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Abstract

The higher-order TE and TM modes on two, parallel wide piates are

investigated. By means of Laplace transforms and the Wiener-Hopf technique

/- integral equations are obtained From which expressions for the transverse

propagation constants and the field distributions of the modes are derived in

the special case of wide plates. It is found that besides the TEM mode, the

TE modes are the most important modes on the simulator. The propagation

constants and the field distributions of the lowest TE modes depend mainly on

the width of the plates and they are almost independent of the distance

separating the plate provided that this distance is small compared to the

plate’s width.
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SECTION I

INTRODUCTION

Bounded-wave simulators all use two parallel; finite-width plates as the

guiding structure for the simulated electromagnetic field, (see Fig. 1). The

electromagnetic field on a parallel-plate simulator can be decomposed into a

d
,/.,

transverse electromagnetic (TEMj mode, higher-order transverse magnetic .

and transverse electric (TE) modes and a part due to the continuous spectrum..,
The properties of the TEM mode have been investigated exhaustively “(refs.1, 2

,..

3, 4, and 5), whereas the other parts of the field have been investigated only

in some limiting cases. When the width of the plates is small compared to the

distance between the plates it is found in ref. 6 that the TE modes are more

attenuated as they propagate along the simulator than tarethe TM mcdes. The

field lines and the field distributions of the two lowest TM modes are also

investigated in ref. 6. To determine the relative importance of the TEM mode

contribution to the total field, the time variation of the current induced on

two parallel wires by two step-function slice generators is studied in ref. 7. y

It is found in this reference that the TEM mode constitutes the dominant part o

of the induced current provided one transit time between the wires has elapsed

after the passage of the wavefront.

In this report we will consider two parallel plates where the width of each

plate is much larger than the separating distance. In this case, the numerical

solution of the integral equations derived in ref. 6 becomes very time consuming

even on a fast computer. Therefore, based on Laplace-transforrt’methodsand the

theory of Wiener and Hopf alternative integral equations are derived. Although

both the integral equations derived in ref. 6 and those of this report are exact,

those derived in the reference are most useful for numerical treatment when the.
distance separating the plates is comparable to or larger than their width, whereas

those derived in this report are most useful when the distance separating the

plates is comparable to or smaller than their width.

Integral equations for the transverse magnetic and transverse electric

fields are derived in section 11. The approach used in this report is based on

Laplace transform techniques and follows the one in refs. 8 and.9 except that
m

the Jones version of the Wiener-Hopf method (refs. 10 and 11) is invoked here.

Although there exist different ways of deriving integral equations in the Laplace

4 .’
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method used here seems to be the most expeditious -one. -.

The integral equations derived in Section II are then used in Section III

to obtain expressions for the transverse propagation constant in the special

case where the width-to-separation ratio of the plates is large. It is found

that in this case the TE modes ‘have the smallest damping constaht. This fact
.’

should be compared with the fact that the TM modes have the smallest damping

constant when the plates are narrow. The field distributions of the lowest TE
.

modes are calculated in Section IV. Except close to the edges of the simulator, .

the field distribution of the TE modes are almost uniform in the direction
.

perpendicular to the plates and varies almost sinusoidally in the transverse

direction parallel to the plates. It is also found that in a relatively large

region around the center of the simulator all field components can be expressed

in terms of an almost real function.

An approximate method of calculating the propagation constant on an open
[14]waveguide is given by Weinstein . This method is based on the observation

that when a waveguide mode on a semi-infinite parallel-plate waveguide, with

near cut-off propagation constant reaches the open end,of the waveguide it is

reflected back with a reflection coefficient of absolute value close to unity.

Weinstein’s method is used in [24] to determine certain characteristics of the

higher-order modes on an open parallel-plate waveguide. It is also used in

[15,16] to find the resonance frequencies‘on open resonators, e.g., the Fabry-

‘..

Perot resonator.
/

Numerous investigations have been &evoted to the classical problem of

scattering from an infinitely long strip or slit in a ground plane. Many of

the techniques developed in solving this problem can in principle be used to

treat the two-plate problem. One possible approach is the Fox integral-equation ,

approach[17] where the problem of pulse diffraction by a slit is reduced to a

set of Fredholm integral equations of the second lcindwhich then are solved

iteratively. Similar approaches have also been applied to the strip and slot

problem by Millar
[18,19] [20,21]

and Grinberg . It should also be mentioned that

the transverse propagation constants of the leaky modes on a strip were calculated

in [22]. When solving this problem Fourier Eransform methods are used to derive

an integral equation which is then solved using the Fredholm deterniinanttheory.

o
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II. Fo&nulation of Integral Equations

Consider an open waveguide formed by FWO infinitely long, Perfect~Y

conducting, parallel plates of finite width (Fig. 2). The width of each

plate is denoted by 2W and the distance separating the plates by” 2h. A

coordinate system is introduced such that the z-axis coincides with the axis

of the waveguide and the x-y plane is the transverse plane of the waveguide

with the x-axis parallel to the plates (see Fig. 2).

It is well known that the electromagnetic field qn any uniform waveguide

can be uniquely decomposed into two parts: one part with zero axial component

of the magnetic field (TM-field, E-waves) and the other part with zero axial

component of the electric field (TE-fiel~, H-waves). Accordingly, in

this section a derivation is first given of an integral equation for the

transverse magnetic field and then a corresponding integral equation for the

transverse electric field is derived.

A. Transverse Magnetic Field

By taking the Laplace transform with respect to time (transform variable

s) and the spatial coordinate z (transform variable C) of the longitudinal

component of the electric field one gets the following differential equation

[

82

1‘+&-p2E =0
ax2 ay2

z
,

(1)

where E ‘= Ez(x,y,c,s)
2 2 -2

z and p =Sc - q2, cf. the notation used in ~6].

To solve (1) one uses Laplace transform methods to get the integral representa-

tion of Ez,

EZ(X,YZ,S) ‘& J~z(q,y,c,s)=p(qx)dq
c

(2)

where the path of integration C is symmetric with respect to the origin in

the complex q-plane. It will be discussed later how to choose C properly.

It should be mentioned that the two-sided Laplace transform integral for Ez
does not necessarily exist. Nevertheless, the representation (2) is still

permissible provided that the path of integration C is properly-chosen
[23],

-1
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Inserting (2) into (1) leads to the following differential equation for ~z’

[

d’—_ 1pz+q%z=o.
dy2

Taking into account the outgoing wave condition for Ez at large values of

IYI and that ~ is continuous for y = *h one obtains the following

solution to (3),2

(3)

( Ez(q,h,L,s)ed-iK(y - h)], y>h

iz(%Y,c>s) =1-Ez(q,h,g,s)
siti~(y+h)l

- ~z(q,-h,g,s)
Si&K(y-h)l

IYl <h
si~ 2Kh] si~2Kh] ‘

(4) .

~Ez(q,-h,~,s)exp[iK(Y +h)]Y y<-h

22’
where K = q - p . The branch for K in the complex q-plane is so chosen that

(

.

Im{~} ~ O in that branch. It now remains to determine Ez(q,th,g,s) from the

boundary conditions at y = *h, namely that Ez(x,*h,C,s) = O for Ix] < W>

and that (a/ay) Ez(x,th,C,s) ,is continu~us for 1x1 > W. For that reason

one splits the unknown function iz(%y,~$s) in the following way:

Ez(q,y,~,s) = E+(q,y) + E_(q,y) + El(q,y) (5)

such chat

1 J /
Ez(x,y,s,g), xc-w

E (q,y)exp(qx)dq =
ZZc- 0, X>-w

1 J {
0, X<w

Zz’ E (q,y)=w(qddq =~+
Ez(x,y,s,c), .,X>W

1 J {
lx] >W

%
cEl(q’y)exp(qx’dq = :’(X,Y,S,L), [X[ < wz .

“:,:. 9

(6)
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,Fromthese integrals it is immediately seen that E+(q,yj
.

is a holomorphf.c
.-%

function of q to the right of C, that E_(q,y) is a holomorphlc function

of q to the left of C, and that El(q,y) is an entire function of q. #

By invoking the boundary

1x1 >W one obtains the

E;(q,th+) - Ej(q,th-) =

J.

condition that (a/ay)Ez is continuous at y = th,

following two relationships,

-ic[i+ cot(2Kh)][E+(q,th) + E_(q,th) + El(q,fh)]

+ ~ csc(2~h)[E+(q,Th) -f-E_(q,Th) + E1(q,~h)] (7)

where the prime denotes differentiation with respect to the second argument of

E1(q,y)* Addition and subtraction of these two equations result in the

following equations:

:s (d = K(q)&s(q)

:a(q) = L(d~a(@ ‘

where

G#l) = E;(q,h-) - E;(q,h+) + E~(q,-h-) - E~(q,-h+)

Ga(cl.)= E;(qjh-) - E;(q>h+) - E~(q,-h-) + E;(qj-h+)

GS(q) = E+(q,h) +E_(q,h) +El(q,hj +E+(q,-h) +E_(q,-h) +El(q,-h)

,,

:a(q) = E+(q,h) +E-(q,h) + El(q,h) - E+(q,--h)- E_(q,--h)- El(q>-h)

K(q) = ~[i i-cot(2~h) - Csc(2Kh)] = iIcsec(Kh)exp(itch)

L(q) = K[i + cot(2ich)+ csc(2Kh)] = ~ csc(Kh)exp(iKh).

Note that Gs and Ga are related to u and u
-1-

in ~6] via

(8)

(9)

.! .—._
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f
. u~(x) = *

J
~~(q)exp(qx)dq
c

● (lo)

1
u (x) – ~Ti-—

J
fia(q)exp(qx)dq,
c

1 and that ‘~~(~a) corresponds to the case where the longitudinal currents have

the same magnitude and the same (opposite) direction on the two plates. These

two different cases have been referred to as the symmetric and antisymmetric

. cases, respectively.

[10~111of the method of wiener andHopfThe so-called Jones’ version

will now be used to solve the two equations in (8), i.e., find E~(q,fh) and

E;(q,th). Note that E~(q,fh+) - E~(q,3h-) = O and that El(q,kh) is

given by the incident field. The method starts out with splitting the “kernel

function” K(q) in the following way:

K(q) = K+(q)/K_(q)

(11)

K+(q)K_(-q) = -1

such that K+(q) is homomorphic to the right of the path of integration C

in (6) and K_(q) is homomorphic to the left of C. By choosing C as shown

in Fig. 3 one can find an infinite product representat~on of K+(q) (Y ‘ 0.577-..)
.

K+(q) =
i(q+p)%eXp{(Kh/T)~I~(q+K)/p] -1-(qh/~)ln[(n/2ph) - y + I.1}

● (12)
f [(q+K2d1)2h/(2m+l)m]expc-2qh/ (2til)IT]

m=O

Before substituting (11) for K(q) into (8) it is noted that asymptotically
. for large values of Iql one has

1

K+(q) -1N ii2(p + q) + O(q In q), Id ‘m to the right of C.

and

K-(q) z i/~2(p - q) + o(q-3’2 In q), ]q] +m to the left of C.

,,’
11

(13)
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a The boundary conditions on che plate also imply that

f

w

. E1(q,~h) = Ez(x,th,g,s)exp(-qx)dx
-w

. w
=- J E~c(x,th,t,s)exp(-qx)dx

-w
(14)

inc
and since Ez is finite on the plates it is clear that

,El(q,th),- exp(qwj, Jql +m, Re{q} > 0

(15)

El(q,@ - exp(-qw), [ql +=’> Re{q} c O.

In view of (9) and (11) it is useful to rewrite (8) as

6“
K_(q)exp(qw)~s(q) = K+(q)exp(qw)[x+(q) + x_(q) + xl(q)]

where

(16)

Xt(fd = E+(q,h) + E~(q,-h), xl(q) = El(q,h) + El(q,-h) (17)

.

!

and xl(q) is solely determined by the incident field, (cf. (9)). The term

K+(q)exp(qw)x+(q) in (16) is a homomorphic function to the right of C and

the remaining term, X(q) in (16) can be split into the sum of.two terms,

one of these terms, X+(q), being homomorphic to the right of C and the

other term, x-(q), being homomorphic to the left of C, thereby yielding

X(q) S K+(q)exp(qw)[X_(q) + Xl(q)] = X+(q) + X_(q) (18)

where

1

f

K+(q’)exp(q’w)Cx_(q’) + Xl(q’)]
x+(q) = -—

27ri ~ q’-q
dq‘

(19)

x_(cl)= -l/x+(-q).

13

.“.._



Thus, (8) can be rearranged as

&

i’

K+(q)exp(qw)fi~(q)- X_(q) = K+(q)exp(qw)x+(q) + X+(q). (20)

By the standard argument each side of (20) is an entire function of q and

from the edge conditions it can be seen that each side tends to zero as q

tends to infinity in their respective half space of holomorphicity. Therefore,

each side is identically zero for all values or q, so that one gets

K+(q)exp(qw)X+(,q)= -X+(q). (21)

In this equation both X+(q) and X+(q) are unknown. To find the unknowns

X+(q) of (21) it is advantageous first to go back to (8) and rewrite that

equation in the following way:

K~l(q)exp(-qw)fis(q)- Y+(q) = K~l(q)exp(-qw)X_(q) +y_(q) (22)

where y+(q) and Y_(q) are the parts of Y(q) which are homomorphic to the

e

.,

right and left of C, respectively, (cf. (18)) and

Y+(q) -1-Y_(q)= Y(q) = K~l(q)exp(-qw)[x+(q) + xl(q)]. (23)

Again, by the standard argument in the Wiener-Hopf method and from the edge

conditions at x = tw one gets

K~l(-q)exp(qw)X_(-q) = -Y_(-q). (24)

Equations (21) and (24) have the same domain of analyticity, i.e., both sides

of these equations are homomorphic functions of q to the right of C. From

(18) and (23) it is also obvious that (21) and (24) form a set of two coupled

integral equations for x~(q). These two equations can be reduced to two

uncoupled integral equations by adding and subtracting (21) and (24) to each

other thereby yielding

14
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1

~

exp(-2q’w)X~(q’)
K+(q)=;(q) - —27Ti ~ (q’+q)K_(q’)

J
exp(-2q’w)~~(q’)

K_(q)x~(q) +&
c

(q’+q)K_(q’)

where

i:(q) = [x+(q)

i:(q) = [x+(q)

/

[xl(q’)+xl(-q’)lexp(-q’w)1
Ciq’ = — dq‘

2ri ~ (q’+q)K_(q’)

(25)

J
[xl(-q’)-xl(q’) l=p(-q’w) dq,

dq’ = L
2~i ~ (q’+q)K_(q’)

+ X_(-q)]exp(qw)

(26)

- x-(-q)lew(w).

The solutions %: and ~~ can be interpreted in the following way:

from the symmetry of the problem it is evident that E can be separated into, z
a symmetric part E and an anrisymmetric part Eza

Zs
such that

EZS(X,Y,LS) = ; [Ez(x,y,c,s) + Ez(x,-y,~,s)]

(27)

Eza(x,Y,?hs) =~[Ez(x,y,c,s) ‘Ez{X,-y,~,S)].

Each one of these parts can be split into its even and odd parts such that

E~~(x,y,c,s) ‘; [Ezs(x,Y,C,s) +E2S(-X,Y,C,S)]

E:s(x,y,c,s) ‘+ [Ezs(x,Y,C,s) - Ezs(-x,y,q,s)]

(28)

and similarly for Eza. From (26), (27) and (28) one then sees that an inverse

Laplace transform integral of fi~(q)exp(-qw) gives E~s(x,h,g,s) and that an

inverse Laplace transform integral of z~(q)exp(-qwj gives E:s(x,h,~,s). Thus,

the solutions of (25) determine the even and odd parts of the symmetric,transverse

magnetic field.

In the next section a method of solving (25) will be discussed. However,

before doing so it is advantageous first to derive a set of integral equations

for the antisymmetric part of the TM field. Going back to the second equation

c’.

in (8) and following the steps in deriving the integral equations (25) one
U

15
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first splits L(q) such that ,

L(q) = L+(q)/L_(q)

L+(q)L_(-q) = -1

,...

d
(29)

and

L+(q) =
ifi exp{(Kh/n)~fl(q+K)/p] + (qh/n)l~(w/2ph) - y + 1]]

t [(q+K2m)h/mn]exp[-qh/mr]
.

m=1

The functions L+(q) and L_(q) have properties similar to those of, K+tq)

and K_(q), the asmptotic behqvior being the same. Therefore, an analysis

similar to the one leading up to (25) results in the following set of integral

equations:

I
exp(-2q’w)Z~(qt) CAl(q’) +Al(-q’)]exp(-q’w)

L+(q);:(q) -~2mi ~ (q’+q)L_(q’)
dq’ =&

1c (q’+q)L-(q’)
dq‘

.

.

I
exp(-2q’w)Z~(q’) [xl(-q’) - Xl(q’)lexp(-q’w)

L_(q)z~(q) +*
1

(q’+q)L-(q’) ‘q’ = — f
dq‘

27ri ~
c (q’+q)L_(q’)

where

i:(q)=[E+(q,h) - E+(q,-h) + E_(-q,h) - E-(-q,h)]exp(qw)

;:(q) = [E+(q,h) - E+(q,-h) - E_(-q,h) + E_(-q,-h)]exp(qw) (31)

Al(q) = El(q,h) - El(–q,-h).

The solutions of (30) determine all the properties of the antisymmetric part

of the transverse magnetic field.

B. Transverse Electric Fields

Having derived integral equations the solutions of which give the

transverse magnetic field it now remains to derive-equations governing the
.

16
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transverse electric field. As is well known the TE-field is uniquely determined

by the Hz component7 which satisfies the differential equation

[

82
—+~- 1p2 Hz = O.

ax2 ay2 ,

Following the same approach as the one used for determining E=

1
Hz(x,y,c,s) ‘—

I
fi(q,y,q,s)exp(qx)dq.2ri ~ z

The fact that ~z satisfies the-ordinary differential equation

d2

[- 1+K2tiz=0
dy2

together with the outgoing wave condition for ~z(q,y,c,s) as

(a/ay)Hz being continuous at y = th (since Ex is continuous

+ results in the following representation for Hz:

-1
( (iK) F(q,h)exp[-i~(y - h)],

\

cos[~( +h)] + #F(q,-h)
iiz(q,y,s?c)= K-lF(q,h) _ -~

\ (i~)-lF(q,-h)exp[iK(y + h)],

off the plates,

(32)

one puts

(33)

(34)

]Y[ + = and

at y = fh)

y>h

IYI < h

(35)

y < -h.

It is to be noted that F(q,th) is proportional to ix(q,fh,s,~). Splitting

Rz(q,y,s,c) and F(q,y) into three parts as has been done

.
iiz(cl>y,s,o= H+(w) + H_(q,y)+ Hl(%y)

in (6),

(36)

F(q,y) = F+(q,y) + F_(q>y) + Fl(qYy~

and using the boundary condition that Hz(x,y,C,S) is continuous at y=~h

;6’
and 1x1 > w one gets

.
17
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H&&+-) - Hl(q,*h-) ‘l[i + cot(2ich)][F+(q,fh) + F_(q,fh) + Fl(q,*h)]
.

=.~K .

.
TK ‘1 csc(2~h)[F+(q,~h) + F_(q,Th) + F1(q,Th)]o (37) d

By adding and subtracting these two equations and noting that Fl(q,th) = O

one obtains the following set of two equations:

GS(q) = P(q)fs(q)

:a(q) = Q(q)fJd

where

Vs(d = -Hl(q,h+) +Hl(q,h-) -Hl(q,-h+) +-$(%-h-)

ta(q) = -Hl(q,h+) +Hl(q,h-) ++l(q>-h+) - Hl(q,-h+

f~(q) = F(q,h) - I?(q,-h) ,

fa(q) = F(q,h) + F(q,-h)

P(q) = K-l[i + CO\(2Kh) + csc(2Kh)] = L(q)/K2

Q(q) ‘K ‘~[i -1-cot(2~h) - csc(2~h)] = K(q)/K2.

It should be pointed

and similarly for ~a

out that ~
s

p2v+(x)/silo=

and v (x).---

is related to v+ in [6] via

1

I
~ (q)exp(qx)dqZZCs

Ako, ij (~a) corresponds to the case

(38) .

(39)

(40)

where the longitudinal currents have the same.magnitude and the same (opposite)

direction on the two plates. From (35) and L39) it i~ also clear that ~~ (fia)

gives rise to an electromagnetic field where Hz is an even (odd) function of

Y“
/
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To find ~. and V= the same approach will be followed as the one used

/-.

(:.
in determining

a
quantities

. ++ (d

a

the transverse magnetic field. For th& reason, define the

= F+(q,h) + F+(q,--h), f$l(d = :I(dd + ~l(q,-h) (41)

and @l(q) is uniquely determined by the incident field

conditions on the plates require that the x-component of

since the boundary

the total field be

zero on the plates implying that
;

Fl(q,fh) = ho)
/

-1 wEx(x,ih,c,s)exp(-qx)dx
-w

6’ ~

.

.
.

.

,,.

e )

/

w.
, =-(svO)-l E~c(x,*h,C,s)exP(-qx)dx*

-w

Instead of deriving integral equations for $+(q) it is advantageous tO

introduce the even and odd parts of these two functions,

;:(q) = [++(q) - @_(-q)lexp(qw)

(42)

(43)

;:(cl) = [++(q) + +_(-q)l-(qw) -

The function ~~(q) (~~(q)) corresponds to the case where the longitudinal

current distribution on each plate is an even (odd) function with respect to

the plate’s center line. Following the Jones version of the Wiener-Hopf method

one obtains the following two uncoupled integral equations for ys“e and ;OS,

J
exp(-2q’w)j~(q’) 1

I

[@l(q’) +@l(-q’)lexP(-q’w)

P+(q);:(q)-- +
l=_ dq‘

27TX ~ (q’+q)P_(q’) ‘q 27ri ~ (q’+q)P_(q’)

(44)

J

exp(-2q’w)j~(q’)

~

[O1(-q’)
1 1

- $I(q’)lexp(-q’w)
dq‘

P+(q);:(q) +- ~ (q’+q)P-(q’) ‘q’ ‘—2wi ~ (q’+q)P-(q’)

,.

19

,.

.-.
. ——— — .-



/.

where

p+(q) = L+(q) /(q + P)

P_(q) = (q - P)L_(q).

The solution of (44) determines the even and odd parts of

of the transverse electric field.

It now remains to derive integral equations for the

-J!

.d
(45)

the symmetric part

.
even and odd parts

of the antisymmetric part of the transverse electric field. This is done by

introducing the quantities

i:(q)= [t+(q) - *_(q)lexp(qw)

(46)

~~(d = [$+(q) +V_(q)lexp(qw)

where

$+(q) = F+(q,h) - F+(q>-h) (47)

and one immediately obtains the two integral equations

I
exp(-2q’w)j~(q’) [*l(q’) +Vl(-q’)lexp(-q’w)

Q+(q);:(q) -A
1

2ni ~ (q’+q)Q_(q’.) ‘q’ = — I2ni ~ (q’+q)Q_(q’) dq’

(48)

I
exp(-2q’w)j~(q’) [O1(-q’) -

Q+(q)~~(q) +*
1

/

~l(q’)lexp(-q’w)
,=— dq‘

~ (q’+q)Q_(q’) ‘q’ . 2ni
c

(qr+q)Q_(q,’)

where

VI(q) = F+i,h) - Fl(q,-+)
,,

Q+(q) = K+(@/(q + P)

Q_(q) = (q - p)K_(q) . (49)

To sum up this section, integral equations for the field scattered from

, a

; 20
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,

two parallel plates of finite

most natural decomposition of

and transverse magnetic parts

(referring to the symmetry of

width have been derived. It was found that the

the field is to use (1) its transverse electric

(2) its symmetric and antisymmetric parts

the electromagnetic field in-the direction

perpendicular to the plates) and (3) its even and odd parts (referring to the

symmetry of the electromagnetic field in the transverse direction parallel

to the plates). In each one of these cases (which together combine to eight

different independent cases) a scalar integral equation of the second kind was

derived.
,.

Although”the equations derived here are exact, they are most useful for

numerical treatment only when the width of the plates is large compared to the

plate separation. Therefore, they complement the integral equations derived

in a previous note. In the next sectfon the integral equations derived in this

note will be used to find properties of,the lowest-order TM modes and TE modes

for two wide plates.

Pt

.

,

.

I

,. /,
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111. Transverse Propagation Constants of Modes on Two Wide Plates

The integral equations derived in the previous section will now be used

to calculate the transverse propagation constants of the TM and TE modes on two

wide parallel plates. These quantities are of course determined from the non-

trivial solutions of the homogeneous equations (25), (30), (44), and (48).

A. Even, Symmetric TM Modes

The homogeneous integral equation for the even, symmetricTM field is

I
exp(-2q’wjl~(q’)

K+(q)fi~(q)- ~2ri ~ (q’fi)K_(q’) dq’ = O
(50)

where q is “to the left” of C (cf. Fig. 3). By changing the path of

integration to
c1

one obtains

,

1 I
exp(-2q’w)~~(q’)

K+(q)::(q) +K+(q)exp(2qw)~~(-q’) - — dq’ =0. (51)
,2mi ~ (q’+q)K_(q’)

Equation (50) holds for q lying to the left of C, whereas (51) holds for q

lying to the right of Cl. By comparing (50) and (51) one finds that X:(q)

has a branch cut at q = -p. Furthermore, the integrand tends to zero as

q’ + co in the right half plane so that the path of integration in (50) can be

deformed to the right, resulting in the following expression:

co exp(-2WK2m+l)fi~(K2m+~) 1
-(e) ~+ ~

/

exp(-2q’w)i~(q’)
K+(q)xs (q _—

(q+~2m+l)K~@2m+l) 27ri (q’i-q)K_(q’)
m=O C2

dq’ = O

(52)

. .

where

K .
n

~(nn/2h)2 + p2,

the prime denotes differentiation and the path of integration C, is shown in
.

Since ~(e)(q) is a homomorphic function on C2, (52) can be used to ,

(e)(q) when q

Fig. 4.
s

formulate an integral equation for X belongs to
s C2“

Once

this solution is known (52) determines ;:(q) for arbitrary complex values of

q“ e
22

.—



,.

9

.

..

\ ef

6

.

.

—— ——— — ———.

I

Im

,
\

c2
.—— —— ——— ——-

F?e

~

——.

cJ

c

Figure 4. The paths of integration C, Cl, and
C2

in the
complex q’plane.

23

-... .. ...—



.

$
!-“,~

In the general case, (52) must be “solved” using numerical techniques.

However, it can also be used to find an analytical expression for the transverse

propagation constant in some limiting cases. Consider the case where n/h >> lpl

so that each term of the sum in (52) is exponentially small. In this case the

entire sum is negligible.and one, therefore, has the following approximate,
integral equation: ‘

J
exp(-2q’w)Z~(q’)

K+(q)i~(q) -~
2ni (q’+q)K-(q’) ‘q’ = 0>

qec2

C2

.

(53) “

which can be cast into the alternative form,

I
= exp(-2E’w)h~(&’)

M($)h@ - Zp+E+<’
d~’= O, (j’<.g<m (54)

o

where

M(G) = Zni exp(2pw)K+(p + g)/k(C)

and

k(c) = Ii-m

[

1 11,
K(p-i-g+iz)-K-(pi- E-iE)@H- -

(55)

i.e., k(g) is the discontinuity of

For large values of Ipwl the

from small values of g’. By using a small argument approximation of M(g)

one gets

K~l(q) across the branch cut.

main contribution to the integral comes

1
coexp(-2&’w)h~(g’)

7r~ exp(zpw)h:(c) -
2p+~+~’

d~’ = O.
0

(56)

The”ihtegral defines a

that h:(g) satisfies

the integral,exists. For small values of & one therefore has approximately

function of E which is analytic at & = O provided

certain requirements for large values of g so that

24



,.
(r. f(e) = h:&

a ~ resulting in the following equation

[ /

‘~exp(-2~’w) ~C, = ~
h: n~exp(2pw)-

0
2p+ ~’ 1

When Ipw/ is not small one has “
.

(57)

[ f
h: 7T(2p)3/2exp(2pw) - ‘~ exp(-2&’w)d&’l = O

0

For this equation to have a nontrivial solution, i.e., h: Z O , p must

satisfy the equation

16A (pW)
3/2

exp(2pw) - 1 = O.

For large values of ]Pwl this equation has the asymptotic solution

f-”,,
,e

P w= (n - ~)ni -~ ln(256r4n3) -1-O(n‘1 in n)
s,n

e In the general case’(60) must be solved numerically and the results of the

(58)

(59)

(60)

numerical calculations are shown in Fig. 5. It was found that the asymptotic

form (61) agrees within 10% with the exact solution of (60) except for the

lowest root (n= 1). The field distribution of this mode will be investigated

in the next section, showing

the plates.

B. Odd, Symmetric TM Modes

For theodd, symmetric

.,

,,
.

. and
,.

that the field of this mode is very weak between

.,

TM field one gets, with the same procedure as above

h:(g) = h;fi (62)

#w 1

[
h: Tr(2p)3’2exp(2pw) ,i-

J
o~ exp(-2&’w)dEtJ = O

&
,,,,,.,

,,

25
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Figure 5. The transverse propagation constants for the symmetric

~modes (P~,n) and the swetric TEmodes (p” ) .
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.
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/’-” which has nontrivial solutions when p satisfies the equation
; .

.

16A (PW)
3/2

exp(2pw) -1-1 = O (64)

.

Again, the roots of this transcendental equation can be found using numeridal

techniques (see Fig. 5) and for large values of tpwl one has asymptotically

,0 ~ = (n+*)7ri
“1

P -zln(256n4n3) + O(n‘1 In n)
s,n .

(65)

c. Even, Antisymmetric TM Modes

The even, antisymmetric IMmodes are determined from the integral equation

1

f

exp(-2q’w)2~(q’)
L+(q)*~(q) -—2mi ~ (q’-l-q)L_(q’) ‘q’ = 0’

q~c (66)

which can also be written in the following form

~

where

H@) - I
@ exp(-2&’w)h~(~’)

2p+g+g’
d~’ = O,

0
o<~<co (67)

2mi exp(2pw)L+(p + ~)/g(E)

[

1 1
;& L-(p -1-C i-ie) - L_(p -1-& - icj1 (68)

.,, For large values of lPw! one can use the same type of approximations as those
.

employed in (54) to obtain the following approximate equations

.,

h:(g) ‘ h:~..,.,
. ,,

(69)

. . .
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In order for h: not to be zero ,p must be a root of tiletranscendental equat
. v

I/-=-’8 Tpw /h exp
[ 1[2pw-t-(2ph/m) ~n(2n/ph)-y+l -1=0 (70)

Before trying to solve this equation, it should be pointed out that it has ,been

derived under the assumption that \phl <<1. “Thus, the roots of interest of

<70)must therefore satisfy Iphl <<1 . The roots p’e
a,n

of (70) were found

numerically using a desk calculator and they are presented in Fig. 6 for
,

different values of w/h.

I). Odd, Antisymmetric TM Modes

Similarly~~the transverse propagation constant p’” of the odd, “ ..
s,n . .

antisymmetric modes are determined by the solutions of the equation
,.

78 npw /h exp
I [ 1/2pw+ (2ph/n) 2n(2n/ph)-y-f-l -1-1 = O (71)

and they are shown in Fig. 6. Again, it is found that the

the real part of the propagation constants gets larger as

This effect can be understood from the fact that the field

mainly outside the two plates.

absolute value of ●
h/w gets smaller. –

of this mode is

E. Even, Symmetric TE Modes

Turning the attention to the transverse electric field o“nehas the

following integral equation determining the,even, symmetric TE modes,

‘) ~~ f2Xp(-h~2~l)J~(tc2m+l exp(-2q’w)~~(q’)
P+(q);:(q) - I P’(K t=

I (q’+q)P_(q’)
dq’ = O (72?

(q+K2til) - 2m+1)m=O
C2

where

K = ~(nm/2h)2+p2
n

Again, when’the width of the plates is large compared to the separation such

that In/h] >> ]pl one can neglect the contribution from the sum in (72),

in which case this equation can be written .alternati.velyas a

28
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Figure 6. The roots of (70)and,(71). Roots such that ~phl cc I.

are the transverse propagation constants for the anti-
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I
m

,$M(~)(2p+ 0-1 e~(~)-f-
0

where

exp(-2&’w)e~(&’)

2p-!-E+”’
d~’ = O

,.4

,?

(73) @

and k(~), M(E), are given by (55)” ‘or large ‘a~ues ‘f lpwl ::hemain

contribution to the integral comes from small values of ~’.
By using small

argument approximation of M(g) one gets

..

and this equation shows that for small values of the argument one has

(74)

(75)

Substituting this expression into (7~) one obtains the following equation that

p must satisfy in order for (74) to have a nontrivial solution “ ●

2A 4&exp(2pw) -i-l= O (76)

For large values of IPWI this equation has the asymptotic solution

,,e 2 -1
P w = (n +~)ni -.$ ln(4n n) + O(n in n)
s,n

(77)

whereas in the general case (76)was solved numerically and the results are

presented in Fig. 5.

l?. Odd, Symmetric TE”Modes <

Similarly, the transverse propagation constants for the odd, symmetric

TE modes are determined from

26 G exp(2pw) + 1 = O (78)
m

30
-—-.



‘“a

which for large values of IPWI has the asymptotic solution
.

,,0 =(n-$)mi
-1

Pw -~ln(47r2n) + O(n in n)
s,n .

(79)

For not so,large values of Ipwl the solutions of (78) are presented in Fig. 5.

It is seen that

. . propagation constant

symmetric TM modes.

the absolute value of the real part of the transverse.
for the symmetric TE modes is smaller than that of the

This means of course that for high enough frequencies the

r ‘!

i.,

.

.

TE modes are ,lessattenuated than”are the TM modes.
;

G. Even, AntisYmmetric TE Modes

It now remains to obtain the propagation constants for the antisymmetric

TE modes. For large separation-to-width ratio the even, antisymmetric TE modes

are determined by “thenontrivial solutions of the integral equation” “

/

exp(-2q’w)~~(q’)

Q+(q);:(q) -+ ~ (q’+q)Q-(q’) ‘q’ = 0
(80)

Some care has to be exercised when evaluating the integral in (80)since

Q-(q) has a zero at q=p . In fact, by using the small argument expansion of

Q-(q) we obtain the following expression, valid in a neighborhood of q=p :

1 1“&i——Q+(P) 2ph(q-P) [ 1.I+ih ~2p(q-p) , q-p (81)

By inserting the expression (81).for Q-(q) .into (80) and following a procedure

similar to the

transcendental

1-

one used previously in this section one obtains the fo~lowing,

equation that p must satisfy

{ }
exp 2pw+ (2ph/r)[Ln(2r/ph) - y-f-1] - h G= O (82)

where we have used the fact that

.. .,

. .

,’

31
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Q:(P)-

When h/w << 1 then

P
,,e~
a,n

,,

.,

In Fig. 7 the roots

- (4hp2) exp
{
(2ph/m)[Rn(2rjph) - y+ 11

}
, .

the solutions, p
,,e

, of (82) are given by
a,n

(83)

‘+n[+ +---&j, ~= L2i3,L.

P
,,e
37-I

are displayed for some different values of h/w .
u,..

H. Odd, Ant.symmetric TE Modes

In the same way, tb.stransverse propagation constants p
i,o of the odd,
a,n

antisymmetric TE modes are given by the following expression.

(84)
a .

and these values are graphed in Fig. 7.

Some comments are now in order concerning the results obtained for the

transverse propagation constants. First of all, the antisymmetric TE modes have

the smallest real part. This means of course that for high enough frequencies,

the antisymmetric TE modes are the l“eastattenuated ones. In the next section’,

it will be seen that the an&symmetric TE modes are the modes with the highest

field intensities between the plates. Therefore, besides the TEM mode, these

modes are the most important ones inside a wide-plate simulator.
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IV. FIELD DISTRIBUTION OF THE MODES ,,,~~
)“. x

0’
,!

In this section, the field distribution of the different modes on the

parallel-plate waveguide will be investigated. The main emphasis will be paid

to the region between the plates, since this region is the region of interest for

the simulator. The first part of this s’ectiondeals with the TM modes ’andthe

second part with the TE modes.

A. Field Distribution of TM modes

As has been pointed out in the two previous sections the transverse

magnetic modes can be classified as a combination of symmetric/antisymmetric

and even/odd modes. The longitudinal component of the electric field of these

modes are given by the following expressions, which are obtained from (4)s (6)>

(17),(26),and (31), IYl <h

~,s(x,y) =~Ee
I
%e(q)exp(-qw)cosh(qx)

4vi ~ s
sin[K(y+h)] - sitiK(y-h)l

sin(2~h) -

~,s(x,y) =~EO
1
%“(q)exp(-qw)sinh(qx)

si~~(y+h)] - si~~(y-h)l
.4mi ~s sin(2ich) “

.,a(x,y) =J-Ee
I
Xe(q)exp(-qw)cosh,(qx)47ri ~ a

E; a(X,y) =+
I
%~(q)exp(-qw)sinh(qx)

J c

siflK(y+h)l + si~~(y-h)l
si...(2~h)

sin[K(y-t-h)]+ si~tc(y-h)]
sin(2tch)

dq

dq .

(85)

dq

Since %: is a homomorphic function to the right of C the integrals in (85)

can be evalur.tedusing residue calculus. When 1x1 < w one gets

z,s(x,y) = &Ee ~ (_~]m ~ X~(Km)eXp(-~mW)COSh(KmX)
Ill’1 Ill

.

[

sin m~(y+-h)_ sin mw(y-h)
2h 2h 1 (86)

.

.0
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: ‘
and similarly for EO EO EO The quantity. Km

Z*S’ z,a’ Z,a”
is given by

(87)

since lphl <<1 for the modes of interest here. Therefore, each term in the

sum (86) is very small provided that Iw t xl > h and so the field of the TM
. modes is very weak between the two plates. Thus, the TM mode contribution to the

electromagnetic field on a simulator consisting of two parallel, wide plates can

be neglected. This is different from the narrow-plate case where besides the

TEM mode the ~ modes make up the major contribution to the electromagnetic

field.

B. Field Distribution of TE modes
;

The field distribution of the TE modes are determined from the longitudinal

component of,the H-field,

.,s(x,y) =-&He
I
~~(q)exp(-qw)sinh(qx)

c

Jx,z) =Ho

,,

1
Zz Ij~(q)ew(-w)cosh (qd

,C

cos[~(y+h)] - cos[~(y-h)] dq
sin(2Kh)

cos[K(y+h)] - cos[K(y-h)]
dq

sin(2Kh)

JZ,JX’Z)=“* ~He ~(q)exp(-qw)sinh (qx)
cos[~(y+h)] + COSIK(y-h)] dq

sin(2~h)

.

. Z,a(x,y) =Ho

.

These integrals,“. ,,

(88)

,:,
1“

/
;~(q)exp(-qw)cosh (qx)

cos[K(y-t-h)]+cos[K(Y-lfi dq ~
K

c
sin(2Kh)

can be evaluated with residue calculus thereby yielding

35
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z,a(x,y)Ho = --&-~~(P)exp(-pw)cosh(px)

,,

[

m~( ~h)

‘; ~~1 ‘- ~~(’m)exp(-”mw)cosh(”.x) ‘Os W + ‘Os
~; ,

1

m ,

‘e ( exp(-pw)sinb(px)“ ,
z,a(x’y) = & Ya P)He

(89)

.

+;:-
~~ (~m)exp(-KmW)sinh(~mx)

m=l m

[

~o~ mfi(y+h)_ =Os mr(y-h)

1
~ *Y.(m

Jx,y) = : m ~ #hHo ‘0 ~ )exp(-Kmw)cosh(Kmx) 2h 2h
=

m

Jx, y) = ;He :
&&~~(K )exp(-Kmw)sinh(Kmx)
~2h2 m

m=l m [

mm(y+h) _ co~ mm (y-h)
Cos 2h 2h 1

●-

Since each term in the sums in (89) is very small
whe~, h cc w and I~Axl > h it

is clear that only the antisymmetricTE modes
constitute an important contribution

to the simulator field. ‘The only significantly contr~buting field components of

the odd and even antisymmetric TE mcdes are,
therefore, given by

,

Jx,y)H“ = Hocosh(px) ~,a(x,.Y)He = Hosinh(px)

Y,a(x,y) =EO - (Pos/p)Hosinh(PX) E~,a(x,~) = -(uos/p)Hocosh(px)
(90)

,

‘,a(x,y) =Ho (C/p)Hosinh(px) X,=(X,Y)He = (q/p)llocosh(px)

Graphs of the field distributions of the three lowest even and odd antisymmetric
o
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(-’

a
TE modes are presented in Figs. 8 and 9. It is observed from these graphs that

around the center of the simulator, the,field of these modes can be expressed

in terms of an almost real function. It is also noted that the magnitude of

the field

waveguide

of these modes gets larger as the distance from the center of the

increases.
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