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I. Introduction
,,

Cetiain types of EM? simulators (or calibrators as described in Sensor ;
and Simulation Note I) rake use of cylindrical transmission lines to form
the electromagnetic-field distribution. For these cases in which we desire o

a uniform field distribution we can use a parallel plate transmission line,
and neazzthe flat conductors, we have an ahost uniform field over certain
regions. The purpose of’this note is to discuss the impedance and field
distribution characteristics of such transmission.lines.

We first cmsfd_er the symmetrical three plate”tramndssion line (ilJ.us-
trated in figure 1,, outer plates at the same potential) assuming that the
outer plates are infinite~y wide for our calculations. We next consider the
metrical two plate transmission line which d.so covers the case of the
finite width plate over an infinite (or sufficiently large) conducting plane
because of the field symmetry. Finally we,consider corrections seeded if the
conducting planes are replaced by grids of parallel wires in the direction of
current flow. The finite thickness of the conducting planes is ignored.

..- . . . ,,

We do not intend to derive the conformal transformations but rather to
use them to obtain use~ numerical results. As a matter of convention the
notation for the elliptic integrals and related functions is that found in
the Handbook of Math&atical F&xtions, AMS 55, Natioaal Bureau of Standards,
196h.

11. Symmetrical-Three Plzte Tmns missig rJ..Q&i

Consider the symmetrical three plate transmission line as in figure 1A.
To analyze the impedance and field distribution we first study the simpler
problem of’a semi-infinite center plate with infinite outer plates, and then
we let the center plate be finite. Finally we consider the approximation
involvsd in assuming the outer plates infinite.

A. Semi-infinite Center Plate

First consider the case of large
bution near the edge of the center plate.

. . approxtiation for the inpedance including

T’& conformal.transformation for

a/b and look at the field distri-
Similarly we can also get an

a correction for the edge effects.

this gemetg is given byl

(1)

wher% ,Z = x - “ ““ (2)

and w= U+jv (3)

Thi3 is ill’~stratedin ?Igu-s 2. Hote that we have nornali=ed k>e pro”ole.mhy
seccins b ta one and takicg the edge of the semi-infinite center ~la&e as the

origin of the coordinate system.

1. For this and other conforcd. transt’o~s see :Joonand Spencer, Field Theory
?isndbook,1961,except for those in Section 1’/.
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A. INFINITE OUTER PLATES, THREE CONDUCTOR, PARALLEL PLATE
TRANSMISSION LINE

.—— —- ——— . ANOTHER POSSIBLE——— ——— ——— .—
CON OUCTOR PLANE (INFINITE)

B. TWO CONDUCTOR, PARALLEL PLATE TRANSMISSION LINE

o FIGURE 1. SYMMETRICAL, PARALLEL PLATE TRANSMISSION LINES
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● In figure 2 the equipotentials and
constant v and the electric field lines
conformal transformation as

v= arc cosh (e:%)

2
we can solve for u and v as

u= arc cosh (a) = in [u+ (a2 -

v=~ ac Cos (6)

(+ for negative y)

where 7

magnetic field lines are given
by constant u. Rewriting the

1)1/2]

by

(5)

(4)

(6)

--nx
2 1/2 -—

a = ~[e-Tx+2e
;X

Cos (; y)+l] + & [e-*X-2e Cos(: y)+l]1’2 (7)
2 2

Let US simplify matters by looking at the field distributions along some
convenient lines. First consider the field distribution along the outer plates
(y = ~1). In both cases we have from equations (5) and (7)

(e
-llx”

a= + 1)1/2 (9)

and
T

u= in [(e-rx+ #2 + e-~
1 = arcsinh (e ‘;$ (lo)

Noting that the difference in potential function v, between the plates is
3 (in the y direction) along7r/2we can calculate a normalized electric field

the outer plates as

(u)

2. For these types of identities see AMS 55, Handbook of Mathematical Functions,
National Bureau of Standards, 1964.

3. The normalized magnetic field is the same as the normalized electric field,
but perpendicular to it.
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Second consider the field distribution along the semi-infinite center
plate (y =o, x~o). In this case we have

m

a = ~-~
(12)

and T

u= UC cosh (e-~) (13)

The normalized electric field (in the y direction) along the center plate
is then

I

‘Yrel Iy=o=-$ ~
= (~ -e’x)-l/2 (14)

Third we can consider the field distribution to the right of the center
plate (y =0, x~o). Using the v functions we have

lr

6 = =- P (15)

and

Jx
v = ~arccos(e~) (16)

The normalized electric field (in the x direction) off the edge of the center
plate is then

IIx
H
av=

rel y=o ‘: ~
(eTx 4-1/2 (17)

These normalized fields are plotted in figures 3 and 4 on linear and
logarithmic scales respectively. In figure 4 in two cases we can see how closely
the normalized fields approach unity as a function of position. This shows the
distance from the edge of the center plate required for a given degree of’field
uniformity.

The field distortion at the edge of the center plate has the effect of
lowering the impedance of the transmission line. For S >> 1 we can approximate

. L
the impedance by calculating an effective width of the”center plate. Using the
potential function
of the edge of the
as

[
Ax= lim x+

~.

{
=Lim x+
X+2C0- !

= lim
&m?3-

—
of equation (13) we can calculate the effective position, Ax,
center plate required to terminate a uniform field (no fringing)

(18)
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a

. .

or

Ax = ~ in (2)
T1

(19)

Using the dimensions indicated in figure IA we then have for large a/b a
geometric factor, f , in the transmission line impedance (accounting for
fringing on both ed~es o~~ the center plate) of

‘i

/

This geometric factor relates the transmission line impedance, Z,, to the
wave impedance, Z, by

‘L = ‘i?

The wave impedance in turn depends on
conductivity of the medium inside the

B. Finite Center Plate

(20)

Now let the center plate be finite.

u

(21)

the permeability, permittivity, and
transmission line.

where a is the complex conjugate of z.

positive x and y for the case of a 50 0
impedance equal to that of free space.
field lines are given by constant u and
By symmetry this figure can be extended

The conformal transformation is
4,5

(22)

This is illustrated in figure 5 for

transmission line, assuming a wave
Here the equipotentials and magnetic
the electric field lines by constant v.
to all four quadrants.

Instead of solving for u and v we can solve for x and y as
,- r ,9

~ln ‘+;sn
/

[ (~2(u!m)dn2 v!m ) + cn2(ulm)dn2(ulm)sn2(v~p)cn2(v~mj)x =-
11

(1 - &2(ulm)sn2(vlmJ)2 J i (23)

.

4. See AMS 55 (ref. 2) for the notation regarding the elliptic integrals F
(or K) and E, the Jacobian elliptic functions sn, cn, and dn, the Jacobian zeta
function, Z, and related quantities.

5. In Moon and Spencer (ref. 1) this transform is interchanged with another one
in the figures (pp. 74 and 75).

9
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,

and

Y +L+J= ~ arctan !cn(um)dn{u!m)sn(vlm cn(vi
R sn(ulm)dn(v!ml)

; J

(24)

In this normalized geometry where the outer plates are at y = :1 we can
relate the width of the center plate to the parameter, m, (or lts complernent,ml
= l-m) in the elliptic functions. Aty=Ofor 14 <a/b we have

u= K (m)..

[

7
and x = &ln dn? (v~n${

-if
“-P

i. .

At v=Owe then have

x =. & in (m)V=o
27

and at the other end

(25)

(26)

(27)

(28)

Thus the origin of the coordinates is in the center of the middle plate and we
have the important result that

&=- ~ in (m) (29)
b 211

We also have the geometric factor in the impedance as

Since

fg = K (m)
2 K (m~

l-ml= e
-2T:

m=

we can calculate the impedance as graphed in figure 6.

In equation (20) we have an approximation to f for small b/a.
F

For
large b/a we can take limiting forms of K(m) and K m~ to obtain

(30)

(31)

(32)

Thus in figure 6 we also plot approximations to fg for both large.and small b/a as
well as the difference of these approximations from fg.

For various applications we may desir? certain specific transmission line
impedances (generally a convenient number times 50 Q ). Taking the definition
of’the permeability of free space

11
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x=&ln
iT

The normalized

.-
2

-f+
cn v{
msn (;lm)

electric field

(33)I

%
=47TX1O-7 henries

meter

6
and the measured value of the speed of light in vacuo

c = 2.99793 (~ 10-5) x 108 meters
sec

we can construct a table of b/a for desired values of ZL(equation (21)).

ZL (ohms) f b/a
e

25 .06627 , .30018
50 .13254 .6920

100 .26508 1.9793
200 ,5302 10.964

Table I. Impedances for Three Plate Transmission Line

As before we can calculate the field distribution at convenient locations.
First along the outer plates (y = ~1, u = O) we have from equation (23)

which after some manipulation

For the special case of x = O

(34)

(35)

(in the Y direction) along the outer plates is

3V (36)
E

becomes

-1/2+m + 2fi cosh (ITX)]

we have

.Eyrel X=o=lr

Y=L~ 2 K(m) [1+
w]

(37)

(38)

With the use of equation (31) we can relate these quantities to b/a. We
can note that in the limit of small b/a the normalized field (equation (37))
behaves like that for the semi infinite center plate near the edge of the center
plate. Using equation (38)we can see how small we must make b/a to approach a
normalized field of one in the center of the outer plates. This latter parameter
is plotted in figure 7.

Second let us consider the field distribution along the center plate
(Y=O, lx~ s a/b, u = K(m)) where we have

x ~ M&M]=&In (39)

L~J
* Americer.Institute of Physics Ha%book, Second Edition, 1963.
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The normalized electric field (in the y direction) along the center plate
is then

which after some manipulation becomes

E
Yre~ ~o = ~“ [l+m- 2@cosh ( TX)]-1’2

2K(m)

and
x=

which is similar in form to equation (37). For the special case of
O we have

E
‘rel =

x= o

Y=o
; K(m) [1 -@]

(40)

.(41)

(42)

which is also plotted in figure 7.

Thus we can determine the impedances and field distributions in this type
of parallel plate transmission line. In addition we can determine the degree
of uniformity of the fields over a given part of the transmission line.

c. Effect of Finite Outer Plates

In practice the outer plates must be of finite width, introducing an error
into the previous calculations. Since the case of small b/a is of interest (for
uniform fields) and a comparatively simple case, we can look at figure 4 to get
sm idea of how far beyond the edge of the center platewe need extend the outer
plates until the fringing field is below a specified level (relative to the field
atx= o). If af represents the half width of either of the outer plates, then
the one percent level is, for example, at

af - a =3 (43)
b

Instead of looking at the fringing field level we might look at that part
of the impedance attributable to field lines terminating on the outer plates
for ~xl >> a/b. From equation (37) we have for ,x! > a~b,

I
E
‘rel

[fi elTx]-1/2

Y = 21 .= h-m
(44)

Using equation (30) for fg we can then say for a relativs part of l/fg due to
field lines beyond at (for ali four outer plate edges)

(J5)

15
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or

-IT af——

For’small b/a then
.- 7t~1-a.. -- —..,

A? 2.
-. = 2b e ,:k--- ,,
%

xa’

(46)

(47)

showing that both small b/a and large (aLa)/b contribute to a small uncertainty
in the impedance.

Thus we have two criteria with which to judge the effect of the outer plates,
one based on the size of the fringing field at the edge of the outer plates and
one based on that part of the impedance due to field lines beyond the edge of the
outer plates. However these criteria are very approximate in that if the outer
plates are of finite extent the field distribution will be rearranged in the
vicinity of the edges of these outer plates. Thus equation (47)is not a —.-.
correction to the impedance but an indication of the size of the error.

-...

111. Symmetrical Two Plate Transmission Line

Now consider the symmetric two-plate transmission line as in figure lB.
We consider first the case of semi-infiniteplates and second the case of finite
plates. Our rgsults also apply for a semi-infinite or finite plate parallel to ●an infinite plate because of symmetry in the field lines.

A. Semi-infinite Plates

Let a/b be l~ge and look at the field distribution near the edges
of the plates. The conformal transformation is

z ‘~ [W+l+ew]
l-f (48)

which is illustrated in figure 8 in normalized form for positive y, The plot
for negative y is a mirror image.

The
electric

x=

Y=

and

equipotentialsand magnetic field lines are given by
field lines by constant u. We can solve for x and y

& [u+ 1 + e“cos (v)]
.,.

R

~ [v + e“ sin (v)]
lT

.-
16

constant v and the
a;

(49)

(50)
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First calculate the field distribution along the plane of symmetry
(Y =0, v=o). Here we have

x= ~[u+l+e”]
lT

Thus we have a normalized field distribution

(51)

(52)

obtaining u from equation (51)8

Since in a conformal solution we can place a conductor along any equipotential
line then equation (52) also describes the relative field over an infinite
conducting plate (Y=O) from a semi-infinite conducti~ plates Thus we are
solving far two interesting transmission-linegeometries.

Second calculate the field distribution along the semi-infinite plates
(Y=~l, v=tr). Here we have

x= &[u+l-e”] (53)
R

However we have two field distributions: one outside of the plates (u > O) and
one inside the plates (u < O). Thus

5
II

rel =&au

‘{

= [~ - eu]-l inside (u < O)
y+l w %7
.“

[e” -1]-1 outside (u > 0)
(54)

obtaining u from equation (53).

These normalized fields are plotted in figures 9 and 10 on linear and
logarithmic scales respectively. Again in figure 10 the magnitude of the
difference of the normalized fields from unity is also plotted so that we
can determine the distance from the edge required.for a given degree of
field uniformity.

Unfortunately we cannot caiculate an approximation for fg for small
b/a in the same manner as for the three plate transmission line (eq~ation (20)).

If we try to integrate the “excess‘ffield (the difference from a uniform field)
over one of the semi-infiniteplates we shall have a divergent answer from the
contribution of the field on the outside of the plates.

B. Finite Plates

finite plates (as in figure lB) we have the conformal transformation

+ j K(m)lm) + j (55)

18
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,
This is illustrated in figure 11 for positive x and y for the case of a
100 Qtransmission line (assuming a wave impedance equal to that of free space).
If we place a conducting plane at Y=O we also have the field distribution for
a 50 Q transmission line consisting of a finite width conducting plate parallel
to an infinite width conducting platet :The.equipotentialsand magnetic field
lines are,giyen by’,~onst~tti~dandi:the.electricfield lines by constant u. By
symmetry this figure can be qti.eqd~dto all four quadrwts. . .

. . . ....4.

Expanding the transformation we have .
* -.

x=

[

2 K(m) E(ulm)-uE(m) + m sn(ul”m)cn(ulm)dn(ulm)sn2(v’im
T m l-dn2(ulm)sn2(v’lm~ 4/

4’

(56)

where

v’= v + K(q) (58)

In
to

this normalized geometry (outer plates at y = ~ 1) let us next relate a/b
the parameter, m, in the elliptic functions. Aty= ~ 1 for xl< & we have

b

v= ~ K(q) (59)

and

‘=wE(u’m)-uw)=*z(u’m) (60)

Varying u between O and K(m) corresponds to moving from x = O to x = a/b on
the outside of one_of the plates and then from x = a/b back to x = O on the
inside of the plate. (See figure 11.) Thus we have

where ZmG is the msximum value of Z(u)m) for a fixed m.

For convenience we can reyrite equation (6o) as

x= g
{ )K(m) E(+lm) - E(m) F($lm)

m

where we use the amplitude, $ , (instead of u). Then let

[
-& = O = ~ K(m) [1-msin~$J1/2 - E(m) [1-msin2(oJ-1’2
a+ 11 1

(61)

(62)

(63)

J
21
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.
Thus

(64)

or

and finally

( )
g= ~, K(m) E($c~m) - E(m)F($O!m)(
bi’f

(
The geometric

+

fg= K(m
K(m

Thus relating
in figure 12.

For both
For small b/a

r

(
J

factor in the impedance is

m to ~from equations (65)

large and small b/a we can
we have the approximation

.

( L

This is also plotted in
exact calculation. The
0.1 because of computer

(65)

(66)

(67)

and (66) we can calculate fg as graphed

obtain approximate expressions for f
‘!3”

(68)

figure 12 <ogether with the difference from the more
latter could only be calculated down to a b/a close to
accuracy problems associated with m very close to one.

Fortunately the approximation of equation (68)is within about a percent at
this point as can be seen in figure 12. For large b/a (correspondingto small m)
we can take first order expansions, in m, of equations (65),(66),and (67),obtaining

$o=~ (69)
IT

and

and finally

which is also plotted in figure 12.

(70)

(71)

7. A.E.H. Love, Prcc. London Math. Sot. ~, 337-369,1923
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For convenience as in Section II B we can
impedances (for a wave impedance equal to that

~ (ohms) f
6

25 .06627
50 .1325h
100 .26508
200 .5302

tabulate b/a for a few
of free space).

b/a

.07484

.16652

.bo641
1.2335

Table 11. Impedances for T’%oPlate Transmission Line

Now let us consider the field distribution. First along the plates
(y=~l;~R~K(mj) we have

The

or

The

[x = ~ K(m) E(ulm) - u E(m)1
X( J

normalized electric field along the outer plates is then

(72)

(73)

(74)

absolute value is indicated because the expression-changes sign depending
on the value of u which gov@rns whether the expression pertains to fields on
the outside (~.yl= 1 +) or on the inside (Iyl = 1 -) of the pl~te~+

For x = O we then have two special cases. At the center inside the plates
(U= K(m)) we have

E
‘rel

1
X=o(inside) = —- (75)

2 K(m~ [E(m) - mlK~m)]
y=~l

and at the center outside the plates (u=O) we have

With

E
Yre

i
So(outside) =

2 K(m~ [K(m) -
~~1

E(m)]

the use of equation (66) we can plot these last two quantities against
b/a as in figure 13.

(76)

Second along the plane of symmetry which is also an equipotential
(Y=O, wO) we have
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This gives a normalized fieid

or

E
‘rel

= ~E m)
(+

3

+ cn2(ulm) 1
2 K(@TK(m) K m) mm)~.()

For x=O (and u = K(m)) we have

(77)

(78)

(79)

(80)

Iy=o

This is also plotted in figure 13.

Thus we can determine the impedance and field distribution for this two
plate transmission line, Likewise using equations (75) and (80) we can deter-
mine the field uniformity near the middle (x=O) of the transmission line. These
results also apply to a transmission line consisting of a conducting plate of
width 2a at a distance b from an infinite conducting plate if we divide fg by
two. However if we look at figures 9 and 10 we can see how slowly the field falls
off with increasing distance from the finite plate, at least compared with figzuye
3 and 4 for the three plate transmission line. Thus the conducti~g plate at y=O
should extend significantly beyond the edges of the other plate to intercept most
of the field for the calculations to “oevalid.

IV. Effect af Replacing Conducting Plates with Wires

In some eases it is desirable to replace some of the continuous conducting
plates with grids of parallel wires, each wire being parallel to the direction
of propagation of the wave on The transmission line. Let us then consider the
field distribution around a grid of parallel -wires,each of radius, c , and
spacing between centers, 2d, all lying in a common plane as illustrated in
figure 14. To simplify the calculations let the grid extend to infinity on
both sides, i.e., let the structure be periodic. Thus we can consider a
repetitive cell of width, 2d, which we can solve by conformal transformation.
Also consider anly the case in which the wire diameter is much less then the
spacing between wires.

All the wires are assum~d to be at the same potential and two types of
field distribuzicns are considered. First is the case in which the grid supports
a uniform electric field c.none side and no field on the other, In the second
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case the grid supports equal (but opposite in direction) uniform electric
fields on both sides of the grid. Since these grids can be used to replace
the conducting plates of the parallel plate transmission lines (as in figure 1),
it is necessary in such a case that the wire spacing be much less than the
characteristic dimensions (b and a) of the transmission line if these calcu-
lations are to apply. Thus significant distortions will be confined to the
vicinity of the grids over a distance on the order of the wire spacing. This
field distortion is also reflected in an increase in the transmission line
impedance which we can look upon as an increase in the “effective” plate spacing.

A. Uniform Field on One Side of Grid

Consider first the case in which the grid supports a uniform field on
one side. The conformal transformation is

z =~ln[ew+ 1] (81)
R

one dell of which is illustrated in f@urel,5, The equipotentialk.and magnetic
field lines are given by constant ~an~’the electric field lines by constant v.
We have normalized the problem by se$$ing d to one,

Rewriting equation (81)as

w= in [e-J~z -~] (82)

we have

u= & in [e2W - (83)2 e=y cos (TX) + 11
2

and

v= r- arctan e‘y sin(rx) 1 (84)

1ev COS(TTX) - 1J
For small ,Z I (or large negative u) the equipotentials approach circles,
approximating the wire shape. For convenience define the wire potential, UO,
by setting x = O and y = ~.
Thus d

T;
u~ =ln[e -1] (85)

For large positive y we have

u= Ty (86)

giving an approximately uniform field distribution. Let us then determine
that y for a uniform field distribution, YO, which would be at a potential,
UO, and match the potential of equation (86). Thus
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d
yO=LuO=Lln[e -

IT n

This represents an “effective”

1]

position of the grid for use in impedance

(87)

calculations, i.e., this is the position of the flat conducting surface
equivalent to the grid. Removing the normalization of the coordinates
we have a shift, Ay, of the grid to an equivalent electrical position
(as a conducting plane)

Hs
Ay’- Qln[ed-l] =gln,l~

)
(88)

II T imc

We can use this approximate formula to calculate an increase in transmission
line impedance due to an increase, Ay, in effective plate spacing.

Near the wires the field distribution will be significantly distorted.
In the normalized geometry consider first the potential distribution along a
plane midway between two adjacent wires (x=:1, v=~n). Thus from equation (83)

u= in [eW+ 1]

which gives a relative field

E
yrel ~~ au

p~l T ay

Second along the plane, x=O,

which gives a relative field

(89)

distribution

= [~+ e- “]-l (90)

we have

distribution

E i

‘rel
= ~ au = [1-e -Tyl-l

I

x=o
Tr ;~

1’

Note that for negative y the field along the plane, x=O, is opposite in
direction to that along the planes, x=~l, These field distributions are
plotted in figure 16 showing the extent of field distortion due to the wire
grid.

B. Equal and Opposite Uniform Fields on Both Sides of Grid

. For the case that the grid supports equal
on both sides we have the conformal transformation

(91)

(92)

and opposite uniform fieids

z = g arc sin [ew]
T
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one cell of which is illustrated in figure 17. The equipotentials and
magnetic field lines are given by constant u and the electric field lines
by constant v. Again we have set d to one for the calculations

Rewriting equation (93) as

w= in [sin(~)]

we have

u = & in [sin2 (:x) cosh2 ($-y) + co.s2(~x) sinh2(~ y)] ‘
2

(94)

(95)

and

v = arctan [cot (:x) tanh (~y)] (96)

Again the equipotentials approach circles for s~all Iz\, approximating the
wire shape. Taking the position x=O and y = 28- to define the wire potential,
Uo, we have

% = in [sinh(~:)1

For large positive y we have

U=7T Y- Yin(2)
~

That y for a uniform field distribution, yo, which would be at a potential,
Uo, and match the potential of equation (98) is

Yo =
[

g [u. + h(2)] =2_ln * sinh (~~)
lT T 1

(97)

(98)

(99)

Removing the normalization of the coordinates we have a shift, Ay, of the wire
grid to an equivalent electrical position (as a conducting plane)

(loo)

Note that this is twice as large as the effective grid displacement for a uni-
form field on one side of the grid (equation (88)). We should also note that
the effective displacement of equation (100) contributes to an impedance increase
on both sides of the grid. For example, in the case of the three plate transmission
line (figure 1A), if the center plate were replaced with a wire grid we would use
equation (100) to calculate an effective increase in the plate spacing, b, on each
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side of the center plate. Equation (88)would apply to replacing one of
the outer plates with a ‘~iregrid.

Looking at the field distribution near the wires first consider the
potential distribution along a plane midway between adjacent wires
(X=31, v=o,~l?). Tliusfrom equation (95)

u = in [cosh (~Y)]

which gives a relative

Second along the plane,

field distribution

x=O, we have

u= ln[lsinh(~y)l]

which gives a relative field distribution

% = 2)Q =
rel coth (~ y)

IX=o = ay

(101)

[102)

(103)

(104)

Both of these field distributions are symmetrical about the plane of the
grid (y=O) and are plotted for positive y in figure 18.

Thus we can make a first order correction to our impedance calculations
for the use of periodic wire grids (parallel to the current flow) in place of
conducting plates. Likewise we can calculate the minimum distance away from
the grid we must maintain for a given field uniformity.

v. Summary

We can calculate the impedances of both the symmetrical three plate trans-
mission line with sufficiently large outer plates (figure 6) and the symmetrical
two plate transmission line (figure 12). The latter solution also applies to
the transmission line consisting of a finite width conducting plate parallel to
a sufficiently large conducting plane if we hal-~ethe impedance. If the
con~ucting plates are replaced by grids of parallel wires we can make a first
or6er correction to the impedance, increasing the effective plate spacing.

For use in design of electromagnetic field simulators we can also determine
the field distribution and degree of field uniformity over certain regions in
the transmission line structures. However we should be careful in our application
of these results because there may be some other effects which influence the
impedances and field distributions in certain cases.

Ye would iike to thank Mrs. Linda Crosby and Mr. Robert Mercer who
programmed the computer solutions for the plots and tables contained in this
note.
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