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ABSTRACT

A static integral equation for the charge distribution

on a cone over a conducting ground plane is developed.

Xumerical results are presented for the charge distribution,

capacitance, and effective height of cone”s both with and

without a topcap.
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SECTION I

INTRODUCTION

One type of simulator used to simulate a vertically

polarized electromagnetic pulse (EMP) produced by a nuclear

detonation, is basically a conical antenna over a ground

plane. Near the base of the bicone, the structure consists

of a solid surface, constant flare angle bicone which

gradually transitions into a wire biconical structure.

While most of the current flow is radially directed along

the wire portion of the bicone, circumferentially distri-

buted wires are used to add to the capacitance per unit

length as a wave travels along the bicone, The density

of the circumferential wires and the wire bicone angle are

then varied along the cone so as to make an equivalent

bicone characteristic impedance at any point which roughly

approximates that at the bicone input. A tapered resistive

loading along the structure is used to damp out the high

frequency currents along the antenna so as to minimize

diffraction from the edge of the bicone. The present

structure also has a flat top cap which is also loaded.

The circumferentially-directed wires are not orthogonal

to the radially–directed wires and consequently most of the

circumferential symmetry is destroyed. A moment method

solution which would take into account all the wires and
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the solid surface fe-ed region is thus unduly complicated

for assessing the basic performance of the structure.

In view of—the intentional design of the structure, however,

it--seems reasonable to approximate the structure by a bi-

conical surf-a-cc whose f-lare angle is the same as that of

the actual bicone feed region, In the following sections,

then, a moment method solution procedure is used to obtain

the static charge distributions, capacitances, and effective

heights of bicones of various flare angles, both with and

without top.~aps. Derivation of the integral equationt

formulation of the numerical solution procedure? and the

numerical results f-ollow in the succeeding sections,



SECTION 11

FORMULATION OF THE INTEGRAL EQUATION

An integral equation for the charge on the bicone

is obtained by requiring that the potential on the bicone,

as produced by the charge, equal the driving potential

between the cone surface and the ground plane. Referring

to Figures 1-3, which define the appropriate geometrical

quantities, one notes that the ground plane may be replaced

by the bicone image on which a surface charge of Che same

distribution but of opposite sign exists, The resulting

potential on the top biconical surface in terms of the charge,

is then

1
Go

2Tr L

2-rr L sin 60

/1

+ pt(rj)

00

1 1— __ )r~dr~d~’R+ R-
Ct Ct

.

for observation points on the cone surface and

r2nL
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Figure 1. Geometry of cone over a ground plane.
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for observation points on the topcap.

In (l), the subscripts c refer to quantities defined

on the conical surface while subscripts t refer LO the

topcap. In double subscripted quantities, the first subscript

refers to the surface on which the potential is observed

while the second subscript denotes the origin of the

source contributing to the potential. The plus and minus

superscripts refer to source points on the cone and its

image, respectively. If the cone has no topcap, only (la)

with pt equal to zero is used. Since the fields are $-

symmetric, the observation points are taken along the x-z

plane where @=O. The various distance quantities in terms

of cone and topcap coordinates are all of the form

{A?
Ri = rs - B Cos +1;
rs

r,s= c,t
rs

where

A * = r2 + r’2 ~2r r’ cos2e
cc c c cc o

B = 2rcrc’ sin 2 00
cc

2 ‘2
Af=r+rt : 2r LCOS260 +L

2
Ct

c0s2e
c c o

B = 2rcr~ sin 60
Ct

A*=r~+r
‘2

tc
; 2r~Lcos2$0 + L2

c
COS26 o

(2)

B = 2rtr~
tc

sin 00
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‘2
Ai=r~+rt+L2
tt

cos%o(l + 1)2

B = 2rtr~
tt (3)

The linear charge densities

.

qc(rc) = 2Trrc sin f30pc(rc) (4a)

.

qt(rt) = *~rtPt(rt) (4b)

may alternatively be used. Since the charge density is

~-independent, the @ integrations may also be performed in

(l). These involve integrals of—the form

o 0

IT

=2

I
o

Tr

‘n

cl(i)’

JA+B cos 6’

d$’

m- 2B sinL@’/2
o
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where

o

4 2B. K (—–
(A+B)}5

A+B )

Ti/2

(5)

(6)

o

is the complete elliptic integral of the first kind. Hence,

using (5) and (4), (1) can be written as

1

21T2&o

L sin 0

!

o

+ C@;)

o

0

[

2BCC
K

A ‘+B
cc cc,

(Ac: + Bee)%

“[;c:BCJ
(Ac: + Bet)%

(At; + Btt)%

(7a)

d

= V.

.

dr’
c

}

ir~ = V
o

●
(7h)
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.

Once the linear charge densities q= and qt are known

the total bicone-to-ground capacitance C is found as

(8)

and the effective height is given by

~

L

~

L sin 60

Cos 0
0

qc(r~,)r~dr~ + L qt(r~)dr~
h 1
eff = Qtot

(9)

where the total charge on the bicone is

L L sin 00

QLat =
1

qc(r~)dr’ +
c

J

qt(r~)dr’
t

(lo)

o 0



SECTION 111

NUMERICAL SOLUTION PROCEDURE

The methodof moments [ 1 ] is used to obtain a numerical

solution to the integral equation (7). Since at the bicone

feed, the linear charge density approaches that of the infini~e

static bicone, whereas the surface charge density is in-

finite there, it is appropriate to expand the linear charge

in constant pulse functions on the conical surface. On the

topcap, however, the surface charge density approaches a

constant at the center of the cap while the linear rharge

density varies linearly there, Hence, on the topcap, the

unknown is taken to be the surtace charge density, which is

expanded in pulse functions. Figure 4 shows the pulse

expansion scheme used. Subdomains of widths

Ar=$
c

c
(ha)

and
L sin 60

Art = -
Nt

(Ilb)

are used on the cone and topcap surfaces, respectively,

The subdomains are centered at the points

r = (m- ~)Arc, m=l,2, ,.., N (12a)
cm c

.

.

on the cone surface and at

r
tn

= (n-~)llrt, n=l,2, ..., N
t

(12b)
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Figure 4. Pulse expansion scheme for the charge on the upper
cone.
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on the topcap surface.

Endpoints of the subdomains are at

r~mf = r + Ar
cm - c/2

r ~nt =r + Ar
tn — t12

If we define a unit pulse function

then the charge expansions may be written as

(13a)

(13b)

(14)

(15b)

where the quantities Qcm and Qtn are the I%near and surface

charge densities in the center of the mth and nth sub-

domains on the cone and topcap, respectively. Substituting

(15) into (7), using (4b), and enforcing the equality on

both sides of (7) at the centers of the

in the matrix equation

subdomains results

(16)
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for the coefficients Qcm and Qtn, where the column vectors

of—unknowns are

Qc =

and the driving vecto]

“~c2
Q
s cm

QCN
c

are

[1!0v=.,
c .

‘o

Qt =
Q:tl
$tm
dtNt

[1Yov=.t,

‘o

The elements of the “capacitance matrix~’ are

(Ccc)pm= 1

2?T2E0
+Cc(rcp, rcm)

.
(Cct)pn= * @ct(rcp, rtn)

o
(19)

(Ctc)qm= 1

2?T2E0
rcm)

,
(Ctt)qn= +

~ ‘J’tt(rtq’ r )tn

p-, m =1,2, ....N
c

CIJ n = 1,2, ,..,Nt

where

r+
cm

~[

K
[::[C+ Bee] ‘I::;c+ Bee]

~cc(r cp.~lcm)= —
___ 1dr~(Ac: + B )% (A- + B )2

r- Cc cc cc rr =,

cm c Cp
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r +
tn

~ct%p’rtn) =
J
r
tn- .

1 f

rtdr
t

r +

J

tn

*tt(rtq,rtn) =

‘tn- .

t- =r
c cp

When p=m and when q=n, che integrands of $C= and $tt.

respectively, are logarithmically singular:

‘[:;’:Bee) l’,nlr~- rcpl*
r’+r-

(Ac: + Bee)%
c Cp 2r sin 0

Cp o

[

2Btt
It

‘+B
Att \ Ln\r~- rt \

tt *
r’+r

(At: + Btt)%
t tq - 2r

tq

‘L=rtq

#

These terms are thus handled numerically by subtracting out

the singularity from the integrand and adding its analytically

evaluated integral as follows:
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r+

I

Cp

$Cc(rcp,rcp)=

r
cp-

J---_l
-(2B

K cc

Ac; + BCC

(AC: + BCC)*+

.~nlr~-rcpl

~r sin 6
Cp o

L--J2B -
K cc

AC; + Bcc

(AC: + Bee)%

‘tq+

1

@tt(rtq,rtq)=

Arc

( ())

Ar

+ Y;cpsin 60
l-Ln-#

.

J--.-l2Btt

u

2Btt “
K

At~.+ Btt IK~nlr~:rtq _ At; + Btt

(At: + Btt)%+ 2rtq (At; + Btt)4

‘tq -

Art

+ 2r
tq

.

Ar

(. ))l-8n --#

1

=r
c Cp

(21a)

,

‘t’rtq

(21b)

The result-ing integrands in (21) are non-singular and

may be numerically integrated using standard methods.

Solution of the (p+q)x(p+q) matrix equation (16) yields the

charge coefficients Qcm and Qtn, Recall that the former is

a linear charge density quantity while the latter is a sur-

face charge density. Equat-i-ons (4) give the formulas for

conversion between surface and linear charge density quantities.

From (9) and (10) the capacitance to ground and effective height

are calculated as

Q
c tot. —-—

‘o ‘
(21)
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N

Cos e
o

Arc ~cQcmrcm+ 2mLAr ~’ Q tnrtn

h
m= 1 tn=l 1

eff = Q
(22)

tot

where

Q = Arcm~;Qcm + 2nAr
tot t ? Qtn’tn

n=~
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SECTION III

NUMERICAL RESULTS

In this section, numerical results are presented

for the linear charge distribution, capacitance, and ef---

fective height of a cone over a ground plane as the cone

angle, 6., is varied. Results are given for configurations

both with and without a topcap. For convenience in simu-

lator design, the data is presented assuming the permit-

tivity of free space rather than normalizing the data to

a medium independent form. However, for other applications,

the data can easily be scaled to apply to isotropic, homo-

geneous media with permittivities different from that of

free space.

In Figures 5, 6, and 7, the linear charge density is

plotted for various cone angles ranging between O.= 2.5°

and O.= 85°. Note that as the cone length L tends to in-

finit-y, the linear charge density at “any point on the cone

should tend to that of an infinite cone over a ground plane,

2m&ovo
q*—- 6

in cot(j”)
(24)

where Vo is the voltage between the cone and ground plane or

half the voltage across the terminals of a bicone structure.

Since, for the static problem, only relative dimensions are—,

important, L-XC is equivalent to rc+-(), since from either point

21



60

(%10-12)

50

40

q
~ 30

20

10

/

I
— With top cap I

—-— Without top cap /

—-— Infinite cone
/

/
1

—-— .—. — .—

- (?.=lO.O”

.—. — -—- —
6.=2.5°

-0 0.2 0.4 0.6 0.8 I.O 1.2

s/L

Figure 5. “Linear charge density on a charged cone, @O=2 .50, 10°.

● ,



300
(X10-12)

250

200

150

100

50

0

I
I
i

1’

/

0.=60°
/

.— - -
0.=30°

vs s

S=o

— With
top cap

— —— Without
top cap

—-— Infinite 1
cone I

I I I

o 0.4 0.8 1.2 [.6 z.O

s/L

Jj’igure (5. Linear charge density on a charged cone, 6.=30°, 60°.



t+
.F-

(Xl

1000
()-12)

800

-—-

— With

400 ——– Withwt

—-— Infinite
200

(1
‘O 0.4 0.8 1.2 1.6 2.0

s/L

Figure 7. Linear charge densi~y on a charged cone, 0.=80°,850.



of. view, r /L+O. Thus the numerically computed results
c

should approach (24) as rc+O and this limit, also shown in

Figures 5, 6 and 7, provided a convenient check on the

numerical results. Note that for narrow cone angles (Figure

5), there is very little charge on the topcap, as one would

expect. For large cone angles (Figure 7), note that the

charge on the topcap approximates the increase in the charge

on the cone without a topcap. The total charge in the latter

case includes, of cou~se, the charge on the top surface of the

cone. For moderate cone angles (Figure 6), a substantial

portion of the total charge resides on the topcap. With no

topcap,however, the edge condition [2 1 requires a more sin-

gular charge at the edge of the cone. Furthermore, the com-

puted charge in this case is the sum of the charge densities

on both sides of the cone surface. The net result is that

the total charge, with or without the topcap,

same for all cone angles. This is strikingly

Table 1 in which is tabulated the capacitance

is roughly the

evident in

of a cone with

and without a topcap for various cone angles normalized both

to the slant height and the vertical height of the cone.

From the tables, it appears that the addition of a topcap

increases the total capacitance only by about 3% f-or moderate

cone angles. The computed capacitances agree fairly well

with the rough estimates used in [3].
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Table 1. Computed Capacitance of a Cone over a Conducting Ground Plane

With Topcap Without Topcap

00 C/L C/L COS 60 C/L c/L Cos 00

(PIJf/m) (lJPf/m) (Hpflm) (WJflm)

—

2.50 18.68 18.69 18.54 18.55

5.0° 24.32 24.41 24.06 24.15

10.OO 34.02 34.54 33.42 33.94

15.0° 43.22 44.74 42.24 43.73

20.0° 52.51 55.88 51.10 54.38

30.0° 72.16 83.32 69.84 80.64

40.0° 94.40 123.2 91.23 119.1

50,0° 121.5 189.0 117.7 183.1

60.0° 158.8 317.6 154.7 309.4

70.0° 222.5 650.6 218.6 639.1

80.0° 393.9 2,268. 391.0 2,252.

85.0° 721.2 8,275. 719.2 8,252.

87.5° 1,360. 31,180. 1,358. 31,130.



In Figures 8-11, the capacitance of the cone is plotted

as a function of the cone angle, with and without a topcap.

In Figures 8 and 10, the capacitances are normalized to the

slant height,whereas in Figures 9 and 11, the capacitances

are normalized to the vertical height of the structure. Also

shown are the corresponding capacitances, Cm, that would be

computed assuming the charge dist-ribution to be that of an

infinite bicone, Eq. (24). Usin~ (24), Cm is easily found to

be
~jT& L

cm = o
e (25)

Ln cot @

The excess or “fringing” capacitance is then just C - Cco”

As a matter of interest and as a check on the reasonableness

of the computed capacitances, the percentage of fringing

capacitance is plotted in Figures 12 and 13 as a function of

eo. As would be expected, the percentage of the capacitance

attributable to fringing is smallest for cone angles near 0°

and 90°. Near 8.= 40°, the fringing capacitance adds 70% of

cm to the total capacitance.

Table 2 lists the effective height of a cone structure

with and without a t-opcap. Note that since the linear charge

density on an infinite cone is constant, Eq. (24), the com-

puted effective height neglecting fringing would be Lcos60/2,

Since the fringing fields increase the charge density

near the cone edge, this figure is a lower bound on the ef-

fective height but is approached as 60 tends to 0° and 90°.
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Table 2. Computed Effective Height of a Cone over a Conducting Ground Plane

w
c’.

With Topcap Without Topcap

00
h
eff/L

hefi/L COS @
o

h
eff/L

h~ff/L COS 60

2.5° 0.5750 0.5755 0.5706 0.5712

5.0° 0.5962 0.5985 0.5893 0.5915

10.OO 0.6195 0.6291 0.6075 0.6169

15.0° 0.6275 0.6496 0.6109 0.6325

20.0° 0.6246 0.6647 0.6038 0.6426

30.0” 0.5916 0.6831 0.5649 0.6523

40.0° 0.5286 0.6900 0.4995 0.6521

50.0° 0.4415 0.6869 0.4141 0.6442

60.0° 0.3364 0.6728 0.3144 0.6288

70.0° 0.2206 0.6450 0.2068 0.6048

80.0° 0.1036 0.5966 0.0987 0.5682

85.0° 0.0488 0.5599 0.0472 0.5421

87.5° 0.0234 0.5365 0.0230 0.5270
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This can easily be seen in Figures 14 and 15 which plot

the effective heights as a function of cone angle. Note

that the addition of a topcap increases the effective

height by about 7%, maximum. This is also in fair agreement

with the rough estimate of [3].

.

—.
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SECTION IV

CONCLUSIONS

An integral equation has been derived and numerically

solved for the static charge on a conical antenna over a

ground plane, both with and without a topcap. Capacitance

and effective height data show that there is almost negli-

gible increase in the capacitance when a topcap is added to

the conical structure and that there is but a slight in-

crease in the effective height.

Future studies should concentrate on refinements of

the model, which should include a more accurate modeling

of the wire cage structure and include the circumferential

wires. The effect of tapering the bicone angle should also

be analyzed and a more accurate model of the feed region

should be employed. This improved model should yield more

accurate data for the design of biconical structures for

use as simulators.
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