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Abstract

A combination of the techniques of stereographic projection and confo-rmal

mapping reduces the problem of calculating rhe “TEMfield distribution and

impedance of two conical plates to that of a simple geometry fcr which the

solution is known. Extensive tables and curves are given .cftb.eilnpedance

of two conical plates for various cone angles and plate widths.
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I. INTRODUCTION

The most common type of bounded wave simulators consists of two plates with

two conical sections and one cylindrical section. The conical sections are ~wed

as wave launcher and terminator, whereas the’cylindrical section serves as eke

working volume in which test objects are placed. One such simul.ato~is schemati-

cally illustrated in Fig. 1, which shows the top and side views of the future

ATIAS I simulator.

The present note is concerned with the calculation of impedance of two

conical plates. The TEM field distribution will be

In Section 3X the conical line is stereographicaUy

line of two circular a~cs on two different circles.

further reduced, by the method of conformal mapping

reported in a separate not=.

projected onto a cylindxicai

This cylindrical line is

in Section 111, to a s’imple

structure of which the impedance is know~. Tables and curves of the Impedance

are given for a variety of cone angles and plate widths. When the ccnical an5Le

(D

is small the deviation of the conical-plate impedance from the parallel-plste

Mpedance is worked out explicitly in Section IV. Miraculously the small-cove-

angle impedance formula works quite well even for moderately large cone zng.h~s

if the plates’ separation-to-width ratio is not tGo small. The impedance

deviation is plotted a welias tabalate& as a functim of this ratio.
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o II.

To analyze the TEM

METHOD OF STEREOGMPHIC PROJECTION

field distribution on two conical plates we employ the

rectangular and spherical coordinate systems (x,y,z) and (r,e,~) as shown in

Fig. 2. In the (x,y,z) coordinates the equations for the surfaces of the conical
,-

plates are given by

(la)

2+220

and, in the (Z,ej$) coordinates by

o 7r/2+$02$aT/2-+ o

where the ‘I+$fand ‘t-t*signs correspond, respectively, to the upper zcd lower

plates. The angles 60 and ~. of the conical plates are determined by

00 = tan-’l(b/q

(1.C)
$..= tan-’l(a/b)

It is well known that the two conical plates as shown in Fig, 2 can

support a spherical TEM wave propagating along the radial direction. The

r-dependence of the complex potential W of a TEM wave can be factored

out as [1]

W(r,e,$) = [U(e,$) + iV(O,$)]exp(kikr)/r (2)
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@
where U and V satisfy the two-dimensional Laplace equation on a spherical

surface

(3)

The functions U and V are uniquely determined once U (or V) is

specified on the cumes that are

by (1) and the spherical surface

~=g or

The Laplace equation (3) on

ordinary two-dimensional Laplace

the intersections

given by

# +Y2 + (2+.1)2

of the conica~ plates given

= .t2 (4)-

the unit spherfican be transformed to the

equation in, say, the z = O plane by the

method of stereographic projection ehrough the following transformmtior- [z]:

0, x = 22 tan(e/2) Cos .$
(5>

y= 22 tan(6/2) sin ~

by which (3) reduces to

The equation of the straight line connecting the point (0,0,-22) and the

point (Xo,yo,zo) is given by

x Y- =:Z+2!2—=
x0 Y. Z. + 22

where the point (Xo,yo,zo) is shown in Fig. 2 and lies on the curves given by

qrthe intersections of the conical plates (1) and the spherical surface (4).

9



Hence$ the intersections when projected onto the z = O p3.anesatisfy the

equations

x—= L. s%
x Y. Z. i-22
0

which give
2X0

‘=l+(l+ZJL)

2yfl

to find the equation that

stezeog%aphic projections

between (1) and (4). To do this, we use (1.a), (4) and

x~9Yo and z as follows:
o

with

4(X: +y:)
X2+Y2 .

[1 + (1 + 2./2)]2 -

[

2(1+ zo/t)
= 4L2 1-

1 + (1 + ZOQ) 1
[

2yo/b
= 4!22 17

1 + (1+ 2./2)1

lX’’,+* ‘

(7● a]

(7.b)

.

describes in the x,y-

Gf the intersections

(7] to eliminate

.

(8a)

(8.b)

10
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(B The curves governed by (8) are shown in Fig. 3;

The potential.function V&, y) and the strean function U(x,y) on the

projected z = O plane will be deterdned by specifying the value V on the:

two circular arcs given by (8). The characteristic impedance of the origir:al

two conical plates (Fig. 2) can be obtained from that of the two curved

cylindrical plates (Fig. 3), since the two chaxacteriatic impedances are

identical. The latter till be determined by conformal mapping in the next

section.

11
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Figure 3. Stereographic projection of two conical plates onto

two plates of circular arc.
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III. METHOD OF CONFCHU4ALMAWING

In this section we will determine the characteristic impedance of two

curved cylindrical plates shown in Fig. 3. Successive conformal transformatims

will be applied RO map the geometry of Fig. 3 into a rectangle (Fig. 6) from

which the characteristic impedance is readily found.

First, we use the following hyperbolic transformation

(9)

to map the whole complex z-plane ixto a,region between two infinite parallel

strips of separation 2n in the complex zl-pkne as showm iu Fig. 4. Here,

z=x+iyand z,= &+iy.. Under thts tr~nsformation the two ci~cu~ar

arcs are transform~d in~o :wo&parallel strips of width

and separation 2e .
0

0
In the zl-plane we only need to consider the first

the symmetry of the configuration. Using the following

transformation

f

t At’ -t (l-q

zl=%~
~-(1K t’) (l-t’ )(l-m’ )

2 sinh-l(a/b sin eo)

quadrant because of

Schwarz-Christoffel

where l>man>O, O ~ \(l-A1)/nl~ S 1, and ~ , B1 , Cl are constants,

one finds that the shaded quadrant of Fig. 4 is mapped into the upper half

t-plane of Fig. 5. This integral can be carried out in terms of elliptic

integrals and elliptic functions, namely,

‘1
= CJU - A1[lI(n;ulm)- ~ f(m,n,u)]) + B1 (10:)

where t = sin q = sn u , m = sin2a , and [3]

@ 13
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Figure 4. The entire z-plane
the region between

i y,

A

,21- plane

F.

F xl
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=1a

--m-i7r .

two strips
is
in

conformably mapped
the zl-plane.
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t-plane
A

Figure 5. The shaded region of Figure 4 is conformably
mapped onto the upper-half t-plane.
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u = F@\m)

/

t
= [(1-t’2)(1-mt’2)]-%dt’

o

H(n;u{m) =

f= (1-n~’2)-1[(1-t’2)(1-mt’2)]-%dt’

f(m,n,u) =
1

I

An 2(1-n)(m-n) + (1 - n sn2u)(n +nm - 2m)

2t(l-n)(m-n) n(m-1)(1 - n “

~ 2n/(1-n)(m-n) cn u dn u
.

n(m-1)(1 - n sn~u)

snLu)

I

andsnu, cnu,dn u are elliptic functions, and u and 11 are elliptic

integrals of the first kind and of the third kind.
.

In the transformation equation (10) there are five constants Al,Bl,cl,

m and n . To determine them we require the mapping among the boundary points o

(seeFigs. 4 and 5) as shown in Table 1. Here, K(m) is &he complete elliptic

Table I. Mapping of boundary points.

ie ~

itlo + sin.h-l(a/bsin 9.)

o

t-plane II u-value

-1/+iii -K(m) + iK’(m)

-1 -K (m)

- (1-+) /6 ~n-l[ (+-1) /Jiil

1 K(m)

1/6 K(m) + iK’(m)

16
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(B integral of the first kind. The third column of Table I gives the values of

u , where u = I?(cp~m), corresponding to the boundary points in the zl-plane

o

and t-plane. From (10) and the above table we find

ieo

andm , n , ~ satisfy the following three coupled

K(m) - ~lI(n;K(m)~m) = O

1- 2@o/7r= F(sfn-lfilm)/K(m)

(11:)

equations:

sinh-l(a/b sin $e) = ~(1-n)(~n) [F(~~i*-l~/m) -A111(n;Sn-18/m)] - G

%~

(12)

where

e = (1-AJK

The solution for the geometry shown in Fig. 5 is kno~ [4,5]. Instead Of

translating the known solution in term of our notation, it is more expedient

to solve the problem anew. The Schwarz-Christoffel transformation required do

map the upper half t-plane (Fig. 5) to

J
t

w.lJ+iv=c3
o

the interior of a

dt‘

=’

rectangle (Ftg. 6) is

‘3
(13]

=CU+B
33

17
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Figure
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6. The entire upper-half t-plane (Figure 5) is conformably
mapped onto a rectangle in the W-plane.
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9D Table II shows the mapping among the boundary points. From (13) and Table 1,1

Table II. Mapping of boundary points.

@

t-plane ,

-1//s

-1

1

1/6

-l/-&

we find

C3 = -l/K(m)

V. = K’(@/~(~)

U. = 1 + F(sin-l&h;lm)/K(m)

B3 = iK’(m)/IC(m)- F(sin-lfilm)/K(m)

Thus, (13) gives

o

W-plane
II u-value

2 - U* -K(m) + iK’(m)

2 -uO+’iv o -K(m)

-U. + iv. K(m)

-U. K(m) + iK’(m)

o sn”l(-l/@

u= -wK(m) +iK’(m) - F(sin-lWlm)

The geometric impedance factor f~ is given by

,AIJ
‘g = AU

19
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where AV is the normalized potential

is the change in the normalized stream

geometry shown in Fig. 6 we have hV =

.

. .

#

difference between two plates and ALI

function on one

V. = K?(m)/K(m)

.

It is pasy to convince oneself that expression (15) is

impedance fackor for the original two conical plates.

impedance can be obtained simply from

where m is

For the

Zc+zf
8

plate. For the rectangular

and AU=2. Hence,

(15)

also the geometxic

The characteristic

determined by (12).

special case where 00 = m/2 , one can solve (12] analytically and
9

get

n.()

from

that

%=1 (17)

m = a2/(a2+b2)

which, together with (16), one can show that the same Z value results as
c

reported earlier in [6,7].

Before proceeding to the numerical tabulation and graphical presentation of

E/ndzc let us point out that in the limit of smallcone angles, the parameter

m used in this note will not reduce to the parameter m used in previous,reports,

such as [8] and [9]. If one insists on using an m which reduces to the previous

m in the limiting case, one has to relabel the boundary points of Fig. 5. This

means that all the subsequent transformations will be different. Instead of

20
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reworking the problem we suggest in Fig. 7 the necessary mapping that goes frclm

Fig. 4 to Fig. 5. This mapping is expected to give f- = K’(m)/K(m) , in which
5

the parameter m would reduce in the limiting case to the one previously usedl.

Fig. 8 is a plot of the geometric impedance factor f versus 2/b With
f!

b/a as a parameter, whereas Fig. 9 displays f versus b/a with L/b as a~
g

parameter. It is interesting to note that the two limiting curves (indicated

by i/b = O and I/b = =) of Fig. 9 give a very good bound for all b/a values.

The limiting curve (2/b = O) has been reported in [6] and the other limiting

curve (2/b = ~) corresponds to the two-parallel-plate case.

In Table 111 are tabulated the m values resulting from numerically

solving (12). From these m values f
~

and Z are calculated according
c

to (15) and (16) and tabulated respectively in Tables IV and V.

21
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Figure 7. A suggested conformal mapping
reduce to that often used for

in which the parameter m would
two parallel plates. e
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0.00

m
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.8000
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.5000
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.3941
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● 2000
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.1000

.0200
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.4286

.4115
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.2902

.2425
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● 7305

.6624

.5979

.5386

.4369

.4193

.3567

.2941

.2453

.2068

.1412

.1017

.0201

2.00

.9964

.9294

.8789

.8130

.7428

.6730

.6069

.5460

● 4419

.4239

.3601

.2965

.2469

.2080

● 1417

.1020

.0201

——

2.50

xc

.9371

.8875

.8215

.7504

.6796

.6124

● 550,5

● 4450

.4267

.3621

.2978

.2478

.2086

.1421.

.1022

.0201,
—.

3.00

XE

.9421

.8931

.8270

.7554

.6838

.6159

.5534

.4469

.4284

.3634

.2987

.2484

.2091

.1422

.1023

.0201

3.50

XiiT

.9455

.8969

.8306

.7586

.6866

.6182

.5553

.4481

.4296

.3642

.2992

.2488

.2093

.1424

.1023

.0201

3.90

.9992

.9474

.8991

.8328

.7605

.6882

.6195

.5564

.4488

.4302

.3647

.2996

.2490

.2095

.1424

.1024

.0201

Table III. Values of the parameter m .

T4.50 5.00

*9994 .9995

● 9495 .9508

.9014 .9028

.8350 .8364

.7626 .7638

.6899 .6910

.6209 .6218

.5575 .5582

>4496 .4500

.4309 .4313

.3652 .3655

.2999 .3001

.2493 *2494

.2096 .2097

.1425 .1426

.1024 .1024

.0201 .0201

I
10.0 ;

I
,9998

I
,9551

v9076

,8411

,7679
I

,,6944i
\

<6246 ~
I

,5605i

I,4515 /

.4327

~
.3665

.2499

● 2101

I
● 1427

.J

.1025

.0201
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/b

)/a

*17

● 41

.50

.60

.70

.80

.90

1.00

1.20

1.24

1.40

1.”60

1.80

2.00

2.50

3.00

7.00

0*00*

.2481

.3389

.3676

● 3974

.4254

.4517

.4765

.5000

.5433

●5515

.5825

.6179

.6503

.6800

,7449

.7994

!.0623

1.00

.2186

.3144

.3455

.3778

.4080

.4364

.4630

.4881

● 5339

.5425

●5749

● 6118

.6452

.6758

.7420

.7974

1.0619

1.50

.2008

● 3010

.3338

.3678

.3995

.4291

.4568

.4827

.5298

.5386

.5717

.6092

.6432

.6741

.7409

.7966

1.0617

2.00

.1871

.2916

.3259

.3613

.3941

.4246

.4529

.4794

.5274

.5362

.5698

.6077

.6419

.6731

.7402

.7961

1.0616

2.50

.1769

.2853

.3207

.3571

● 3907

.4217

.4506

.4774

‘.5259

.5349

.5687

.6068

.6412

.6725

● 7399

.7958

1.0616

3.00

.1692

.2809

.3172

.3543

.3884

.4199

.4491

.4761

.5250

.534(I

.5680

.6063

.6408

.6721

.7396

.7957

1.0616

3.50

.1633

.2778

“.3148

.3524

.3870

.4187

.4481

.4753

.5244

.5334

.5675

.6059

.6405

.6719

.7395

.7956

1.0615

3*9O

.1595

.2760

.3133

.3513

.3861

.4180

*4475

.4748

.5240

.5331

.5673

.6057

.6404

.6718

● 7394

.7955

1.0615

* Two planar conical plates ** Two parallel plates

e
Table IV. Values of the g

e
c Impedance faccor

4.50

.1551

.2740

.3118

.3502

.3852

.4173

.4469

*4743

.5237

.5328

.5670

.6055

.6402

.6716

.7393

.7955

1.0615.—

fg .

5.00

.1522

.2727

.3109

.3494

.3846

.4168

.4465

.4740

.5234

.5326

.5668

.6054

.6401

.6715

● 7393

.7954

1.0615

10.0

●1403

.2684

.3076

.3470

.3827

● 4153

.4453

.4730

.5227

.5319

.5663

.6050

.6397

.6713

.7391

.7953

1.0615

.1351

.2667

.3064

.3461

.3820

.4148

.4449

.4726

.5225

.5317

.5661

.6048

.6396

.6712

.7390

● 7953

1.0615

0 * .



~ &/b * **
. 1.00 1.50 2.00 2.50 3.00 3.50 3.90 4.50 5:00 10.0 ‘=**

/a

.17 93.47 82.35 75.66 70.50 66.64 63.73 61.51 60.10 58.43 57.34 52.86 50.90

.41 127.7 118.5 113.4 109.9 107.5 105.8 104.7 104.0 103.2 102.8 101,1 100.4

.50 138.5 130.2 125.8 122.8 120.8 119.5 118.6 118.1 117.5 117.1 115.9 115.4

.60 149● 7 142.3 138.6 136.1 134.5 133.5 132.8 132.4 131.9 131.7 130.7 130.4

.70 160.3 153.7 150.5 148.5 147.2 146.3 145.8 145.5 145”.1 144.9 144.2 143.9

.80 170.2 164.4 161.7 159.9 158.9 158.2 157.7 157.5 157.2 157.0 156.5 156.3

.90 179.5 174.4 172.1 170.6 169.7 169.2 168.8 168.6 168.4 168.2 167.8 167.6

1.00 188.4 183.9 181:8 180.6 179.8 179.4 179.1 178.9 178.7 178.6 178.2 178.0

1.20 204.7 201.1 199.6 198.7 198.1 197.8 197.5 197.4 197.3 i97.2 196.9 196.8

1.24 207.8 204.4 202.9 202.0 201.5 201.2 201.0 200.8 200.7 200.6 200.4 200.3

1.40 219.4 216.6 215.4 214.7 214.2 214.0 213.8 213.7 213.6 213.5 213.3 213.3

1.60 232.8 230.5 229.5 229.0 228.6 228.4 228.3 228.2 228.1 228.1 2,27.9 227.9

1.80 245.0 243.1 242.3 241.8 241.6 241.4 241.3 241.2 241.2 241.1 241.0 241.0

2.00 256.2 254.6 253.9 253.6 253.3 253.2 253.1 253.1 253.0 253.0 252.9 252.9

2.50 280.6 279.6 279.1 278.9 278.7 278.6 278.6 278.6 278.5 278.5 278.4 278.4

3.00 301.2 300.4 300.1 299.9 299.8 299.8 299.7 299.7 299.7 299.7 299.6 299.6

7.00 400.2 400.0 400.0 400.0 399.9 399.9 399.9 399.9 399.9 399.9 399.9 399.9

* Two planar conical plates ** TWO parallel plates

.

Table V. Values of the characteristic impedance Zc of two conical plates.
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When 60 is exactly zero,

SMALL CONE ANGLES

(12) is simplified to

Al = (1-m)K(m)/E(m]

H = K(m)Z(sn-Zq

where

qz ~ b(l-+)21/i

m) + q~K(m)
(18)

m-m(l-~) 2]

and E(m) is the complete elliptic integral of the second kind and Z(ulm)

is the Jacobi.’sZeta function [3]. The solution of (18) together with (15)

will give the s&e geometric impedance factor as that of the parallel plates. .

The truth of this statement will be shown below for the two extreme cases where

&/b c< 1 and a/b >> 1 .

For a/b <c 1 , (18)gives

m= (a/b)*

and from (15)we get

fg=$ ln(4b/a)

For a/b >> 1 , (18)gives

and from (15)we get

(19.a)

(19.b)

The results (19.a)and (19.b)agree with those given in [9].
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If one wants to look into the effects of small cone angles for which

1>>9. >() , (12) is too complicated to be solved analytically. An

alternative approach will now be given. In the zl-plane shown in Fig. 4,

the charge distribution u(xl) on the upper plate can be obtained by solving

the integral equation

a

Vo=.$
J
G(eo,eo;xl,xi)~(xi)dxi

-a

where a= sinh-l(a/b sin tlo), V. is the potential on the upper plate located

at yl = 00 , x’)and G(y13yi;x1~ ~ is the Green’s function that satisfies

O
.

Then f is obtained from
g

a

J-G(Oo,Oo;xlxi)d(xi)dxi

-a

JC (Xi)dXi

small-cone-angle case, the two central plates of Fig. 4 become

and close to each other, and the conditions 0 << T
o

In the

very narrow

sinh-l(a/b sin O.) << 1 general.lyhold. With these conditions in mind

one obtains, after some straightforward manipulation,

(20:1

(
(X1-X;)2 “)

e2

L !tnG(OO,Oo;xl,xi)=Am
4e~ + (X~-Xi)2

‘ii%
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Then with the aid of (20) one has

f
a
= Zg(80/a) - 6~/12Tr (21)

where ~g(80/u) iS the geometric.impedance factor for two parallel plates with

separation 2eo and width 2a = 2 sinh-l(a/b sin 6.) .

Under the condition a/b sin El.<< 1 , (21) can be further approximated by

=~g(b/a) + 6 e2
Cp o

with

“66 = (b/a + a/b)~~(b/a) -
Cp

(22)

to the argument. For the b/a‘e

and, after some manipulation,

.

where ~~ is the derivative of ? with respect

values of interest, ~g(b/a) can~e found’in [8]

~~(b/a) can be calculated by using the %“ values obtained in [8]. The values

of F and t5
Cp

are listed in Table VI and plotted in Fig. 10. The approximate

equat!on (22) for small cone angles has been plotted in Fig. 8.
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o

b/a

0.17‘

0.41

0.5

0.6-

0.7

0.8

O*9

1.0

1.2

1.24 .

1.4

1.6

1.8

2.0

2.5

3.0

7.0

Table VI: Values of Z
g

and 6
Cp

~g(b/a)

0.1334

0.2654

0.:3064 ~

0.3461

0.3820

0.4148

0.4449

0.4726

0.5225

0.5306

0.5661

0.6048

0.6396

0.6712

o*7390

0.7953

1.0610

6
Cp

0.6609 ‘

0.1963

0.1479

0.1159

0.0950

0.0806

0.0702

0.0626

0.0522

0.0508

0.0457

0.0414

0.0384

0.0362

0.0328

0.0309

0.0273
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0.6
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0.5

O*4

0.3 .
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I 2 3

., Figure 10. Geometric impedance factor

small-cone-angle correction

f =~g+ 6=p(b/fi)2
g

F~ of two parallel plates and the

coefficient &
Cp “
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