seemingly arbitrary choice of 6=n/2 at the field point is due to the fact

that the radial component of the electric field vanishes there and, in addition,

the 8 - derivative of ~ ~ vanishes, thus assuring maximum homogeneity of the

electric field distribution.

The temporal variation of ;8, ~~1 p and i is shown i.rI Fig, 4. We

see that the magnetic field begins to devi~te significantly from (Eo/ ~) at

times less than (a/c) after wavefront arrival and, for all practical purposes ,

vanishes for t > 6a/c. In order to overcome this difficulty, an additional

magnetic dipole is necessary. We may note that as halt increased, the time

axis is stretched out and, for a long time, the desired p(t) behavior is parabolic.
o

I

!

I
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2. Electric and magnetic dipole excitation.—.—. ——

In order to achieve step function behavior for both electric and mag -

netic fields, we must introduce another degrqe of freedom in the source—
function - -a magnetic dipole whose time dependence is to be determined. This

,,
dipole must be oriented at right angles to the electric dipole and to the radius

vector from the source to the field point in order that it contribute to the same

field components as the electric dipole. The source is then described by the

electric dipole

and

In this case we

by equating (in

P and magnetic dipole M given by
,.

P = p(t) 6(r) ~.—

M = m(t) b(~) ~. .

obtain a pair of coupled

Cartesian coordinates)

;z(a, O,O) = - E. U(t)

~y = (Eo/L) U(t)

(flla)

($llb)

differential equations for p(t) and m(t)

(?zb)

9 where t is again rneasurcd from the time of arrival of the wavefront. These dif -

ferelltial equations are

[p -t (a/c) p’ + (a/c)2 p“] - (1/c) [(a/c)m’ + (a/c)2m”] = 4Trcoa3EoU(t)

[(a/c) p’+ (a/c)2p”] .-

(93a)

l/c[m -t (a/c) m’+ (a/c) 2m’~= 4n coa3EoU(t).

(93b)

From these equations, as well as directly from

it follows that

.
and the system (93) reduces

p +–2(a/c)p’

The solution of this equation

p(t) = 41Tc,oa3 Eo{l -

{
=411coa3E 1 .

0

p(t) = - m(t)/c

to the second order

the symmetry of the problem,

(94)

equation

-t 2(a/c)2p” = 4n co a3Eo U(t)

is

. (95)

exp(-~/2)[sin (~/2) 1 cos (~/2)]}

R exp(-’i’/Z) sin (~/2 + rr/4]} (%a)

(96b)m(t) :: - c p(t) .
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This combination of electric and magnetic crossed dipoles wiU

point (a,O , O) an electromagnetic field perfectly simulating that

3. Waveform realization

In attempting to synthe size the required p(t) variation,

produce at the

of plane wave. ●

we can pro-

ceed on the assumption that, from a circuit point of view, the dipole is a

capacitive structure, with the dipole moment proportiotial to the capacitor

voltage. Consider then the network shown in Fig. /j, consisting of the dipole

structure with capacitance Cd, a charged condensei: Cs, which is connected

to the dipole by a series switch, an inductance L, and a resistance R. The

initial values of the voltage across C
d’

and its first derivative, are zero, as

is required for p(t). Hence if the inductance and resistance are adjusted to make

the complex resonance frequency w = ~ (1 -i) for the transient given by (96)and
.CJ,

0.)=& (,P- i) for that given by (88), then a step function field is obtained.

The resonant period of the circuit must be of the order of magnitude of the ‘time

of travel of the wave from the source to the observation point. This circuit

is a modification of

above in the circuit

from the resonance

one given by 13aurn [ 9 ]. Using the resonant frequencies

of Fig. 5 and assuming Cs and C;d to be given, one finds

condition

.&+R-i”L=o’ c=+++,
s

that for the transient in (96),

while

more

2

R=::’ L=w’
for the transient in (88),

la
2

R= CT, L=+(;) .

(97)

(98a)

(98b)

The design of a suitable generator circuit for a magnetic dipole is

difficult but again, circuits discussed in [10] can be used, with the proviso

that resonant

proximity.

frequencies and damping rates be suitably adjusted far source

28
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4. l?ield amplitude hom~eneity— —.

Although no exhaustive study of field variation was performed, there

are reasons to believe that the primary limitation

of a static dipole, The electric field on the x axis

tobe “ ““ ‘“

is the l/R3 field dependence

was calculated and found,,

~z=-E. (~)3{1 - e-~’z[(l -:)2 sin~+ (] (99)

We see that, for large ~, the static dipole result mentioned above is evident,.

For lx-a I <~ a the fractional change in field amplitude is 3 lx-a 1/a. The

initial response, for ~ ~0, is proportional to (a/x), so that the fractional

change is only lx-al /a. Numerical examination of (99) for (x/a) close

to unity shows that, as a function of ~, there is a gradual transition from,.
the relatively weak initial inhomogeneity to the static field inhomogeneity.

Since there are no first order inhomogeneity effects in the transverse direc-

tions, ii is expected that the limitation due to x-dependence will be the

limiting factor.

@

,.

,..
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Carefully tested numerical results for three selected special cases

of wedge angle and observation angle are plotted in Figs. 6(a) - (c), for excita-

tion by a vertical electric dipole. The dipole moment is the function given in

(88), with a = p’, i. e. , the incident electric field at the edge behaves like a unit

step function. In each figure, the temporal field variation in the plane z = z’ is o

shown for p = O. 01 and p = O. 2$ with p’ = 1 (see alsd Appendix C, Sec. 6). Here,

p and p’ denote normalized distances; unnormalizeci results are obtained by inter -

preting p as the ratio of edge-to-observation-point to edge-to-source-point dis -

tance. The case p = O. 01 represents a very distant source, and the fields should

thus be nearly identical with those for an incident plane pulse. The curves ob-

tained for p = O. 01 do, in fact, show agreement with previously obtained results

for the plane wave case ~2~ and this check confirmn the correctness of the com-

puter program.

We can now assess the effect of dipole proximity near the edge by

comparing the p = O. 2 curve with the quasi-plane-wave case, p = O. 01, in each

plot . The electric and magnetic fields are normalized to the (unit amplitude)

field discontinuity across the wavefront at the edge,, and time t = O corresponds

to the time of arrival of the incident field at the observation point. For p = 0.01,

the observation point is near the edge and near the wedge face whereon the dipole
* 0.

is situated; therefore, the incident E and Hz fields behave almost as those in a
Y

plane pulse (see Fig. 6(b)). For p = 0.2 in Fig. 6(13), the observation point is
@

sufficiently far removed from the edge and the dipole plane to exhibit noticeable

deviations of the incident fields from those of a plane pulse. These deviations

of the incident and also reflected fields (initial portions of the curves in Figs. 6(b)

and 6(c)) are O(p/p I ), as is to be expected from the discussion in Sec. VI. 4.

The diffracted fields (curved portions of the graphs) differ by a similar amount

over the initial period following the arrival of the diffracted wavefront. However,

the long-time behavior for p = O. 2 can deviate more significantly from that for

P = 0.01.

The three configurations in Figs. 6 differ as follows: in Fig. 6(a) only

the diffracted field reaches the observation point; in Fig. 6(b), the incident and

diffracted fields are present; and in Fig. 6(c), the observation point is reached

by incident, reflected and diffracted waves. The order of magnitude of the proxi-

mity effect within the time interval under consideration is substantially the same

in all three cases. Further examples of transient field bc:havior are shown on

Figs. 7-26, for wedge angles ranging from 13!5° to 270°. For small values of

p~p’ the proximity effect, i. e. the change in the diffracted” fieldj is of the order

of (p/p’). We see that there are locations in which the field appears to vary o

much less than in the plane wave incidence cas e. For example, the 270° wedge

region (Fig. 10) seems to provide a region in which the field remains relatively

constant over a time range. ~n
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Summin&the image series..- — —-— .

When the image solutions in (39) and (40) are superimposed to satisfy

the boundary conditions for a perfectly conducting wedge, one encounters

~“( ] ) (~ ~,’w) derived frominfinite series which aretypefied by the one for ~ ,

(39a):

- “A(l)(~,~/,w).~ [ 1 +—––]–—-].os(ze)t. e)t
x

n=-~
IT- 1~-(Zna+~’) l-w Tr+l~-(2nCt+~’) l-!-w

(Al)

Important in subsequent manipulations is the recognition that only the even

part in w of the function A ~) contributes to the integral in (36). Therefore,

we may change w into -w, or omit odd functions in w, without affecting the

value of the resdting integral.

Forn>Oand ~>~’, we have

i7 - 1~-(2nct + ~’)

@
n + \~-(2nu + ~’)

while for n< O and ~ > ~ ‘,

-w= ’rr - 2na + (~-~ ‘)-w (A2a)

+w=n+2na - (+-J ‘)+W (A2b)

n - 1~-(2nCt + +’)1-w = n +-2nu - (~-~’)-w (A3a)

‘n+ lc$-(2nu+ ~’) +w = ~ - 2na + (~-~ ‘)+w (A3b)

Changing w into -w in (A2a) and (A3a), we may regroup the images and obtain

the following expression for the series in

co

7
cos(2na -t ve)

A(l)($, $’, W) =* ~
x (+-+ ’)-w-n_

n=-m n-
2U

Writing

(Al):

w
1

1

c0s(2na + Ve)

-%
~= ●

(A4)

n=-~ n -
2a

c—o=(2n~ + Ve) = cos(2n~) cos v - sin(2nC%) sin v (A5)
e e’

one observes that the series in (A4) are of the kind shown on the left-hand sides

of (41a, b), and are therefore given by the clos’ed forms on the right-hand sides.
>-

Thus. ,

.,,, .
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Cos[(zu. n)q ] ~0s[(2a-n)q+]

A(l) = -& COSV – --
x e

{ -1’ {1

1
si I-lcfl si nrp

+

[
1

..

1— -

sin (2~-Tr)q-J
{

si (2~-ll)ep+j
~sinv

+ 2a
.—

e

{1 {1
I

si TKP si #+
--

where

d-d’-w-~ &&+w+n
Y’ Za

, c.p+=———
2a

Consider now the expression inside the first braces iri (A6):

{1
{1= cos(&Cy - w-l-r) co nW-

J
+ sin(~-$ ‘ - w-n)

mCos(t j-J’+ W+n) co ~llw+ - sin(~-~ ‘ + w+~)

(A6)

(A6a)

(A7)

Combining the two sine functions, one obtains cos(~-$’) sinw, i. e. , an odd

function in w, which does not contribute to the integral in (36). Therefore,
e

only the first and third terms in (A7) are significant. An analogous simplifi-

cation is obtained for the expression inside the second braces in (A6).

The image sums derived from (39 b), (40a) and (40b) are treated in a

similar marine r.
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Expressions for the Fields near the Plane Z=Z ‘.——

-T,he exact expressions for the field components in Sec. IV’, 2 simplify

when the fields are evaluated in the source plane Z=Z ‘. To explore the field

behavior near the plane Z.Z ‘, we have examined the power series expansion

2
(2.2’) + ; ~B(P, z,~’,z’;t, t’) ❑ Bl _ , +% ,

I I

(Z- Z’)2+ . . . .
z-z

2=21 2=.2’
(Bl)

where B stands for any of the field components. For the vertical electric

dipole located on the wedge face ~=0, one has

,,
HP= H@z=(l when .2=21 9 (B2)

whence the,se field components behave like (a B/3z) t(z-z ‘) near Z=Z ‘. The2=2
remaining field components Hz, E

1 P’ ‘4 are ‘inite ‘hen “z ‘ ,a;’:e;: :;:::;t
ing first derivatives at Z=Z , whence the corrections for zsz

2=2 ~ are O[(z-z ‘)2]; this requires evaluation of the, se,cond derivatives of the

o field components and leads to expressions that are no simpler than the exact

ones, Therefore, nothing is gained by explicit analytical calculation of the

approximate forms for Hz, E ~ and E
4“

Even the expressions for H H and Ez turn out to be fairly compli -
P’ d

cated. One obtains’ for observation points off the wavefront:

a~~ a; 32; -= Ccz(t-t’)
[

-csch2P cothp ed
--&

I

.4 t~+ cschp e , (B3)
2=2) (PP’)2 a$ J

‘2=2

o (B5)

33



Iwhere

.

(B7)
—
I

I

I

(B9)

(B1O) :

In these equations, (~~-~) denotes the preceding terms with ~ replaced by - ~ .

~

t
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Appendix C

●
1. The Computer Program

The analytical results

most general situation, e. g. ,

location and orientation. The

obtained in the preceding sections hold for the

regardless of the wedge angle or the source

present computer program is, however, de-

veloped only for the special case where an electric dipole is situated on and

perpendicular to the surface of the wedge at q_= O. The reason for doing this

will be explained subsequently.

As shown in Section IV, the-electromagnetic field can be subdivided

into geometric optical and diffracted fields. T-he geometric optical field can

be s imply and directly accounted for, even in the case of a dipole with arbitrary

time variation. On the other hand, the diffracted field is.,analyzed through the.
vector Hertz potential. Furthermore, for a. source of arbitrary time variation,

the field is determined by the convolution of the source function with the time-

dependent Greenf s functions obtained in Section IV. Since n-o analytic result

is expected for the convolution integrals encountered here, they are evaluated

numerically. It is this numerical evaluation of convolution integrals that

consumes substantial computer time and space,

e

especially for long observation

times, For this reason, the scope of the computer program has to be restricted.

It-$houlcl be pointed out, h~wever, that if the computer time and space are not

of primary concern, the present program can be modified for the general case

without major effort.

A number of II commentfl statements are provided in the program and

the output data are all under appropriate labelings. Therefore, the program

should be easy to read and interpret.

2, The Computational Scheme——_

The numerical computation of the electromagnetic field due to a time

varying dipole in the presence of a perfectly conducting wedge can be sub-

divided into the relatively simple computation of the incident- and geometrically

reflected fields and the more complicated evaluation of the diffracted field.

The diffracted field is obtained by making use of the expressions for the vector

Hertz potentials obtained in Section IV. 2, We could proceed by calculating first

the electromagnetic field of an impulsive (delta function) dipole and then convolve
,..,.. .. ...! .. .
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this response with the time variation of the actual dipole or, alternatively, we

could first convolve the Hertz potentials with the dipole time variation and then

differentiate these to obtain the electromagnetic field. The latter approach was

taken in order to reduce the singularity of the functions to be differentiated. Pro-

ceeding the other way necessitates the analytic separation of singular terms from

the solution, the differentiation and integration of these terms, and subsequent

combination of these analytic results with the corresponding results obtained by

numerical integration and differentiation of the well-behaved part of the solutions.

The choice of the Uconvolution first - cliff er entiation secondli approach

necessitated an immediate decision concerning the dipole time dependence. For

this reason, the electric dipole producing a step-function electric field at the edge

of the wedge (cf. Section VI) was selected. This dipole moment time variation

appears in the computer program as function PN(TA); it also appears indirectly in

the expressions for the incident and reflected fields. These express ions would

have to be modified if a different dipole moment time dependence were to be used.

For a vertical electric dipole on the wedge face @”= 0, the dipole orientation is

along @ and the location was chosen at (p, 4, z) = (1, O, O),

The numerical computation proceeds by calculation

components of the Hertz potentials at the observation point

ber of neighboring points in cikder to -provide for numerical

of the radial and angular

(p, +C, O), and at a num -

differentiation, These

differentiations are then carried out, and the diffracted electromagnetic field is

calculated. The diffracted field is’ then added to the corresponding field of the

dipole and its image. It is assumed that no mm e than a single image dipole con-

tributes; this restricts the exterior wedge angle a to the range a> TI/2; should the

need arise, a modification. for smaller values of ~ is not difficult to write into the

program.

3. The Convolution Integrals

Concerning selection of the basic time increment, it was found that

cAt = p~400 gave better than 1’%accuracy fol+ times up to 4plc behind the diffracted

wave front. Using this incrementation, the expressions (53b) and (53c) are pro-

grammed in a subroutine AMPS(GRHO, GPI-H.) and returned to the main program

evaluated at a set of points separated by the selected value of cAt. The convo”-

Iution of these functions with the similarly evaluated dipole moment function is

carried out by the trapezoidal rule with three exceptions: (1) If the convolution

extends over one time interval only, the dipole moment function is assumed to
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.

● vary quadratically, then the p and $ components of the Hertz potential for the im-

pulsive source vary like t1i2 and t-112, respectively; and the integral is evaluated

analytically in terms of the values of PNN, GRHO and GPAI at the end of the first

interval, (2) For larger multiples of cAt the contribution of the first interval is

evaluated by assuming quadratic variation of PNN and linear variation of GRHO and

an GPHI, (3) The last interval contribution is evaluated assuming linear variation

for PNN, t112 for GRHO, and t ‘~~2 for GPHI These convolution integrals are stored,●

as arrays, for ‘all 6 points necessary for numerical differentiation under the names

PIRHO and F)IPHI.

4. Numerical Differentiation

Numerical differentiation is straightforward, with one exception. Since the

Nth value of PIRHO or PIPHI denotes the values of these potentials N time intervals
..

behind the diffracted wavefront , a change in the p coordinate of the observation point

involves both. a change in the coordinates. for which & ~, 6; are evaluated (i. e. a

different value of J from among the 6 points) and an appropriately different value of

N for absolute (i. e, not “ behind wavefront’1 ) time. Hence, differentiation with re -

0 spect to p involves simultaneous shifts in both J and N. For simplicity Ap = cAt

was us ed$ so that the appropriate shift in N is unity. The differentiation was carried

out numerically according to (56) - (58).

5. Geometric Optical Fields

The geometric optical field consists of the incident and reflected fields. The

latter can be evaluated by the method of images, taking into account the time delays,,
between the times of arrival of the various field constituents and restricting appro -

priately the angular range of contribution. These computations are included in a

subroutine la belled GEOFD, for which another subroutine, DIPFLD, is provided for

evaluating the radiation from a dipole in free space.

6, Normalization

The normalization in this computer program was intended to facilitate com -

parison with the results of Baum [1] and Higgins [21. The electric and magnetic

fields are no~malized to the discontinuities in the incident fields at the wavefront

when the latter is at the edge of the wedge, Time is printed out i.n units of p/c and

O t z O corresponds to the time of arrival ofithe incident wave at the observation

point.
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24. Fie M Calculation: p = 1.5, w = 1.17
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Figure 25. Field

Lo L5

Calculation:

2.0 25 30 35 4.0
Ctlp

p=l.5, CY=l.25n
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o .5 Lo 1.5 2.0 2.5 30 X5 4.0
b. Ctlp

0 .5 1.0 L5 .2.0 2.!j 30 35 40
c. Ctjp

26. FieLd Calculation: p
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=l,5,0’=l,57r
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