Note 225
August 1976

Dynamic Analysis of a Loaded Conical Antenna Over a Ground Plane

Donald R．ilion University of Mississippi

dine

ABSTRACT

Three integral equations are derived and formulated for numerical solution for the currents induced on a resistively loaded conical antenna over a ground plane． The first integral equation is a relatively simple one for a cone without a topcap．The second and third integral equations are applicable to a cone with nr without a topcap， but the latter equation is relatively cumbersome，involving complicated kernels with various singularities．A computer code has been developed fur each of the three methods． Numerical data for current distributions，in out inoedances and radiation patterns are resented for resistively loaded and unloaded structures，both with and without topcap．

ACKNOWLEDGMENT

The author gratefully acknowledges the able assistance of Mr．Allen Glisson in carrying out the computations．

Note 225
August 1976

Dynamic Analysis of a Loaded Conical Antenna Over a Ground Plane

Donald R. iilton
University of Mississippi

ABSTRACT

Three integral equations are derived and formulated for numerical solution for the currents induced on a resistively loaded conical antenna over a ground plane. The first integral equation is a relatively simple one for a cone without a topcap. The second and third integral equations are applicable to a cone with or without a topcap, but the latter equation is relatively cumbersome, involving; complicated kernels with various singularities. A computer code has been developed fur each of the three methods. Numerical data for current distributions, innut impedances and radiation patterns are oresented for resistively loaded and unloaded structures, both with and without topcap.

ACKNOWLEDGMENT

The author grateefully acknowledges the able assistancon . Allen $G 1$ isson in carrying out the computations

CONTENTS

SECTION PAGE
I INTRODUCTION 5
II FORMULATION OF AN INTEGRAL EQUATION FOR A BICONE WITHOUT ENDCAPS 6
III APPIICATION OF METHOD OF MOMENTS TO A BICONE WITHOUT ENDCAPS 13
IV FORMULATION AND NUMERTCAL SOLUTION OF AN INTEGRAL EQUATION FOR A BICONE WITH ENDCAPS 23
V NUMERICAL RESULTS AND CONCLUSIONS 38
REFERENCES 64
APP $A \quad$ CALCULATION OF RADTATED FIELDS; 65
APP B AN ALTERNATE INTEGRAL FQUATION FOR A CONE WITH TOPCAP 68

ILLUSTRATIONS

FIGURE PAGE
1 Geometry of Cone Over a Ground Plane 7
2 Testing Functions for the Cone 14
Pulse Expansion Functions for the Current on the Cone 19
Geometry of Cone with Endcap 25
Pulse Expansion and Testing Functions 29
Pulse Expansions for the Charge on the Cone 32
Current on Unloaded Cone with Topcap, $L=54.05 \mathrm{~m}$, $\theta_{0}=42.260, V_{0}=1$ Volt, $f=825 \mathrm{KHz}$ 41
Current on unloaded Cone without Topcap,$L=54.05 \mathrm{~m}, \theta_{0}=42.260, V_{0}=1$ Volt,$\mathrm{f}=825 \mathrm{KHz}$42Current on Loaded Cone with Topcap, $L=54.05 \mathrm{~m}$,$\theta_{0}=42.26^{\circ}, V_{0}=1$ Volt, $f=825 \mathrm{kHz}$43
Current on Loaded Cone without Topcap,$L=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}, V_{0}=1 \mathrm{Volt}$,$\mathrm{f}=825 \mathrm{MHz}$44
Current on Unloaded Cone with Topcap, $\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}, \mathrm{V}_{0}=1$ Volt, $\mathrm{f}=1.375 \mathrm{MHz}$ 45
Current on Unloaded Cone without Topcap, $\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}, \mathrm{V}_{0}=1 \mathrm{Volt}$, $\mathrm{f}-1.375 \mathrm{MHz}$ 46
Current on Loaded Cone with Topcap, $L=54.05 \mathrm{~m}$, $\theta_{0}=42.26^{\circ}, V_{0}=1$ Volt, $\mathrm{f}=1.375 \mathrm{MHz}$ 47
Current on Loaded Cone without Topcap, $L=54.05 \mathrm{~m}$, $\theta_{0}=42.26^{\circ}, V_{0}=1$ Volt, $\hat{i}=1.375 \mathrm{MHz}$ 48Input Impedance of Unloaded Cone with Topcap,$L=54.05 \mathrm{~m}, \theta=42.26^{\circ}$. Encircled Valuesof Imaginary Part are Positive49
Input Impedance of Unloaded Cone withoutTopeap, $L=54.05 \mathrm{~m}, \theta_{0}=142.26^{\circ}$. EncircledValues of Imacinary fart are Positive50

17
Input Impedance of Loaded Cone with Topcap
$\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}$, Imaginary
Values are Negative. 51
Input Impedance of Loaded Cone without Topcap, $L=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}$. Imaginary Values are Negative 52
E_{θ} radiation pattern for loaded cone with Topcap, $L=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}, V_{0}=1$ Volt, $\mathrm{f}=550 \mathrm{KHz}, \mathrm{r}=100 \mathrm{~m}$ 54
H_{ϕ} Radiation Pattern for Loaded Cone with
$\phi_{\text {Topeap }, ~} \mathrm{~L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}, \mathrm{V}_{0}=$ 1 Volt, $\mathrm{f}=550 \mathrm{kHz}, \mathrm{r}=100 \mathrm{~m}$ 55
E_{r} Radiation Pattern for Loaded Cone with
$\mathrm{r}_{\text {Topcap }, \mathrm{L}}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}, \mathrm{V}_{0}=$
l Volt, $\mathrm{f}-550 \mathrm{KHz}, \mathrm{r}=100 \mathrm{~m}$ 56
E_{0} Radiation Pattern for Loaded Cone with
Topcap, $L=54.05 \mathrm{~m}, \theta_{0}=422_{4} 26^{\circ}, V_{0}=$ 1 Volt, $\mathrm{f}=550 \mathrm{kHz}, \mathrm{r}=10^{4} \mathrm{~m}$ 57
H_{ϕ} Radiation Pattern for Loaded Cone with
$\phi_{\text {Topeap, }} L=54.05 \mathrm{~m}, \theta_{0}=422^{\circ}, V_{0}=$ 1 Volt, $f=550 \mathrm{kHz}, \mathrm{r}=10 \mathrm{~m}$ 58
E Radiation Fattern for Loaded Cone with
$r_{\text {Topeap, }} L=54.05 \mathrm{~m}, \theta_{0}=4226^{\circ}, V_{0}=$ 1 Volt, $\hat{i}=550 \mathrm{kHz}, \hat{r}=10^{4} \mathrm{~m}$ 59E_{θ} Radiation Pattern for Unloaded Cone
with Topcap $L=54.05 \mathrm{~m}, \theta=4226^{\circ}$

$$
\theta_{\text {with Topcap, }}=54.05 \mathrm{~m}, \theta_{0}=422^{\circ} \text {, }
$$

$$
\begin{equation*}
\mathrm{V}_{0}=1 \text { VoIt, } \mathrm{f}=550 \mathrm{KHz}, \mathrm{r}=10 \mathrm{~m} \tag{60}
\end{equation*}
$$

H_{ϕ} Radiation Pattern for Unloaded Cone
$\phi_{\text {with Topeap, }} L=54.05 \mathrm{~m}, \theta_{0}=42_{4} 26^{\circ}$, $V_{0}=I$ Volt, $f=550 \mathrm{kHz}, r=10^{4} \mathrm{~m}$61
E_{r} Radiation Pattern for Unloaded Cone
wîth Topcap, $L=54.05 \mathrm{~m}, \theta=42.26^{\circ}$,
$\mathrm{V}_{0}=1$ Volt, $\mathrm{f}=550 \mathrm{kHz}, \mathrm{r}=10 \mathrm{~m}$

INTRODUCTION

In a companion report [1], the static analysis of a conical antenna over a ground plane is presented. In this report, the analysis is extended to treat the time-harmonic case and to incorporate a model of the resistive loading of the structure. The resistive loading is intendcd to reduce the effect of diffraction from the cone edge at the higher frequencies.

If the cone has no topcap, the analysis may be considerably simplified and a simple integral equation for this situation is derived in Section 11 and implementation of a moment method solution is considered in section III. In Section IV, an integral equation for the cone with a topcap is derived. Presented in Section V are numerical results in the frequency domain for currents on a loaded conical antenna both with and without a topcap. In Appendix A expressions are derived for the computation of fields from the currents and Appendix B gives the derivation of an alternate integral equation from that derived in Section IV.

SECTION II

FORMULATION OF AN INTEGRAL EQUATION FOR
 A BICONE WITHOUT ENDCAPS

For the symmetrically driven biconical structure of Figure 1 , the current on both the cone and its image are radially directed and have no circumferential (ϕ) variation. Hence the magnetic field tangent to the cone is ϕ-directed and the boundary conditions can be satisfied by fields which are transverse magnetic (TM) tor. Thus, the fields may be completely determined by a radially-directed vector potential $\bar{A}=A{ }_{\mathrm{r}}^{\mathrm{r}}$ [2]. In an eigenfunction solution to such problems, the fields are determined in the bicone region from a vector potential Ar which comes from a homogeneous solution of the wave equation. In order to derive an integral equation, however, Ar must be expressed in terms of the current on the bicone. In particular, a free space Green's function is to be found for the vector potential A_{r} due to a unit radially-directed current element. A superposition integral then expresses the total vector potential due to currents on the cone.

Beginning with the assumption that the magnetic field is determined from $\bar{A}=A_{r} \hat{r}$,

$$
\bar{H}=\frac{1}{\mu} \nabla \times \bar{A}
$$

Figure 1. Geometry of cone over a ground plane.
and using Maxwell's equations,

$$
\begin{aligned}
& \nabla \times \overline{\mathrm{E}}=-j \omega \mu \overline{\mathrm{H}} \\
& \nabla \times \overline{\mathrm{H}}=j \omega \varepsilon \overline{\mathrm{E}}+\overline{\mathrm{J}}
\end{aligned}
$$

one readily determines by standard procedures that \bar{A} satisfies the vector Helmholtz equation

$$
\begin{equation*}
\nabla \times \nabla \times \bar{A}-k^{2} \bar{A}=\mu J_{r} \hat{r}-j \omega \mu \varepsilon \nabla \phi \tag{1}
\end{equation*}
$$

where ϕ is a scalar such that

$$
\bar{E}=-j \omega \bar{A}-\nabla \Phi
$$

For a radially-directed unit current element,

$$
\begin{align*}
\bar{J}=J_{r} \hat{r} & =\hat{r} \delta\left(\bar{r}-\bar{r}^{\prime}\right) \\
& =\hat{r} \frac{\delta\left(r-r^{\prime}\right) \delta\left(\theta-\theta^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right)}{r^{\prime 2} \sin \theta^{\prime}} \tag{2}
\end{align*}
$$

Expanding out (1) yields

$$
\begin{aligned}
& {\left[\frac{-1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial A_{r}}{\partial \theta}\right)-\frac{1}{r^{2} \sin ^{2} \theta}-\frac{\partial^{2} A_{r}}{\partial \phi^{2}}-k^{2} A_{r}\right] \hat{r}} \\
& +\left(\frac{1}{r} \frac{\partial^{2} A_{r}}{\partial r} \frac{r}{\partial \theta}\right) \hat{\theta}+\left(\frac{1}{r \sin \theta} \frac{\partial^{2} A_{r}}{\partial \phi \partial r}\right) \hat{\phi}
\end{aligned}
$$

$$
\begin{equation*}
=\mu J_{r} \hat{r}-j \omega \mu \varepsilon\left(\frac{\partial \phi}{\partial r} r+\frac{1}{r} \frac{\partial \phi}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial \phi}{\partial \phi} \hat{\phi}\right) \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial^{2} A r}{\partial r \partial \theta}=-j \omega \mu \varepsilon \frac{\partial \Phi}{\partial \theta} \\
& \frac{\partial^{2} A r}{\partial \phi \partial r}=-j \omega \mu \varepsilon \frac{\partial \Phi}{\partial \phi} \tag{4}
\end{align*}
$$

These conditions are automatically satisfied by the gauge choice

$$
\begin{equation*}
\phi=-\frac{1}{j \omega \mu \varepsilon} \frac{\partial A_{r}}{\partial r} \tag{5}
\end{equation*}
$$

Substituting (2) and (5) into (3) leaves the one scalar component equality

$$
\begin{array}{r}
\frac{\partial^{2} A r}{\partial r^{2}}+\frac{1}{r^{2} \sin 0} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial A r}{\partial \theta}\right)
\end{array}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} A_{r}}{\partial \phi^{2}} .
$$

which can be rewritten in the more convenient form.

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right)\left(\frac{{ }^{\prime}}{r}\right)=\frac{-\mu \delta\left(\bar{r}-\bar{r}^{\prime}\right)}{r^{\prime}} \tag{7}
\end{equation*}
$$

To obtain (7), one notes that

$$
\frac{\delta\left(\bar{r}-\bar{r}^{\prime}\right)}{r}=\frac{\delta\left(\bar{r}-\bar{r}^{\prime}\right)}{r^{\prime}}
$$

A solution of (7) which satisfies the radiation condition for a exp (j山t) time convention may be written by inspection of (7) as

$$
\begin{equation*}
A_{r}=\frac{\mu r}{4 \pi r}, \quad \frac{e^{-j k|\bar{r}-\bar{r}|} \mid}{\mid \bar{r}-\bar{E} T} \tag{8}
\end{equation*}
$$

and the general solution to (3) for a distributed set of currents is obtained by superposition:

$$
\begin{equation*}
A_{r}=\frac{\mu}{4 \pi} \int_{V}^{\prime} J_{r}\left(\bar{r}^{\prime}\right) \frac{r e^{-j k|\bar{r}-\bar{r}|}}{r^{\prime}\left|\bar{r}-\bar{r}^{\prime}\right|} d V^{\prime} \tag{9}
\end{equation*}
$$

This form of the vector potential has also been used by others [3]. For the symmetrically-excited cone and its image,

$$
\begin{equation*}
J_{r}\left(\bar{r}^{\prime}\right)=\frac{J_{S_{r}}\left(\bar{r}^{\prime}\right)}{r^{\prime}}\left[\delta\left(\theta^{\prime}-\theta_{0}\right)-\delta\left(\theta^{\prime}-\pi+\theta_{0}\right)\right] \tag{10}
\end{equation*}
$$

where $J_{s r}$ is the bicone surface current density. Substituting (10) into (9) gives the desired equation for the vector potential:

$$
A_{r}=\frac{\mu r \sin \theta_{0}}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{L} J_{s r}\left(r^{\prime}\right)\left(\frac{e^{-j k R^{+}}}{R^{+}}-\frac{e^{-j k R^{-}}}{R^{-}}\right) d r^{\prime} d \phi^{\prime}
$$

where
$R^{ \pm}=\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left[\sin \theta \sin \theta_{0} \cos \left(\phi-\phi^{\prime}\right) \pm \cos \theta \cos \theta_{0}\right]}$

The plus superscript denotes source points on the upper bicone surface while the negative sign denotes source points on the image surface.

It is convenient to introduce the total axial current

$$
\begin{equation*}
I\left(r^{\prime}\right)=2 \pi r^{\prime} \sin \theta_{0} J_{s r}\left(r^{\prime}\right) \tag{12}
\end{equation*}
$$

so that (11) becomes

$$
\begin{equation*}
A_{r}=\frac{\mu r}{8 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{L} \frac{I\left(r^{\prime}\right)}{r^{\prime}}\left(\frac{e^{-j k R^{+}}}{R^{+}}-\frac{e^{-j k R^{-}}}{R^{-}}\right) d r^{\prime} d \phi^{\prime} \tag{13}
\end{equation*}
$$

The radial component of electric field is now given by

$$
\begin{equation*}
E_{r}=\frac{1}{j \omega \mu \varepsilon}\left(\frac{\partial^{2}}{\partial r^{2}}+k^{2}\right) A_{r} \tag{14}
\end{equation*}
$$

The simplicity of (13) and (14) compared to the usual vector potential representations should be emphasized at this point. One notes that in the usual representation, two vector potential components, A_{r} and A_{θ}, would be present. Furthermore, the integrands of the potential integrals would contain somewhat complicated dependences on angles between observation and source points which arise from projecting the source vector onto the potential component vector for each source and observation point, Finally, the expression for the radially-directed electric field would be complicated and difficult to handle numerically compared to the approach to be followed here. These complications indeed will appear in the formulation which includes a topcap on the bicone structure (Appendix B).

An integral equation for the current is obtained by applying the boundary condition that the radial electric field must equal the impedance loading times the total current density, i,e.,

$$
E_{r}=Z_{S}(r) I(r)
$$

Since all currents and fields are ϕ-independent, it suffices to take all observation points along the intersection of the plane $\phi=0$ and the conical surface. Hence, we obtain finally

$$
\begin{equation*}
\frac{1}{j \omega \mu \varepsilon}\left(\frac{d^{2}}{d r^{2}}+k^{2}\right) A_{r}-Z_{s}(r) I(r)=0,0<r \leq \ell, \quad \theta=00_{0}, \phi=0 \tag{15}
\end{equation*}
$$

Equation (15) is an integro-differential equation for the induced current on the bicone. As it stands, (15) dues not appear to contain a driving term due to the applied voltage at the bicone terminals. In the next section, however, this term appears as a "boundary" condition on dAr $/ d r$ at $r=0$. One also notes in (15) that discrete or lumped loading may be introduced by allowing $\mathrm{Z}_{\mathrm{s}}(\mathrm{r})$ to be represented by appropriate δ-functions,

$$
Z_{s}(r)=\sum_{n=1}^{N} Z_{L n} \delta\left(r-r_{L n}\right)
$$

for N_{L} loads where $Z_{L n}$ is the impedance of the $n^{\text {th }}$ load located at $r=r_{\text {Ln }}$.

APPLICATION OF METHOD OF MOMENTS TO A . BICONE WITHOUT ENDCAPS

The usual procedure in applying the method of moments $[4]$ is to first represent the unknown current as a linear combination of an appropriate set of basis functions and then "test" the resulting integral equation with a series of testing functions. Here it is convenient to reverse this order and to first test the equation before expanding the current. A set of testing functions which offer a number of advantages in a numerical procedure are the piecewise sinusoidal testing functions:

$$
\begin{align*}
& w_{1}(r)=\left\{\begin{array}{cl}
\frac{\sin k(\Delta r-r)}{\sin k \Delta r} & , \quad 0 \leq r \leq \Delta r \\
0 & \Delta r, \leq r \leq L
\end{array}\right. \\
& w_{m}(r)=\left\{\begin{array}{cc}
\frac{\sin k\left(\Delta r-\left|r-r_{m}\right|\right)}{\sin k \Delta r}, & r_{m-1} \leq r \leq r_{m+1} \\
0 & \left|r-r_{m}\right|>\Delta r
\end{array}\right. \\
& m=2,3, \ldots M \tag{16}
\end{align*}
$$

where $\Delta r=L / M, r_{m}=(m-1) \Delta r, m=1,2, \ldots M \quad$.
These testing functions are shown in Figure 2. An inner product is next defined as

Figure 2. Testing iunctions for the cone.
$<f(r), g(r)>=\int_{0}^{L} f(r) g(r) d r$
and (15) is successively tested with each of the w_{m}, $\mathrm{m}=1,2, \ldots, \mathrm{M}:$

$$
\begin{align*}
\frac{1}{j \omega \mu \varepsilon}\left\langle\left\langle\frac{d^{2}}{d r^{2}}+k^{2}\right\rangle A_{r}, w_{m}\right\rangle & -\left\langle z_{s}(r) I(r), w_{m}\right\rangle \\
& =0, m=1,2, \ldots, M \tag{18}
\end{align*}
$$

Taking, for the moment,$m=1$ and integrating the first term by parts twice results in

$$
\begin{aligned}
\left\langle\left(\frac{d^{2}}{d r^{2}}+k^{2}\right) A_{r}, w_{1}\right\rangle=-\left.\frac{d A_{r}}{d r}\right|_{r=0} & +\frac{k}{\sin k \Delta r} A_{r}\left(r_{2}\right) \\
& -\frac{k \cos k \Delta r}{\sin k \Delta r} A_{r}\left(r_{2}\right)
\end{aligned}
$$

where $A_{r}\left(r_{m}\right)=\left.A_{r}\right|_{r=r_{m}}$. Note that although

$$
\begin{equation*}
\left.A_{r}\right|_{\theta=\pi / 2}=0 \tag{19}
\end{equation*}
$$

$A_{r}\left(r_{1}\right)$ is not zero along the bicone. In fact, one notes that

$$
E_{\theta}=\frac{1}{j \omega \mu \varepsilon r} \frac{\partial^{2} A_{r}}{\partial \mathrm{r} \partial \theta}
$$

and that the bicone voltage at $r=0$ is just

$$
\begin{aligned}
v_{0} & =\left.\int_{\theta_{0}}^{\pi / 2} E_{\theta} r d \theta\right|_{r=0} \\
& =\left.\frac{1}{j \omega \mu \varepsilon} \int_{\theta_{0}}^{\pi / 2} \frac{\partial^{2} A^{r} r}{\partial r \partial \theta} d \theta\right|_{r=0}=-\frac{1}{j \omega \mu \varepsilon} \frac{\partial A_{r}\left(r_{1}\right)}{\partial r}
\end{aligned}
$$

where, using (19), one sees that $\partial A_{r} / \partial r=0$ at $\theta=\pi / 2$.
Thus for $m=1$, (18) becomes

$$
\begin{align*}
& \frac{k}{j \omega \mu \varepsilon \sin k \Delta r}\left[-\cos k \Delta r A_{r}\left(r_{1}\right)+A_{r}\left(r_{2}\right)\right] \\
&-\left\langle z_{s}(r) I(r), w_{1}\right\rangle=-v_{0} \tag{20}
\end{align*}
$$

For $m=2,3,4, \ldots, M$, integration by parts twice in (18) results in
$\frac{k}{j \omega \mu \varepsilon \sin k \Delta r}\left[A_{r}\left(r_{m+1}\right)-2 \cos k \Delta r A_{r}\left(r_{m}\right)+A_{r}\left(r_{m-1}\right)\right]$

$$
-\left\langle z_{s}(r) I(r), w_{m}\right\rangle=0
$$

$$
\begin{equation*}
m=2,3, \ldots, M \tag{21}
\end{equation*}
$$

Note that the choice of testing functions has resulted in removing all the derivative operations from the operator equations. This is the principal advantage of the testing functions chosen.

A matrix equation now results if the current is

 expanded in an appropriate set of basis functions. A convenient set is the pulse functions defined by$$
\begin{aligned}
& P_{1}(r)= \begin{cases}1, & 0 \leq r \leq \Delta r / 2 \\
0, & \Delta r / 2 \leq r \leq L\end{cases} \\
& p_{n}(r)= \begin{cases}1, & \left|r-r_{n}\right| \leq \Delta r / 2 \\
0, & \left|r-r_{n}\right|>\Delta r / 2\end{cases} \\
& n=2,3, \ldots, M
\end{aligned}
$$

(see Figure 3) and the resulting current expansion is

$$
\begin{equation*}
I(r) \simeq \sum_{n=1}^{M} I_{n} p_{n}(r) \tag{22}
\end{equation*}
$$

Note that the current at the bicone edge $r=L$ is automatically zero by our choice of basis functions (Figure 3).

When (22) is substituted into (20) and (21), there results the system of linear equations
$I_{1}\left\{\frac{k}{j \omega \mu \varepsilon \sin k \Delta r}\left[-\cos k \Delta r \Psi\left(r_{1} ; r_{1}, r_{1}+\right)+\Psi\left(r_{2} ; r_{2}, r_{1}+\right)\right]\right.$ $\left.-\left\langle z_{s}(r) p_{1}(r), \quad w_{1}\right\rangle\right\}+$

$$
+\sum_{n=2}^{M} I_{n}\left\{\frac{k}{j \omega \mu \varepsilon \sin k \Delta r}\left[-\cos k \Delta r \psi\left(r_{1} ; r_{n-}, r_{n}+\right)+\psi\left(r_{2} ; r_{n}-, r_{n}+\right)\right]\right.
$$

$$
\begin{equation*}
\left.-\left\langle z_{s}(r) p_{n}(r), w_{1}\right\rangle\right\rangle=-v_{0} \tag{23}
\end{equation*}
$$

and

$$
\begin{aligned}
& I_{1}\left\{\frac { k } { j \omega \mu \varepsilon \operatorname { s i n } k \Delta r } \left[\Psi\left(r_{m-1} ; r_{1}, r_{L^{+}}\right)-2 \cos k \Delta r \Psi\left(r_{m} ; r_{1}, r_{2}\right)\right.\right. \\
& \left.\left.+\Psi\left(r_{m+1} ; r_{1}, r_{1}+\right)\right] \quad-\quad\left\langle z_{s}(r) p_{1}(r), w_{m}\right\rangle\right\rangle \\
& +\sum_{n=2}^{M} I_{n}\left\{\frac { k } { j \omega \mu \varepsilon \operatorname { s i n } k \Delta r } \left[\Psi\left(r_{m-1} ; r_{n^{-}}, r_{n^{+}}\right)-2 \cos k \Delta r \Psi\left(r_{m} ; r_{n^{-}}, r_{n^{+}}\right)\right.\right. \\
& \left.+\Psi\left(r_{m+1} ; r_{n}-, r_{n}+\right)\right] \\
& \left.\left\langle z_{s}(r) p_{n}(r), w_{m}\right\rangle\right\rangle \\
& =0, m=2,3, \ldots, M
\end{aligned}
$$

These equations may be assembled into the matrix
equation

$$
Z I=V
$$

where

$$
I=\left[\begin{array}{l}
I_{I} \\
\vdots \\
I_{M}
\end{array}\right] \quad, \quad V=\left[\begin{array}{c}
-V_{0} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Figure 3. Pulse expansinn functions for the current on the cone.
and the elements of the impedance matrix may identified from (23) and (24). The functions $\Psi\left(r ; r_{n^{-}}, r_{n}+\right.$) are defined by
$\Psi\left(r ; r_{n^{-}}, r_{n^{+}}\right)=\frac{\mu}{8 \pi^{2}} \int_{0}^{2 \pi} \int_{r_{n^{-}}}^{r_{n+}} \frac{r^{\prime}}{R^{+}}\left(\frac{e^{-j k R^{+}}}{R^{-}}\right) d r^{-j k R^{-}} d \phi^{\prime}$
where

$$
\begin{equation*}
R^{ \pm}=\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\sin ^{2} \theta_{0} \cos \phi^{\prime} \pm \cos ^{2} 0_{0}\right)} \tag{26}
\end{equation*}
$$

and where

$$
r_{n} \pm=r_{n} \pm \Delta r / 2
$$

The evaluation of the double integral in (24) is simplified by analytically approximating the integration with respect to r^{\prime}. This may be accomplished by noting that in general $k\left(r_{n^{+}} r_{n^{-}}\right) \ll 1$, so that a few terms in a Taylor series expansion about some point r_{n} in the interval $\left[r_{n-}, r_{n}+\right]$ should be accurate. Accordingly, one writes

$$
\begin{align*}
e^{-j k R^{ \pm}} & =e^{-j k R_{n}^{ \pm}} e^{-j k\left(R^{ \pm}-R_{n}^{ \pm}\right)} \\
& \simeq e^{-j k R_{n}^{ \pm}}\left[1-j k\left(R^{ \pm}-R_{n}^{ \pm}\right)\right] \tag{27}
\end{align*}
$$

where $R_{n}^{ \pm}=\left.R^{ \pm}\right|_{r=r}$. Substituting (26). into (24) and inting as a fourth argument the point about which the expansion is made, one obtains

$$
\begin{align*}
& \Psi\left(r ; r_{n-}, r_{n+}\right) \simeq \Psi\left(r ; r_{n-}, r_{n+}, r_{n}\right) \\
& =-\frac{j}{8 \pi^{2}} \frac{r}{2 \pi} \int_{0}^{2 \pi} \int_{r_{n-}}^{r_{n}+}\left[e^{-j k R_{n}^{+}}\left(\frac{1+j k R_{n}^{+}}{r^{\prime} R^{+}}-\frac{j k}{r^{\prime}}\right)\right. \\
& \left.-e^{-j k R_{n}^{-}}\left[\frac{1+j k R_{n}^{-}}{r^{\prime} R^{-}}-\frac{j k}{r^{\prime}}\right)\right] d r^{\prime} d \phi^{\prime} \\
& =\frac{\mu r}{4 \pi^{2}} \int_{0}^{\pi}\left\{e ^ { - j k R _ { n } ^ { + } } \left[\frac{1+j k R_{n}^{+}}{r} \log \left|\frac{r_{n}+\left(R_{n-}^{+}+r-r_{n} b^{+}\right)}{r_{n-}\left(R_{n+}^{+}+r-r_{n+} b^{+}\right)}\right|\right.\right. \\
& \left.-j k \ell n\left|\begin{array}{c}
r_{n}+ \\
r_{n}-
\end{array}\right|\right] \\
& -e^{-j k R_{n}^{-}}\left[\frac{1+j k R_{n}^{-}}{r} \log \left|\frac{r_{n}+\left(R_{n-}^{-}+r-r_{n-b^{-}}\right)}{r_{n}-\left(R_{n+}^{-}+r-r_{n}+b^{-}\right)}\right|\right. \\
& \left.\left.-j k \ell n\left|\frac{r_{n}+}{r_{n}-}\right|\right]\right\} d \phi^{\prime} \tag{28}
\end{align*}
$$

where $b^{ \pm}=\sin ^{2} \theta_{0} \cos \phi^{\prime} \pm \cos ^{2} \theta_{0}$. In several situations, appropriate limits of the integrand of (27) need to be taken. First, when the source is the current segment at the bicone terminals, the integral (27) reduces to the simple form

$$
\begin{align*}
\psi\left(r ; r_{1}, r_{1}+\right) & \simeq \Psi\left(r ; r_{2}, r_{1}+, r_{1}\right) \\
& =-\frac{\mu}{4 \pi^{2}} \int_{0}^{\pi} e^{-j k r}(1+j k r) \log \left|\frac{R_{1}^{-}+r-b^{-} r_{1}+}{R_{1}^{+}+r-b^{+} r_{2}+}\right| d \phi^{\prime} \tag{29}
\end{align*}
$$

As the observation point r in (28) approaches the bicone terminals, $r \rightarrow r_{1}=0$, the limiting form of the integrand can be integrated. The result is

$$
\begin{equation*}
\Psi\left(r_{1} ; r_{1}, r_{1}+, r_{1}\right)=\frac{\mu}{2 \pi} \log \left(\cot \frac{\theta_{0}}{2}\right) \tag{30}
\end{equation*}
$$

a very interesting result that is independent of the subdomain size.at the bicone terminals. Finally, all the socalled "self terms" $\Psi\left(r_{n} ; r_{n-}, r_{n}+r_{n}\right)$. $n \neq 1$, contain an integrable singularity. In fact one easily establishes that

$$
\log \left|\frac{r_{n+}\left(R_{n-+}^{+} r-b^{+} r_{n^{-}}\right)}{r_{n^{-}}\left(R_{n^{+}}^{+}+r-b^{+} r_{n^{+}}\right)}\right| \xrightarrow[r \rightarrow r_{n}]{ }-2 \log \left|\phi^{\prime}\right|
$$

This singular term is then subtracted from the inteyrand in (27), resulting in a non-singular integrand which is then numerically integrated. The term

$$
\frac{-\mu}{2 \pi^{2}} \int_{0}^{\pi} \ell n\left|\phi^{\prime}\right| d \rho^{\prime}=\frac{-\mu}{2 \pi}(\ell n \pi-1)
$$

is then added to the result to take care of the part of the integral contributed by the singularity.

SECTION IV

FORMULATION AND NUMERICAL SOLUTION OF AN
INTEGRAL EQUATION FOR A BICONE WITH ENDCAPS

The formulation of the integral equation for a cone radiator over a ground plane with an endcap is considerably more complicated than that for the case when the endcap is not present. It is possible, however, to generalize the approach used for the bicone without a topcap and to transform the derivatives appearing in the equations into harmonic operators along the radial cone and topcap coordinates, as is done in Appendix B. This approach has the advantage again that testing with piecewise sinusoids allows the replacement of derivatives by a finite difference of potentials. However, to effect this transformation, an extremely complicated kernel must be used (see Appendix B) which contains many singularities other than the usual ones where-source and field points coincide. While this approach has been used, it has been found to be unwieldy and rather inefficient.

The approach described here begins with the description of fields in terms of the more commonly used vector magnetic and scalar potentials expressed in terms of the cone currents and charge. However, it is found that these potentials are singular at the bicone terminals which afain creates an unnecessary complication. In order to circumvent this problem, the cone and image surfaces are allowed to intersect with a
small "waist" of radius "a" (Figure 4). If "a" is very small, there should be negligible difference in the input impedance and currents found for this case and that for the limiting case of $a=0$. For convenience, the cone coordinates are defined with respect to the projection of the cone surface to a tip, as in Figure 4. Furthermore, the direction of the unit vector \hat{r}_{t} and the positive direction of corresponding vector components is taken to be towards the center of the topcap, in the direction of decreasing r_{t}.

The integral equations are obtained by setting the radiated field tangent to the cone surface equal to the impedance drop per unit length due to the loading:

$$
\begin{gather*}
-j \omega A_{c}-\frac{\partial \phi}{\partial r_{c}}-Z_{s} I_{c}=0, a / \sin \theta_{0}<r_{c} \leq L+a / \sin \theta_{0} \tag{31}\\
-j \omega A_{r_{t}}-\frac{\partial \Phi}{\partial r_{t}}-Z_{s} I_{t}=0,0<r_{t} \leq L \sin \theta_{0}+a \tag{32}
\end{gather*}
$$

where the tangential components of magnetic vector potential, A_{c} and A_{t}, are given by

$$
\begin{align*}
& \left.+\int_{0}^{2 \pi} \int_{0}^{\operatorname{Lsin} \theta_{0}+a} I_{t}\left(\frac{\cos \xi_{p t}^{+e^{-j k R} p t}}{R_{p t}^{+}}+\frac{\cos \xi_{p t}^{+e^{-j k R} p t}}{R_{p t}^{-}}\right) d r_{t}^{\prime} d \phi^{\prime}\right] \\
& p=c, t \tag{33}
\end{align*}
$$

)

Figure 4. Geometry of-cone with enleap.

The scalar potential is given by
$\Phi=\frac{-1}{8 \pi^{2} j \omega \varepsilon}\left[\int_{0}^{2 \pi} \int_{a / \sin 0_{0}}^{L+a / \sin \theta_{0}} \frac{d I}{d r_{c}}\left(\frac{e^{-j k R_{p c}^{+}}}{R_{p c}^{+}}-\frac{e^{-j k R_{p c}^{-}}}{R_{p c}^{-}}\right) d r_{c}^{\prime} d \phi^{\prime}\right.$

$$
\begin{array}{r}
2 \pi \\
\left.+\int_{0}^{k \sin \theta_{0}+a} \int_{0}^{d I} \frac{d I_{t}}{d r_{t}}\left(\frac{e^{-j k R_{p t}^{+}}}{R_{p t}^{+}}-\frac{e^{-j k R_{p t}^{-}}}{R_{p t}^{-}}\right) d r_{t}^{-d \phi}\right] \tag{34}\\
p=c, t
\end{array}
$$

The currents I_{c} and I_{t} are the total linear currents on the conical and top cap surfaces, respectively, and are related to the corresponding surface current densities J and J_{t} by

$$
\begin{align*}
& I_{c}=2 \pi r_{c} \sin \theta_{0} J_{c} \\
& I_{t}=2 \pi r_{t} J_{t} \tag{35}
\end{align*}
$$

The distance quantities are all of the form
$R_{p q}^{ \pm}=\sqrt{r_{q}^{\prime 2}+2 b \underset{p q}{ \pm} r_{q}^{\prime}+c_{p q}^{ \pm}}, \quad p, q=c, t$
where
$b_{c c}^{ \pm}=-r_{c} \sin ^{2} \theta_{0} \cos \phi^{\prime} \mp r_{c} \cos ^{2} \theta_{0}-a \cot \theta_{0} \cos \theta_{0}(1 \mp 1)$

9
$c_{c c}^{ \pm}=r_{c}^{2}+a^{2} \cot \theta_{0}(1 \mp 1)^{2}-2 r_{c} a^{\cos \theta_{0} \cot \theta_{0}(1 \mp 1)}$
$b_{c t}{ }^{ \pm}=-r_{c} \sin \theta_{0} \cos \phi^{\prime}$
$c_{c t}^{ \pm}=r_{c}^{2}-2 r_{c} \cos \theta_{0}\left(a \cot \theta_{0} \pm L \cos \theta_{0}\right)+\left(a \cot 0_{0} \pm L \cos \theta_{0}\right)^{2}$
${ }_{b}{ }_{\mathrm{t}}^{\mathrm{I}}=\overline{\mathrm{E}}=\mp \cos ^{2} \theta_{0}-a \cos \theta_{0} \cot \theta_{0}-r_{t} \sin \theta_{0} \cos \phi^{\prime}$
$c_{t c}^{ \pm}=r_{t}^{2}+\left(L \cos \theta_{0} \pm a \cot \theta_{0}\right)^{2}$
$b_{t t}{ }^{ \pm-}=-r_{t} \cos \phi^{\prime}$
$c_{t}{ }_{t}^{ \pm}=r_{t}^{2}+L^{2} \cos ^{2} \theta_{0}(1 \mp 1)^{2}$

The angles between the source current elements and the tan.. gentian component of electric field at the observation point are determined by
$\cos \xi_{c}{ }_{c}^{ \pm}= \pm \cos \phi^{\prime} \sin ^{2} \theta_{0}+\cos ^{2} \theta_{0}$
$\cos \xi_{c t}^{ \pm}=\mp \sin \theta_{0} \cos \phi^{\prime}$
$\cos \xi_{t}{ }^{ \pm}= \pm \cos \phi^{\prime}$
$\cos \xi_{t c}^{ \pm}=\mp \cos \phi^{\prime} \sin 0_{0}$

It is convenient to choose as testing functions the pulse functions p_{n} shown in Figure 5. Thus, testing (31) with p_{1} results in

$$
-j \omega\left\langle A_{r_{c}}, P_{1}\right\rangle-\left\langle\frac{\partial \Phi}{\partial r_{c}}, P_{1}\right\rangle-\left\langle Z_{s} I_{c}, P_{1}\right\rangle=0
$$

Upon integrating by parts in the central term, and noting that A_{r} is slowly varying over the interval and hence may be approximated by $A_{r_{c}}\left(r_{c l}\right)$, one obtains

$$
-j \omega A_{r_{c}}\left(r_{c l}\right) \frac{\Delta r_{c}}{2}-\left[\left(\phi\left(r_{c l}+\Delta r_{c} / 2\right)-\phi\left(r_{c l}\right)\right]-\left\langle Z_{s} I_{c}, p_{l}\right\rangle=0\right.
$$

But $\phi\left(r_{c l}\right)$ is just the bicone terminal voltage v_{0} with respact to the ground plane. Hence;
$-j \omega A_{r_{c}}\left(r_{c 1}\right) \Delta r_{c}-2 \phi\left(r_{c 1}+\Delta r_{c} / 2\right)-2\left\langle Z_{s} I_{c}, p_{1}\right\rangle=-2 V_{0}$

For the remaining testing functions on the cone, testing of (31), integration by parts on the scalar potential term and approximation of the vector potential by its value at the center of the pulse yields

$$
\begin{align*}
-j \omega \Delta r_{c} A_{r_{c}}\left(r_{c_{m}}\right) & -\left[\phi\left(r_{c m}+\Delta r_{c} / 2\right)-\phi\left(r_{c m}-\Delta r_{c} / 2\right)\right] \\
& -\left\langle Z_{s} I_{c}, P_{m}\right\rangle=0, m=2,3, \ldots N_{c}-1 \tag{37}
\end{align*}
$$

)

Figure 5. Pulse expansion and tosting ranclions.

At the edge, the testing pulse consists of two parts, one on the cone surface and one on the topcap. Hence, both equations (31) and (32) must be used. With approximations on the two vector potential components similar to that above, integration by parts, and enforcement of continuity of the scalar potential at the edge, one obtains

$$
\begin{align*}
& -j \omega\left[\frac{\Delta r_{c}}{2} A_{r_{c}}\left(r_{c N_{c}}\right)+\frac{\Delta r_{r}}{2} A_{r_{t}}\left(r_{t l}\right)\right] \\
& -\left[\Phi\left(r_{c N_{c}}-\Delta r_{c} / 2\right)-\Phi\left(r_{t l}+\Delta r_{t} / 2\right)\right]-\left\langle Z_{s} I_{r}, P_{N}\right\rangle=0 \tag{38}
\end{align*}
$$

where $I_{r}=I_{c}$ or I_{t} as is appropriate. on the topcap, one has, analogous to (37),
$-j \omega \Delta r_{t} A_{r}\left(r_{t m}\right)-\left[\phi\left(r_{t m}-\Delta r_{t} / 2\right)-\phi\left(r_{t m}+\Delta r_{t} / 2\right)\right]$

$$
\begin{equation*}
-\left\langle Z_{s} I_{t}, P_{N_{c}-1+m}\right\rangle=0, m=2 \ldots, N_{t}+1 \tag{39}
\end{equation*}
$$

The current is next expanded in the set of pulse functions p_{n} of Figure 5.

$$
\begin{align*}
& I_{c}\left(r_{c}\right) \simeq \sum_{n=1}^{N_{c}} I_{n} P_{n}\left(r_{c}\right) \tag{40}\\
& I_{t}\left(r_{t}\right)=\sum_{n=N_{c}}^{N_{c}+N_{t}} I_{n} p_{n}\left(r_{t}\right) \tag{41}
\end{align*}
$$

Note that the current $I_{N_{c}}$ at the edge of the cone is the same on both the cone and the top ap surfaces. The derivatives of the currents above are approximated by a finite difference of adjacent current pulses which is then assumed to be expanded in its own set of "charge" pulses (see Figure 6);

$$
\begin{align*}
& \frac{d I_{c}}{d r_{c}} \simeq \sum_{n=1}^{N c_{c}^{-1}}\left(\frac{I_{n+1}-I_{n}}{\Delta r_{c}}\right) P_{n}^{+}\left(r_{c}\right) \tag{42}\\
& \frac{d I_{t}}{d r_{t}} \simeq \sum_{n=N_{c}}^{N} \sum_{t}^{+N}\left(\frac{I_{n+1}-I_{n}}{\Delta r_{t}}\right) P_{n}^{+}\left(r_{t}\right) \tag{43}
\end{align*}
$$

where ${ }^{I} N_{c}+N_{t}+1$ is taken to be zero.
Thus the vector potential quantities in (36)-(39) may be written as

$$
\begin{align*}
A_{r_{t}} & =\frac{\mu}{8 \pi^{2}}\left\{1_{1} \psi_{p c}\left(r_{p}, r_{c l}, r_{c l}+\Delta r_{c} / 2\right)\right. \\
& +\sum_{n=2}^{N}{ }_{c}^{-1} I_{n} \Psi_{p c}\left(r_{p}, r_{c n}-\Delta r_{c} / 2, r_{c n}+\Delta r_{c} / 2\right) \\
& +I_{N_{c}}\left[\Psi_{p c}\left(r_{p}, r_{c N}-\Delta r_{c} / 2, r_{c N_{c}}\right)+\Psi_{p t}\left(r_{p}, r_{t 1}, r_{t 1}+r_{t} / 2\right)\right] \\
& N_{c}+N_{t} \\
& \left.+\sum_{n=N_{c}+1} I_{n} \Psi_{p t}\left(r_{p}, r_{t, n+1-N_{c}}-\Delta r_{t} / 2, r_{t, n+1-N}+\Delta r_{t} / 2\right)\right\} \tag{44}
\end{align*}
$$

Figure 6. Pulse expansions for the charge on the rone.
and the scalar potential is

$$
\begin{align*}
\Phi= & \frac{-1}{8 \pi^{2}{ }_{j \omega \varepsilon}}\left[\sum_{n=1}^{N_{c}-1}\left(\frac{I_{n+1}-I_{n}}{\Delta r_{c}}\right) \quad \psi_{p c}\left(r_{p}, r_{c n}, r_{c n}+\Delta r_{c}\right)\right. \\
& \left.\quad \sum_{n=N_{c}}^{N_{c}+N_{t}}\left(\frac{I_{n+1}-I_{n}}{\Delta r_{t}}\right) \psi_{p t}\left(r_{p}, r_{t, n+1-N_{c}}, r_{t, n+1-N_{c}}+\Delta r_{c}\right)\right]
\end{align*}
$$

where

$$
\begin{array}{r}
\psi_{p q}\left(r_{p,}, r_{n-}, r_{n+}\right)= \\
\int_{0}^{2 \pi}\left(\cos \xi_{p q}^{+} \int_{r_{n-}}^{r_{n+}} \frac{e^{-j k R} R_{p q}^{+}}{R_{p q}^{+}} d r^{\prime}\right. \\
\left.+\cos \xi_{p q q}^{-} \int_{r_{n-}}^{r_{n+}^{n+}} \frac{e^{-j k R_{p q}^{-}}}{R_{p q}^{-}} d r^{\prime}\right) d \phi^{\prime} \tag{46}\\
p, q=c, t
\end{array}
$$

and

$$
\begin{align*}
\psi_{p q}\left(r_{p,}, r_{n-}, r_{n+}\right)= & \int_{0}^{2 \pi} \int_{r_{n-}}^{r_{n+}}\left(\frac{e^{-j k R_{p q}^{+}}}{R_{p q}^{+}}\right. \\
& \left.-\frac{e^{-j k R_{p q}^{-}}}{R_{p q-}^{-}}\right) d r^{\prime} d \phi^{\prime} \\
& p, q^{-}=c, t \tag{47}
\end{align*}
$$

The inner integrals in (46) and (47) can be approximately analytically integrated. They are all of the form

$$
\begin{equation*}
\int_{r_{n-}}^{r n+} \frac{e^{-j k R}}{R} d r^{\prime} \tag{48}
\end{equation*}
$$

where R is of the form

$$
\begin{equation*}
R=\sqrt{r^{\prime}}+2 r^{\prime} b+c \tag{49}
\end{equation*}
$$

Since the range of integration $\left[r_{n-}, r_{n+}\right]$ is small compared to a wavelength, it is appropriate to expand $e^{-j k R}$ in a Taylor series about some point R_{n} which is the distance from the observation point to a point r_{n} in the interval $\left[r_{n-}, r_{n+}\right]$. Thus,

$$
\begin{aligned}
e^{-j k R} & =e^{-j k\left(R-R_{n}\right)} e^{-j k R_{n}} \\
& =e^{-j k R n_{n}}\left[\cos k\left(R-R_{n}\right)-j \sin k\left(R-R_{n}\right)\right] \\
= & e^{-j k R_{n}\left[1-\frac{k^{2}\left(R-R_{n}\right)}{2}\right.}-j j k\left(R-R_{n}\right) \\
& \left.+j k^{3}\left(R-R_{n}\right)^{3} / 6\right]
\end{aligned}
$$

The error in the real and imaginary parts is less than

$$
r^{\operatorname{Max}\left[r_{n}-, r_{n+}\right]} \frac{k^{4}\left(R-R_{n}\right)^{4}}{24} \leq \frac{k^{4}(\Delta r / 2)^{4}}{24}
$$

where Δr is the subdomain size. For five subdomains per wavelength $(\Delta r / \lambda=1 / 5)$, this results in a maximum error of less than 1% in both the real and imaginary parts of the integrand. The resulting integral should indeed be much more accurate than this. With this approximation,

$$
\left.\int_{r_{n-}}^{r} \frac{e^{-j k R}}{R} d r^{\prime} \simeq e^{-j k R} n I_{1}-j I_{2}\right)
$$

where

$$
\begin{aligned}
I_{1} & =\int_{r_{n-}}^{r_{n+}} \frac{1-k^{2}\left(R-R_{n}\right)^{2} / 2}{R} d r^{\prime} \\
& =\left(1-\frac{k^{2} R_{n}^{2}}{2}\right) \ell n\left|\frac{R_{n+}+r_{n+}+b}{R_{n-}+r_{n-}+b}\right|+k^{2} R_{n}\left(r_{n+}-r_{n-}\right) \\
& -k^{2}\left[\frac{r_{n+}+b}{2} R_{n+}-\frac{r_{n-}+b}{2} R_{n-}+\frac{c-b^{2}}{2} \ell n\left|\frac{R_{n+}+r_{n+}+b}{R_{n-}+r_{n-}+b}\right|\right]
\end{aligned}
$$

and where

$$
\begin{aligned}
I_{2} & =\int_{r_{n-}}^{r} n+\frac{k\left(R-R_{n}\right)-k^{3}\left(R-R_{n}\right)^{3} / 6}{R} d r^{\prime} \\
& =\left(-k R_{n}+k^{3} R_{n}^{3} / 6\right) \ell n\left|\frac{R_{n+}+r_{n+}+b}{R_{n-}+r_{n-}+b}\right|+\left(k-k^{3} R_{n}^{2} / 2\right)\left(r_{n+}-r_{n-}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{k^{3} R_{n}}{2}\left[\frac{r_{n+}+b}{2} R_{n+}-\frac{r_{n-}+b}{2} R_{n-}+\frac{\left(r-\frac{b}{2}\right)^{2}}{2} \ell n\left|\frac{R_{n+}+r_{n+}+b}{R_{n-}+r_{n-}+b}\right|\right] \\
& -\frac{k^{3}}{6}\left[\frac{r_{n+}^{3}-r_{n-}^{3}}{3}-b\left(r_{n+}^{2}-r_{n-}^{2}\right)+c\left(r_{n+}-r_{n-}\right)\right]
\end{aligned}
$$

Combining these results, one has, finally,

$$
\int_{r_{n-}}^{r_{n+}} \frac{e^{-j k R}}{R} d r^{\prime} \simeq
$$

$$
\begin{aligned}
e^{-j k R_{n}}\{ & {\left[1+j k R_{n}-\frac{k^{2} R_{n}^{2}}{2}-j \frac{k^{3} R_{n}^{3}}{6}\right.} \\
& \left.-\left(\frac{k^{2}}{2}+j \frac{k^{3} R_{n}}{2}\right)\left(\frac{c-b}{2}-1\right)\right] \ln \left|\frac{R_{n+}+r_{n+}+b}{R_{n-}+r_{n-}+b}\right|
\end{aligned}
$$

$$
-\frac{1}{4}\left(k^{2}+j k^{3} R_{n}\right)\left[\left(r_{n+}+b\right) R_{n+}-\left(r_{n-}+b\right) R_{n-}\right]
$$

$$
+\frac{j k^{3}}{6}\left[\frac{r_{n+}^{3}+r_{n-}^{3}}{3}+b\left(r_{n+}^{2}-r_{n-}^{2}\right)\right]
$$

$$
\begin{equation*}
\left.+\left(-j k+k^{2} R_{n}+j \frac{k^{3} R_{n}{ }^{2}}{2}+j \frac{k^{3} c}{6}\right)\left(r_{n+}-r_{n-}\right)\right\} \tag{50}
\end{equation*}
$$

Equation (50) is singular in ϕ^{\prime} if the observation point is in the interval $\left[r_{n-}, r_{n+}\right]$. Hence, the integrals in (46) and
(47) need to be evaluated by subtracting the singularity from the integrand and adding its integral to the numerically determined integral. If r_{n} is in the interior of the interval, $r_{n-}<r_{n}<r_{n+},(50)$ behaves like $-2 \ell n\left|\phi^{\prime}\right|$ near $\phi^{\prime}=0$; if $r_{n}=r_{n-}$ or $r_{n}=r_{n+}$, (50) behaves like - $\ell n\left|\phi^{\prime}\right|$. The details of the procedure parallels that described at the end of Section III.

SECTION V

NUMERICAL RESULTS AND CONCLUSIONS

This section describes numerical results obtained Erom the computer code developed from the theory described in Section IV. The resulting code was written to model the cone with or without a topcap. Hence, results from this general code could be checked against those obtained from the code based on the methods of Section III for the cone without a topcap. For narrow cone angles, the calculated input impedance for unloaded cones for various frequencies was also compared to the theory of Schelkunoff [5] and Eound to be in very good agreement. Results from the general code for moderate cone angles were also compared with those computed by the method of Appendix B, which includes the effects of the topcap. These comparisons were made to validate the consistency of the various approaches and to compare with existing data. It was also established that the input reactance at low frequencies could be used to check the static capacitance calculated in the companion report [1] for both the loaded and unloaded case. Finally, it was verified that the computed results were almost independent of the choice of the waist radius, a, of Section III, provided a was chosen small enough.

All the data in this section pertain to a conical antenna with a vertical height of 40 meters and a cone angle of $\theta_{0}=42.26^{\circ}$. These parameters translate to a cone slant height of 54.05 meters and correspond approximately to the cone considered in [6]. The locations and values of the lumped resistive loads used are listed in Table 1 and are taken from [6].

Figures $7-10$ illustrate the current distribution on the cone at a frequency of 825 KHz , approximately the first resonant frequency of the unloaded structure. Figures $11-14$ illustrate the same results at. 1.375 MHz , approximately half-way between first and second resonance uf the unloaded structure (see Figures 15 and 16). Two features of the current distributions are notable. First, the edge condition [7], which requires that the current at the edge has infinite slope, and the continuity equation relating current and charge, which requires that the total current approach zero with zero slope at the center of the topcap, combine to limit the amount of current the topcap can support. Secondly, the loading, which increases to a maximum at the edge, further limits current flow on the topcap.

Figures l5-18 illustrate the variation with frequency of the input impedance of the conical structure for the various loading and topcap configurations. Again, the influence of the topcap is found to be negligible. The absence of

Table 1. Positions and values of loading resistors on the cone.

ARC LENGTH ALONG	RESISTANCE
THE CONE GENERATOR	
(METERS)	(OHMS)
12.17	4.69
14.34	7.17
16.90	9.06
19.93	11.74
23.54	15.43
27.73	20.82
32.59	30.36
38.41	50.33
45.31	114.88
63.43	114.88
72.25	100.00

Figure 7. Current on unloaded cone with topcap, $L=54.05 \mathrm{~m}$, $\theta_{0}=42.26^{\circ}, V_{0}=1$ Volt, $f=825 \mathrm{KHz}$.

Figure 8. Current on unloaded cone without topcap, $\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}, V_{0}=1$ Volt, $f=825 \mathrm{khz}$.

Figure 9. Current on loaded cone with topcap, $L=54.05 \mathrm{~m}$, $\theta_{0}=42.26^{\circ}, V_{0}=1$ Volt, $f=825 \mathrm{KHz}$.

Figure 10. Current on loaded cone without topoap. $\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}, V_{0}=1 \mathrm{Volt}$, $\mathrm{f}=825 \mathrm{MHz}$.

Figure 11. Current on unloaded cone with topcap, $\mathrm{L}=54.05 \mathrm{~m}$, $\theta_{0}=42.26^{\circ}, V_{0}=1$ Volt, $f=1.375 \mathrm{MHz}$.

Figure 12. Current on unloaded cone without topcap, $\mathrm{L}=54.05 \mathrm{~m}, \theta_{\mathrm{O}}=42.26^{\circ}, \mathrm{V}_{0}=1$ Volt, $\mathrm{f}=1.375 \mathrm{MAz}$.

Figure 13. Current on loaded cone with topcap, $\mathrm{L}=54.05 \mathrm{~m}$, $\theta_{0}=42.26^{\circ}, V_{0}=1$ Volt, $f=1.375 \mathrm{MHz}$.

Figure 15. Input impedance of unloaded cune with topcap, $\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}$. Encircled values of imaginary part are positive.

Figure 16. Input impedance of unloaded cone without topcap. $\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}$. Encircled values of imaginary part are positive.

Figure 17. Input impedance of loaded cone with topcap, $\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}$. Imaginary values are negative.

Figure 18. Input impedance of loaded cone without topcap, $\mathrm{L}=54.05 \mathrm{~m} . \theta_{0}=42.26^{\circ}$. Imaginary values are negative.
resonances in the loaded case can be attributed to the effectiveness of the resistive loading in eliminating reflections from the cone edge which would result in standing waves on the structure. However, one would also expect the bicone input impedance to approach a value of $56.5+j 0.0$ ohms, the input impedance of an infinite bicone of the same cone angle, with increasing frequency. Instead, the impedance in Figures 17 and 18 seems to be approaching a value nearer $40+j 0.0$ ohms. Computations at higher frequencies indicate that the real part of the impedance begins to increase at about 3.0 MHz and at 10 MHz is at about $60+j 8$ ohms, slightly above the infinite bicone impedance. Repeating the computations with the continuous loading function described in [6] did indeed result in an input impedance which monotonically approached that of an infinite bicone. Thus, it appears that some further adjustment in the values of the discrete loading resistors might be made in order to more closely approximate the impedance behavior of the infinite bicone.

Radiation patterns in the near-field region of the loaded structure with a topcap $(r=100$ meters and the frequency is 550 KHz) are shown in Figures $19-21$. Figures 22-24 give the corresponding patterns in the far field ($r=10^{4}$ meters). For comparison, far field patterns for the unloaded structure are illustrated in Figures 25-27.

Although resources did not permit a time-domain analysis of the response of the structure, such a study, which could include a simple equivalent circuit model of the pulser,

Figure 19. E radiation pattern for loaded cone with topcap, $\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}$, $\mathrm{v}_{0}=1$ Volt, $\mathrm{f}=550 \mathrm{KHz}, \underset{\mathrm{r}}{ }=100 \mathrm{~m}$.

-

Figure 20. H radiation pattern for loaded cone with topcap, $\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}$, $\mathrm{V}_{0}=1$ Volt, $\mathrm{f}=550 \mathrm{KHz},{ }^{0} \mathrm{r}=100 \mathrm{~m}$.

Figure 2l. Eradiation pattern for loaded cone with topcap, $\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}$, $\mathrm{V}_{0}=1$ Volt, $\mathrm{f}=550 \mathrm{KHz},{ }^{0} \mathrm{r}=100 \mathrm{~m}$.

Figure 22. E radiation patitern for loaded cone With topcap, $\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}$,
$\mathrm{V}_{0}=1$ Volt, $=550 \mathrm{KHz},{ }_{\mathrm{r}}=10^{4} \mathrm{~m}$. $V_{0}=1$ volt, $E=550 \mathrm{KHz},{ }^{0}=10^{4} \mathrm{~m}$.

> Figure 23. Ho radiation pattern for loaded cone ${ }^{\text {with copcap, } L \approx 54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ},}$ $V_{0}=1$ Volt, $f=550 \mathrm{KHz}, r=10^{4} \mathrm{~m}$.

Figure 24. Er radiation pattern for loaded cone with topcap, $\mathrm{L}=54.05 \mathrm{~m}, \theta=42.26^{\circ}$, $\mathrm{V}_{0}=1$ Volt, $\mathrm{f}=550 \mathrm{KHz}, \mathrm{r}_{\mathrm{r}}=10^{4} \mathrm{~m}$.

Figure 25. E radiation pattern for unloaded cone with topcap, $\mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}$, $\mathrm{V}_{0}=1$ Volt, $\mathrm{f}=550 \mathrm{KHz},{ }_{\mathrm{r}}=10^{4} \mathrm{~m}$.

$$
\begin{aligned}
& \text { Figure 26. H radiation pattern for unloaded cone } \\
& \text { w th topcap, } \mathrm{L}=54.05 \mathrm{~m}, \theta_{0}=42.26^{\circ}, \\
& \mathrm{V}_{0}=1 \text { Volt, } \mathrm{f}=550 \mathrm{KHz}, \mathrm{r}=10^{4} \mathrm{~m} .
\end{aligned}
$$

$\begin{aligned} \text { Figure 27. } & \begin{array}{l}\text { Er radiation pattern for unloaded cone } \\ \text { with topcap, } \mathrm{L}=54.05 \mathrm{~m}, \theta=42.26^{\circ}, \\ \mathrm{V}_{0}=1 \text { Volt, } \mathrm{E}=550 \mathrm{KHz}, \mathrm{r}=10^{4} \mathrm{~m} .\end{array}\end{aligned}$
would be a logical extension of the present problem. To be done efficiently, however, some improvements in the present computer code should be implemented. Specifically, an adaptive integration procedure should be employed to handle the integrations over the conical current subdomains, whose radii vary drastically from regions near the feed to those near the cone edge. The present code uses a fixed order quadrature rule for all segments on the structure. Additional parameter studies can be carried out using the present code to assess the effects oflumped vs. distributed loading and the effects of various load distributions on the performance of the simulator. A more ambitious project would more carefully model the actual wire structure with loading.

One conclusion of this and the companion study [1] is that the addition of a topcap does not significantly change the electromagetic parameters of the structure at low frequencies, the static capacitance and effective heights are almost unchanged and at the higher frequencies, the loading and the sharp angle at the edge tend to prevent current from flowing on the topcap. This observation may have some impact on the design of future simulators.

REFERENCES

1. D.R. Wilton, "Static Analysis of Conical Antenna over a Ground Plane," Sensor and Simulation Bote 224, Air Force Weapons Laboratory, Albuqueraue, Mev Mexico, June 1977.
2. R.F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, l961.
3. F.M. Tesche, A.R. Neureuther, and R.E. Stovall, "The Analysis of Monopole Antennas Located on a Spherical Vehicle," Interaction Note 198 , Air Force Weapons Laboratory, Albuquerque, New Mexico, October, 1974.
4. R.F. Harrington, Field Computation by Moment Methods Macmillan, New York, 1968.
5. S.A. Schelkunoff, Electromagnetic Waves, Van Nostrand, Princeton, 1943.
6. W.S. Kehrer and C.E. Baum, "Electromagnetic Design Parameters for ATHAMAS II," ATHAMAS Memos, Memo No. 4 , Air Force Weapons Laboratory, Albuquerque, New Mexico, May, 1975.
7. D.S. Jones, The Theory of Electromagnetism, Pergamon, London, 1964.

APPENDIX A

CALCULATION OF RADIATED FIELDS

Once numerical values for the current distribution have been determined, the fields radiated by the bicone structure can readily be determined. Because of the symmetry of the structure and the excitation, the only non-zero components of the electric and magnetic fields are E_{r}, E_{θ}, and H_{ϕ}. These are defined in terms of the vector and scalar potentials as

$$
\begin{gather*}
E_{r}=-j \omega A_{r}-\frac{\partial \Phi}{\partial r} \\
E_{\theta}=-j \omega A_{\theta}-\frac{1}{r} \frac{\partial \phi}{\partial \theta} \\
\mu H_{\phi}=\frac{1}{r} A_{\theta}+\frac{\partial A_{\theta}}{\partial r}-\frac{1}{r} \frac{\partial A}{\partial \theta} r \tag{A-1}
\end{gather*}
$$

where $\bar{A}=A_{r} \hat{r}+A_{\theta} \hat{\theta} . \quad A$ spherical coordinate system centered at the bicone feed and with θ measured from the z-axis is assumed. Since the fields are ϕ-independent, all fields are evaluated in the $x-z$ plane where $\phi=0$. The vector potential and scalar potential are given by

$$
\begin{aligned}
A_{p}(r, \theta)= & \frac{\mu}{8 \pi^{2}}\left\{\frac{I_{1}}{2} \Psi_{p c}\left(r, \theta, r_{1}+\Delta r_{c} / 4\right)\right. \\
& +\sum_{n=2}^{N} c_{n} I_{p c} \Psi_{p}\left(r, \theta, r_{n}\right)+
\end{aligned}
$$

$$
\begin{align*}
& +\frac{I_{N_{c}+1}}{2}\left[\Psi_{p c}\left(r, \theta, L-\frac{\Delta r_{c}}{4}\right)+\Psi_{p t}\left(r, \theta, r_{N_{c}+1}-\frac{\Delta r_{t}}{4}\right)\right] \\
& \left.+\sum_{n=N_{c}+2}^{N} I_{n} \Psi_{p t}\left(r, \theta, r_{n}\right)\right\} ; p=r, \theta \tag{A-2}\\
& \Phi(r, \theta)= \\
& \quad \frac{-1}{8 \pi^{2}}{ }_{j \omega \varepsilon}\left[\sum_{n=1}^{N}\left(\frac{I_{n+1}-I_{n}}{\Delta r_{c}}\right) \psi_{c}\left(r, \theta, r_{n}+\frac{\Delta r_{c}}{2}\right)\right. \tag{A-3}\\
& \\
& \left.\quad \sum_{n=N_{c}+1}^{N}\left(\frac{I_{n+1}-I_{n}}{\Delta r_{t}}\right) \psi_{t}\left(r, \theta, r_{n}-\frac{\Delta r_{t}}{2}\right)\right]
\end{align*}
$$

where the currents and coordinates are defined in Section IV. The potential functions Ψ and ψ are defined as

$$
\begin{align*}
\Psi q q\left(r, \theta, r_{q}\right)=\Delta r_{q} & \int_{0}^{2 \pi}\left(\cos \xi_{p q}^{+} \frac{e^{-j k R_{q}^{+}}}{R_{q}^{+}}+\cos \xi_{p q}^{-} \frac{e^{-j k R_{q}^{-}}}{R_{q}^{-}}\right) d \phi^{\prime} \tag{A-4}\\
\psi_{q}\left(r, \theta, r_{q}\right) & =\Delta r_{q} \int_{0}^{2 \pi}\left(\frac{e^{-j k R_{q}^{+}}}{R_{q}^{+}}-\frac{e^{-j k R_{q}^{-}}}{R_{q}^{-}}\right) d \phi^{\prime}, p=r, \theta ; q=c, t \quad(A-5)
\end{align*}
$$

where
$\cos \xi_{r c}^{ \pm}= \pm \sin \theta \cos \phi^{\prime} \sin \theta_{0}+\cos \theta \cos \theta_{0}$
$\cos \xi_{\theta c}^{ \pm}= \pm \cos \theta \cos \phi^{\prime} \sin \theta_{0}-\sin \theta \cos \theta_{0}$
$\cos \xi_{r t}^{ \pm}=\bar{\mp} \sin \theta \cos \phi^{\prime}$
$\cos \xi_{\theta t}^{ \pm}=\bar{\mp} \cos \theta \cos \phi^{\prime}$
and the radius vectors are all of the form

$$
R_{q}^{ \pm} \quad \sqrt{r_{q}^{\prime 2}+2 b_{q}^{ \pm} r_{q}^{\prime}+c_{q}^{ \pm}}
$$

with
$b_{c}^{ \pm}=-r \cos \phi^{\prime} \sin \theta \sin \theta_{0} \bar{\Psi} \cos \theta \cos \theta_{0}-a \cot \theta_{0}$
$c_{c}^{ \pm}=r^{2} \pm 2 r a \cos \theta \csc \theta_{0}+a^{2} \csc { }^{2} \theta_{0}$
$b_{t}^{ \pm}=-r \sin \theta \cos \phi^{\prime}$
$c_{c}^{ \pm}=r^{2} \mp 2 r L \cos \theta \cos \theta_{0}+L^{2}$

Assuming a suitable choice for Δr and $\Delta \theta$, one may approxmately compute the fields in (All) by finite difference approximations;

$$
\begin{align*}
E_{r}(r, \theta)= & -j \omega A_{r}(r, \theta)-\frac{\phi(r+\Delta r, \theta)-\phi(r, \theta)}{\Delta r} \\
E_{\theta}(r, \theta)= & -j \omega A_{\theta}(r, \theta)-\frac{\Phi(r, \theta+\Delta \theta)-\phi(r, \theta)}{r \Delta \theta} \\
\mu H_{\phi}=\frac{1}{r} A_{\theta}(r, \theta) & +\frac{A_{\theta}(r+\Delta r, \theta)-A_{\theta}(r, \theta)}{\Delta r} \\
& -\frac{A_{r}(r, \theta+\Delta \theta)-A_{r}(r, \theta)}{r \Delta \theta} \tag{A-6}
\end{align*}
$$

APPENDIX B

AN ALTERNATE INTEGRAL EQUATION FOR
A CONE WITH TOPCAP

The purpose of this appendix is to show how a novel identity involving the free space Green's function may be used to change the integral equation into a form where the testing procedure of Section III is applicable. In exchange for simplicity in the form resulting from the testing procedure, however, one obtains extremely complicated kernels in the integral equation. Furthermore, the new kernels have a number of singularities other than the usual one where match points and field points coincide. These complications make both the analysis and the numerical treatment tedfous. Nevertheless, numerical results have been obtained for several cases using the approach and the results are in good agreement with data obtained by the method of Section III. For simplicity, we treat here anly the unloaded cone.

As a prelude to the integral equation derivation, we derive a transformation of the formula for electric field components. Consider the x-component of electric Eield given by

$$
\begin{align*}
j \omega \mu \varepsilon E_{x} & =\hat{x} \cdot\left(k^{2}+\nabla \nabla \cdot\right) \bar{A} \\
& =k^{2} A_{x}+\frac{\partial}{\partial x}(\nabla \cdot \bar{A}) \\
& =\left(\frac{\partial^{2}}{\partial x^{2}}+k^{2}\right) A_{x}+\frac{\partial^{2} A y}{\partial x \partial y}+\frac{\partial^{2} A z}{\partial x \partial z} \tag{B-1}
\end{align*}
$$

where the vector potential \bar{A} in terms of current density $\overline{\mathrm{J}}$ is

$$
\begin{equation*}
\bar{A}=\frac{\mu}{4 \pi} \int_{V} \bar{J} \frac{e^{-j k\left|\bar{r}-\bar{r}^{\prime}\right|}}{\left|\bar{r}-\bar{r}^{\prime}\right|} d V^{\prime} \tag{B-2}
\end{equation*}
$$

The identity

$$
\begin{equation*}
\frac{\partial^{2}}{\partial u \partial v}\left(\frac{e^{-j k R}}{R}\right)=-\left(\frac{\partial^{2}}{\partial u^{2}}+k^{2}\right)\left[\frac{u v}{v^{2}+w^{2}}\left(\frac{e^{-j k R}}{R}\right)\right] \tag{B-3}
\end{equation*}
$$

where $R=\sqrt{u^{2}+v^{2}+w^{2}}$ can be used with $u=x-x^{\prime}, \quad v=y-y^{\prime}$, and $w=z-z^{\prime}$ to rewrite $(B-1)$ as

$$
\begin{align*}
& j \omega \mu \varepsilon E_{x}=\left(\frac{\partial^{2}}{\partial x^{2}}+k^{2}\right) \int_{V}\left(J_{x}-J_{y} \frac{\left(x-x^{\prime}\right)\left(y-y^{\prime}\right)}{\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}\right. \\
&\left.-J_{z} \frac{\left(x-x^{\prime}\right)\left(z-z^{\prime}\right)}{\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}\right) \frac{e^{-j k R}}{R} d V^{\prime} \\
&=\left(\frac{\partial^{2}}{\partial x^{2}}+k^{2} \int_{V}\left(\bar{J} \cdot \hat{x}-\frac{\left(x-x^{\prime}\right)\left[\hat{y}\left(y-y^{\prime}\right)+\hat{z}\left(z-z^{\prime}\right)\right]}{\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}\right)\right. \\
& \times \frac{e^{-j k R}}{R} d V^{\prime} \tag{B-4}
\end{align*}
$$

The vector $\bar{r}-\bar{r}^{\prime}=\left(x-x^{\prime}\right) \hat{x}+\left(y-y^{\prime}\right) \hat{y}+\left(z-z^{\prime}\right) \hat{z}$ can be written as the sum

$$
r-r^{\prime}=\left(r-r^{\prime}\right)_{x} \hat{x}+\left(r-r^{\prime}\right)_{t} \hat{E}
$$

where

$$
\left(\bar{r}-\bar{r}^{\prime}\right)_{x}=\hat{x} \cdot\left(\bar{r}-\bar{r}^{\prime}\right)=x-x^{\prime}
$$

is just the component of $\bar{r}-\bar{r}$ ' along the direction of \hat{x} and

$$
\left(r-\bar{r}^{\prime}\right)_{t} \hat{E}=\bar{r}-\bar{r}^{\prime}-\left(\bar{r}-\bar{r}^{\prime}\right){ }_{x} \hat{x}
$$

is just the component of $\overline{\mathrm{r}}-\overline{\mathrm{r}}$ ' transverse to $\hat{\mathrm{x}}$. Thus, ($B-4$) can be written as

$$
j \omega \mu \varepsilon E_{x}=\left(\frac{\partial^{2}}{\partial x^{2}}+k^{2}\right) \int_{V} \bar{J} \cdot\left(\hat{x}-\frac{\hat{E}\left(\bar{r}-\bar{r}^{\prime}\right)_{t}\left(\bar{r}-\bar{r}^{\prime}\right) x}{\left(\bar{r}-\bar{r}^{\prime}\right)_{t}^{2}}\right) \frac{e^{-j k R}}{R} d V^{\prime}
$$

Since the choice of the coordinate system is arbitrary, we may choose the x-axis parallel to some constant unft vector a and write the component of electric field in the direction of.â to be

$$
\begin{align*}
& j \omega \mu \varepsilon E_{a}=\left(\frac{\partial^{2}}{\partial s^{2}}+k^{2}\right) \int_{V} \bar{J} \cdot\left(\hat{a}-\frac{\hat{t}\left(\bar{r}-\bar{r}^{\prime}\right)_{t}\left(\bar{r}-\bar{r}^{\prime}\right) \hat{a}}{\left(\bar{r}-\bar{r}^{\prime}\right)_{t}^{2}}\right) \\
& x \frac{e^{-j k R}}{R} d V^{\prime} \\
&=\left(\frac{\partial^{2}}{\partial s^{2}}+k^{2}\right) \int_{V} \bar{J} \cdot\left[\hat{a}-\hat{t} \cot \left(\hat{a}, \bar{r}-\bar{r}^{\prime}\right)\right] \frac{e^{-j k R}}{R} d V^{\prime} \tag{B-6}
\end{align*}
$$

where now \hat{t} denotes the direction of the component of ($\left.\bar{r}-\bar{r}{ }^{\prime}\right)$ transuerse to \hat{a} and s denotes distance along a line in the direction of \hat{a}. Note that the integrand in $(B-6)$ is singular not only when $R=0$, but also when the angle between and $\bar{r}-\vec{r}^{\prime}$ becomes either 0° or 180°. Since in ($B-6$) the
only differential operator is the harmonic operator, then along a line in the direction of a, the testing procedure of Section III which uses piecewise sinusoids may again be used to transform the harmonic operator into a finite difference operator. This is the advantage, gained at the expense of obtaining a more complicated kernel, of employing the transformation ($B-3$).

Returning to the cone problem, we choose the direction of \hat{a} to be along the cone generator formed by the intersection of the $\phi=0$ plane and the cone surface, and apply the boundary conditions. After some straightforward but tedious vector projection operations, one arrives at the integral equations

$$
\begin{align*}
& \frac{1}{j \omega \mu \varepsilon}\left(\frac{\partial^{2}}{\partial r_{c}^{2}}+k^{2}\right)\left(\Psi_{c c}+\psi_{c t}\right)=-v_{0} \delta\left(r_{c}-0^{+}\right), \\
& 0 \leq r_{c} \leq L \tag{B-7}\\
& \frac{1}{j \omega \mu \varepsilon}\left(\frac{\partial^{2}}{\partial r_{t}^{2}}+k^{2}\right)\left(\Psi_{t c}+\psi_{t t}\right)=0,0 \leq r_{t} \leq L \sin \theta_{0} \tag{B-8}
\end{align*}
$$

$$
\begin{align*}
& \text { where } \\
& \qquad \begin{array}{r}
\Psi_{p c}\left(r_{p}\right)=\frac{\mu}{8 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{L} I_{c}\left(r_{c}^{\prime}\right)\left(K_{p c}^{+}+K_{p c}^{-}\right) d r_{c}^{\prime} d \phi^{\prime} \\
\Psi_{p t}\left(r_{p}\right)=\frac{\mu}{8 \pi^{2}} \int_{0}^{2 \pi} \int_{0}^{L s i n} \theta_{0} I_{t}\left(r_{t}^{\prime}\right)\left(K_{p t}^{+}+K_{p t}^{-}\right) d r_{t}^{\prime} d \phi^{\prime}, \\
p=c \text { or } t
\end{array}
\end{align*}
$$

The kernels $K_{p q}^{ \pm}$in ($B-9$) are of the form

$$
\begin{array}{r}
K_{p q}^{ \pm}\left(r_{p}, r_{q}^{\prime}, \phi^{\prime}\right)=\left(D_{p q}^{ \pm}\left(\phi^{\prime}\right)+\frac{C_{p q}^{ \pm}\left(r_{q}^{\prime}, \phi^{\prime}\right)\left[A_{p q}^{ \pm}\left(\phi^{\prime}\right) r_{q}^{\prime}+B_{p q}^{ \pm}\left(\phi^{\prime}\right)\right]}{R_{p q}^{ \pm 2}-C_{p q}^{ \pm 2}\left(r_{q}^{\prime}, \phi^{\prime}\right)}\right) \\
\times \frac{e^{-j k R_{p q}^{ \pm}}}{R_{p q}^{ \pm}}
\end{array}
$$

The distance between source points and field points, $\mathbb{R}_{\mathrm{pq}}^{\ddagger}$, is of the form

$$
R_{p q}^{ \pm}=\sqrt{r_{q}^{\prime 2}+2 b_{p q}^{ \pm} r_{q}^{\prime}+c_{p q}^{ \pm}}
$$

and $b_{p q}^{ \pm}$and $c_{p q}^{ \pm}$are as defined in Section IV with "a" set equal to zero. The term $C_{p q}^{ \pm}$may be expressed as

$$
c_{p q}^{ \pm}=e_{p q}^{ \pm} r_{q}^{\prime}+f_{p q}^{ \pm}
$$

The parameters $A_{p q}^{ \pm}, B_{p q}^{ \pm}, D_{p q}^{ \pm}$, and $E_{p q}^{ \pm}$are defined in Tables ($B-1)-(B-4)$.

Testing Equations ($B-7$) and ($B-8$) with piecewise sinusoidal testing functions as in Section lif results in the equations

$$
\begin{align*}
\frac{k}{j \omega \mu \varepsilon \operatorname{sink\Delta r_{c}}}\{ & \left\{-\cos k \Delta r_{c}\left[\psi_{c c}\left(r_{c 1}\right)+\psi_{c t}\left(r_{c 1}\right)\right]\right. \\
& \left.+\left[\Psi_{c c}\left(r_{c 2}\right)+\psi_{c t}\left(r_{c 2}\right)\right]\right\}=-V_{0} \tag{B-10}
\end{align*}
$$

TABLE B-1

DEFINITIONS OF PARAMETERS FOR THE KERNEL K_{c}

$$
\begin{aligned}
& A_{c c}^{ \pm}=\sin ^{2} \theta_{0}\left[\sin ^{2} \phi^{\prime}+\cos ^{2} \theta_{0}\left(\cos \phi^{\prime} \mp 1\right)^{2}\right] \\
& D_{C C}^{ \pm}=0 \\
& D_{C C}^{ \pm}=-e_{c c}^{ \pm}=\sin ^{2} \theta_{0} \cos \phi^{\prime} \pm \cos ^{2} \theta_{0} \\
& f_{c C}^{ \pm}=r_{c}
\end{aligned}
$$

TABLE BT

DEFINITIONS OF PARAMETERS FOR THE KERNEL $K_{c t}$
-7

$$
\begin{aligned}
& A_{C t}^{ \pm}=\cos ^{2} \theta_{0} \cos ^{2} \phi^{\prime}+\sin ^{2} \phi^{\prime} \\
& B_{c t}^{ \pm}=\mp L \cos ^{2} \theta_{0} \sin \theta_{0} \cos \phi^{\prime} \\
& D_{C t}^{ \pm}=-e_{c t}^{ \pm}=\sin \theta_{0} \cos \phi^{\prime} \\
& f_{c t}^{ \pm}=r_{c} \mp L \cos ^{2} \theta_{0}
\end{aligned}
$$

TABLE B-3

DEFINITIONS OF PARAMETERS FOR THE KERNEL K

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{tc}}^{ \pm}=\sin ^{2} \theta_{0} \sin ^{2} \phi^{\prime} \pm \cos ^{2} \theta_{0} \\
& \mathrm{~B}_{\mathrm{LC}}^{ \pm}=-\mathrm{L} \cos ^{2} \theta_{0} \\
& \mathrm{D}_{\mathrm{LC}}^{ \pm}=-e_{\mathrm{tc}}^{ \pm}=\sin \theta_{0} \cos \phi^{\prime} \\
& \mathrm{E}_{\mathrm{tc}}^{ \pm}=r_{t}
\end{aligned}
$$

TABLE B-4

DEFINITIONS OF PARAMETERS FOR THE KERNEL K_{t}
$A_{t L}^{ \pm}=\sin ^{2} \phi^{\prime}$
$B_{t t}^{ \pm}=0$
$D_{t t}^{ \pm}=e_{t t}^{ \pm}=\cos \phi^{\prime}$
$f_{t}^{ \pm}=r_{t}$
and

$$
\begin{align*}
& \overline{j \omega \mu}-\frac{k}{\operatorname{sink} \Delta r_{c}}\left\{\left[\Psi_{c c}\left(r_{c, m+1}\right)+\Psi_{c t}\left(r_{c, m+1}\right)\right]\right. \\
&-2 \cos k \Delta r_{c}\left[\psi_{c c}\left(r_{c m}\right)+\psi_{c t}\left(r_{c m}\right)\right] \\
&\left.+\left[\Psi_{c c}\left(r_{c, m-1}\right)+\Psi_{c t}\left(r_{c, m-1}\right)\right]\right\}=0 \\
& m=2,3, \ldots, N_{c}-1 \tag{B-11}
\end{align*}
$$

Testing at the cone edge with a piecewise sinusoidal testing function which straddles both the cone and the topcap and which has its peak value at the cone edge, one obtains

$$
\begin{align*}
& \frac{k}{j \omega \mu \varepsilon \operatorname{sink\Delta r_{c}}}\{ -\cos k \Delta r_{c}\left[\Psi_{c c}\left(r_{c N c}\right)+\Psi_{c t}\left(r_{c N c}\right)\right] \\
&\left.+\left[\Psi_{c c}\left(r_{c, N_{c}-1}\right)+\Psi_{c t}\left(r_{c, N_{c}-1}\right)\right]\right\} \\
&+ \frac{k}{j \omega \mu \varepsilon s i n k \Delta r_{t}}\left\{-\cos k \Delta r_{t}\left[\Psi_{t c}\left(r_{t 1}\right)+\Psi_{t t}\left(r_{t I}\right)\right]\right. \\
&+\left.+\left[\Psi_{t c}\left(r_{t 2}\right)+\Psi_{t t}\left(r_{t 2}\right)\right]\right\} \\
&+\frac{1}{j \omega \mu \varepsilon}\left\{\left[\frac{\partial \Psi_{c c}}{\partial r_{c}}+\frac{\partial \Psi_{c t}}{\partial r_{c}}\right]_{r_{c}=r_{c N c}}+\left[\frac{\partial \Psi_{t c}}{\partial r_{t}}+\frac{\partial \Psi_{t t}}{\partial r_{t}}\right] r_{t}=r_{t 1}\right\} \tag{B-12}
\end{align*}
$$

Finally, testing on the top cap surface yields

$$
\begin{aligned}
\frac{k}{j \omega \mu \varepsilon s i n k \Delta r_{t}} & \left\{\left[\Psi_{t c}\left(r_{t, m+1}\right)+\Psi_{t t}\left(r_{t, m+1}\right)\right]\right. \\
& -2 \cos k \Delta r_{t}\left[\Psi_{t c}\left(r_{t m}\right)+\Psi_{t t}\left(r_{t m}\right)\right]+
\end{aligned}
$$

$$
\begin{align*}
&\left.+\left[\Psi_{t c}\left(r_{t, m-1}\right)+\Psi_{t t}\left(r_{t, m-1}\right)\right]\right\}=0 \\
& m=2,3, \ldots, N_{t}+1 \tag{B-13}
\end{align*}
$$

Substitution of the current expansions, Eqs. (40) and (41) of Section IV, into (B-10)-(B-13)yields a matrix equation for the determination of the unknown current coefficients. Because of the pulse expansion for the current, the matrix elements involve integrals like ($B-9$) but with the current in ($B-9$) equal to unity and the limits on the radial integration replaced by the limits of the corresponding current subdomain. According to (B-12), the term at the edge also requires the derivative of such integrals. In the following, we present a procedure for approximately evaluating the radial integration, leaving the ϕ^{\prime} integration to be done numerically. The required integrals are all of the form

$$
\begin{equation*}
\int_{r_{n-}}^{r_{n+}^{n+}} K d r^{\prime}=\int_{r_{n-}}^{r}\left[D+\frac{C\left(A r^{\prime}+B\right)}{R^{2}-C^{2}}\right] \frac{e^{-j k R}}{R} d r^{\prime} \tag{B-14}
\end{equation*}
$$

where, for convenience, all subscripts and superscripts have been suppressed. Since the number of subdomains should be chosen such that $k\left|r_{n+} r_{n-}\right|$ is small, we chose some point r_{n} in the interval $\left[r_{n+}, r_{n-}\right]$ and expand $\exp (-j k R)$ in a Taylor series about the point $r^{\prime}=r_{n}$;

$$
\begin{align*}
e^{-j k R} & =e^{-j k R_{n}} e^{-j k\left(R-R_{n}\right)} \\
& \simeq e^{-j k R_{n}}\left[1-j k\left(R-R_{n}\right)\right] \tag{B-15}
\end{align*}
$$

where R_{n} denotes R evaluated at $r^{\prime}=r_{n}$. The resulting approxmate integral is

$$
\begin{align*}
& \int_{r_{n-}}^{r n+} k d r^{\prime} \cong e^{-j k R_{n}} \int_{r_{n-}}^{r}\left[D+\frac{C\left(A r^{\prime}+B\right)}{R^{2}-C^{2}}\right]\left[\frac{1-j k\left(R-R_{n}\right)}{R}\right] d r^{\prime} \\
& =e^{-j k R_{n}}\left(I_{1}+I_{2}+I_{3}\right) \tag{B-16}
\end{align*}
$$

where

$$
\begin{aligned}
& I_{1}=-j k \int_{r_{n-}}^{r_{n+}}\left(D+\frac{C\left(A r^{\prime}+B\right.}{R^{2}-C^{2}}\right) d r^{\prime} \\
& I_{2}=D\left(1+j k R_{n}\right) \int_{r_{n-}}^{r_{n+}} \frac{d r^{\prime}}{R}
\end{aligned}
$$

and
$I_{3}=\left(I+j k R_{n}\right) \int_{r_{n-}}^{r} \frac{C\left(A r^{\prime}+B\right)}{R^{2}-C^{2}} \frac{d r^{\prime}}{R}$
The first integral may be evaluated by substituting the definitions for R and C in terms of b, c, e, and $f ;$

$$
\begin{align*}
I_{1}= & -j k \int_{r_{n-}}^{r}\left(D+\frac{A e r^{\prime 2}+(B e+A f) r^{\prime}+B f}{\left(1-e^{2}\right) r^{\prime 2}+2(b-e f) r^{\prime}+c-f^{2}}\right) d r^{\prime} \\
= & -j k\left\{F_{1}\left(r_{n+} r_{n-}\right)+F_{2} \ell n\left|\frac{R_{n+}^{2}-C_{n+}^{2}}{R_{n-}^{2}-C_{n-}^{2}}\right|\right. \\
& +F_{3}\left[\tan ^{-1}\left[\frac{\left(1-e^{2}\right) r_{n+}+(b-e f)}{\sqrt{\left(1-e^{2}\right)\left(c-f^{2}\right)-(b-e f)^{2}}}\right)\right. \\
& \left.\left.-\tan ^{-1}\left[\frac{\left(1-e^{2}\right) r_{n-}+(b-e f)}{\sqrt{\left(1-e^{2}\left(c-f^{2}\right)-(b-e f)^{2}\right.}}\right)\right]\right\} \tag{B-17}
\end{align*}
$$

where

$$
\begin{aligned}
& F_{1}=D+\frac{A e}{1-e^{2}} \\
& F_{2}=\frac{(B e+A f)\left(1-e^{2}\right)-2 A e(b-e f)}{2\left(1-e^{2}\right)^{2}} \\
& F_{3}=\left[2 A e(b-e f)^{2}-A e\left(1-e^{2}\right)\left(c-f^{2}\right)-(B e+A f)(b-e f)\left(1-e^{2}\right)+B f\left(1-e^{2}\right)^{2}\right] \\
&
\end{aligned}
$$

The tabulated integrals $D_{w} 160.01,160.11$, and 160.21 aid in the evaluation of $I_{1} \dagger I_{2}$ may be evaluated using Dw. 380.001 as

$$
I_{2}=D\left(1+j k R_{n}\right) \int_{r_{n-}}^{r_{n+}} \frac{d r^{\prime}}{R}
$$

[^0]\[

$$
\begin{equation*}
=D\left(1+j k R_{n}\right) \ell n \frac{R_{n+}+r_{n+}+b}{R_{n-}+r_{n-}+b} \tag{B-18}
\end{equation*}
$$

\]

The subscripts $n, n+$ and $n-$ denote quantities which are evaluated at $r^{\prime}=r_{n}, r_{n+}$, and r_{n-}, respectively.

The evaluation of I_{3} is facilitated by expanding it in partial fractions and using the substitution $\sinh \theta=\left(r^{\prime}+b\right) / \sqrt{c-b^{2}}$ to obtain

$$
\begin{aligned}
& I_{3}=\left(1+j k R_{n}\right) \int_{r}^{r} \frac{C\left(A r^{\prime}+B\right)}{R^{2}-C^{2}} d r^{\prime} \\
& { }^{r} n- \\
& =\frac{\left(1+j k R_{n}\right)}{2} \int_{r_{n}-}^{r}\left(\frac{1}{R-C}-\frac{1}{R+C}\right) \frac{\left(A r^{\prime}+B\right)}{R} d r^{\prime} \\
& =\frac{\left(1+j k R_{n}\right)}{2} \int_{\theta_{n-}}^{\theta}\left(A^{\gamma} \overline{c-b^{2}} \sinh \theta+B-A b\right) \\
& \times\left\{\frac{1}{\sqrt{c-b^{2}} \cosh \theta-e^{\sqrt{c-b^{2}}} \sinh \theta-f+b e}\right. \\
& \left.-\frac{1}{\sqrt{c-b^{2}} \cosh \theta+e^{\sqrt{c-b^{2}} \sinh \theta+f-b e}}\right) d \theta
\end{aligned}
$$

Using GR 2.451.2 and GR 2.451.4, one finds the latter integral to be

$$
\begin{align*}
& I_{3}=\left(1+j k R_{n}\right)\left[\frac{A e}{1-e^{2}} \ell n\left|\frac{R_{n+}+r_{n+}+b}{R_{n-}+r_{n-}+b}\right|\right. \\
& +\frac{A}{2\left(1-e^{2}\right)} \ln \left|\frac{\left(R_{n+}-C_{n+}\right)\left(R_{n-}+C_{n-}\right)}{\left(R_{n-}-C_{n-}\right)\left(R_{n+}+C_{n+}\right)}\right| \\
& +F_{4}\left(\tan ^{-1} \frac{\sqrt{c-b^{2}}\left(R_{n}-C_{n}\right)-(b e-f) R_{n+}+b^{2}-c}{F_{5}\left(r_{n+}+b\right)}\right. \\
& -\tan ^{-1} \frac{\sqrt{c-b^{2}\left(R_{n-}-C_{n-}\right)-(b e-f) R_{n-}+b^{2}-c}}{F_{5}\left(r_{n-}+b\right)} \\
& -\tan ^{-1} \frac{\sqrt{c-b^{2}}\left(R_{n+}+C_{n+}\right)+(b e-f) R_{n+}+b^{2}-c}{F_{5}\left(r_{n+}+b\right)} \\
& \left.+\tan ^{-1} \frac{\sqrt{c-b^{2}}\left(R_{n-}+C_{n-}\right)+(b e-f) R_{n-}+b^{2}-c}{F_{5}\left(r_{n-}+b\right)}\right) \tag{k-19}
\end{align*}
$$

where

$$
\begin{aligned}
& F_{4}=\frac{(B-A b)\left(1-e^{2}\right)-A e(b e-f)}{F_{5}\left(1-e^{2}\right)} \\
& F_{5}=\sqrt{\left(c-b^{2}\left(1-e^{2}\right)-(b e-f)^{2}\right.}
\end{aligned}
$$

Equations ($B-17)-(B-19)$ complete the evaluation of $(B-16)$.
The derivative terms appearing in (B-12) require
evaluation of integrals of the form

$$
\begin{equation*}
\frac{\partial}{\partial r} \int_{r_{n-}}^{r_{n+}} k d r^{\prime}=\frac{\partial}{\partial r} \int_{r_{n-}}^{r_{n+}}\left[D+\frac{C\left(A r^{\prime}+B\right)}{R^{2}-C^{2}}\right] \frac{e^{-j k R}}{R} d r^{\prime} \tag{B-20}
\end{equation*}
$$

where the unprimed variable r is r_{c} or r_{t}, as appropriate. The two edge terms also have ron-integrable singularities at the edge which cancel between the various terms. To handle this situation numerically, the singularity must be explicitly identified and removed for numerical integration. Thus the same kind of approximate analytical integration of $(B-20)$ as used to evaluate $(B-16)$ would both eliminate one integration and explicitly identify the singular term. The derivative can be taken inside the integral if care is taken to identify the singular terms. Noting that $\partial \mathrm{C} / \partial \mathrm{r}=1$, $\partial\left(R^{2}-C^{2}\right) / \partial r=0$, and $\partial A / \partial r=\partial B / \partial r=0$, we have

$$
\begin{aligned}
& \frac{\partial}{\partial r} \int_{r n-}^{r} n+ \\
& r_{n-}=\int_{r_{n-}}^{r n+}\left[\frac{-j k D C}{R^{2}}-\frac{D C}{R^{3}}\right. \\
&\left.+\frac{A r^{\prime}+B}{R^{2}-C^{2}}\left(\frac{1}{R}-\frac{j k C^{2}}{R^{2}}-\frac{C^{2}}{R^{3}}\right)\right] e^{-j k R} d r^{\prime}
\end{aligned}
$$

With the approximation of (B-1.5), the above may be written as

$$
\int_{r_{n-}}^{r_{n}+} \frac{\partial K}{\partial r} d r^{\prime} \simeq e^{-j k R} n_{n}\left(I_{4}+I_{3}+I_{6}+I_{7}+I_{8}\right)(B-2 I)
$$

The various integrals appearing in (B-21) are defined and evaluated as follows:

$$
\begin{align*}
I_{4} & =-k^{2} \int_{r_{n-}}^{r} \frac{C D}{R} d r^{\prime}=-k^{2} \int_{r_{n-}}^{r_{n+}} \frac{D\left(e r^{\prime}+f\right)}{R} d r^{\prime} \\
& =-k^{2}\left[\operatorname{De}\left(R_{n+}-R_{n-}\right)-(b e-f) \ell n\left|\frac{R_{n+}+r_{n+}+b}{R_{n-}+r_{n-}+b}\right|\right] \tag{B-22}
\end{align*}
$$

where Lw 380.001 and Lw 380.011 have been used.

$$
\begin{align*}
I_{5}= & k^{2} R_{n} \int_{r_{n-}}^{r} \frac{(D e-A) r^{\prime}+f D-B}{r^{\prime 2}+2 b r^{\prime}+c} d r^{\prime} \\
= & k^{2} R_{n} \\
& {\left[(D e-A) \ln \left|\frac{R_{n+}}{R_{n-}}\right|\right.} \tag{L-23}\\
& {\left[\frac{f D-B-b(D e-A)}{\sqrt{c-b^{2}}}\left[\tan ^{-1} \frac{r_{n+}+b}{\sqrt{c-b^{2}}}-\tan ^{-1} \frac{r n-b}{\sqrt{c-b^{2}}}\right)\right] }
\end{align*}
$$

where Aw 160.01 and Aw 160.11 have been used. Using pw 300.003 and Db 380.013 , one obtains

$$
\begin{align*}
I_{6}= & \left(1+j k R_{n}\right) \int_{r_{n-}}^{r_{n+}} \frac{(A-D e) r^{\prime}+(B-D f)}{R^{3}} d r^{\prime} \\
= & \frac{1+j k R_{n}}{c-b^{2}}\left\{[B-D f-b(A-D e)]\left(\frac{r_{n+}}{R_{n+}}-\frac{r_{n-}}{R_{n-}}\right)\right. \\
& \left.\quad+[b(B-D f)-c(A-D e)]\left\{\frac{1}{R_{n+}}-\frac{1}{R_{n-}}\right)\right\} \tag{B-24}
\end{align*}
$$

Again using Lw 160.01 and De 160.11 , we have

$$
\begin{aligned}
I_{7} & =-j k\left(1+j k R_{n}\right) \int_{r_{n-}}^{r} n+\frac{A r^{\prime}+B}{R^{2}-C^{2}} d r^{\prime} \\
& =-j k\left(1+j k R_{n}\right) \int_{r_{n-}}^{n+} \frac{A r^{\prime}+B}{\left(1-e^{2}\right) r^{\prime 2}+2(b-e f) r^{\prime}+c-f^{2}} d r^{\prime} \\
& =-j k\left(1+j k R_{n}\right)\left\{\frac{A}{2\left(1-e^{2}\right)} \ell n\left|\frac{R_{n+}^{2}-C_{n+}^{2}}{R_{n-}^{2}-C_{n-1}^{2}}\right|\right. \\
& +\frac{B\left(1-e^{2}\right)-(b-e f) A}{\left(1-e^{2}\right) F_{6}}\left[\tan ^{-1}\left[\frac{\left(1-e^{2}\right) r_{n+}+b-e f}{F_{6}}\right]\right.
\end{aligned}
$$

where

$$
F_{6}=\sqrt{\left(1-e^{2}\right)\left(c-f^{2}\right)-(b-e f)^{2}}
$$

The remaining integral is

$$
\begin{aligned}
I_{8} & =k^{2} \int_{r_{n-}}^{r}\left(A r^{\prime}+B\right)\left(\frac{1}{R}-\frac{R}{R^{2}-C^{2}}\right) d r^{\prime} \\
& =-k^{2} \int_{r_{n-}}^{r} \frac{C^{2}\left(A r^{\prime}+B\right)}{R\left(R^{2}-C^{2}\right)} d r^{\prime}
\end{aligned}
$$

$=-k^{2} \int_{r_{n-}}^{r} \frac{C\left(e r^{\prime}+f\right)\left(A r^{\prime}+B\right)}{R\left(R^{2}-C^{2}\right)} d r^{\prime}$
$=-k^{2} \int_{r_{n-}}^{r n+} \frac{C\left[A e r^{\prime 2}+(A f+B e) r^{\prime}+B f\right]}{R\left(R^{2}-C^{2}\right)} d r^{\prime}$

Dividing $R^{2}-C^{2}=\left(1-e^{2}\right) r^{\prime 2}+2(b-e f) r^{\prime}+c-f^{2}$ into the bracketed term in the numerator of the integrand, we may write the integral as
$I_{8}=-k^{2} \int_{r_{n-}}^{r} \frac{C}{R}\left[\frac{A e}{1-e^{2}}+\frac{(A f+B e+W) r^{\prime}+B f+U}{R^{2}-C^{2}}\right] d r^{\prime}$
where

$$
\begin{aligned}
& W=-\frac{2 A e(b-e f)}{1-e^{2}} \\
& U=-\frac{A e\left(c-f^{2}\right)}{1-e^{2}}
\end{aligned}
$$

Expanding the second term in brackets in the integrand in partial fractions, one can write I_{8} as
$I_{8}=I_{8}{ }^{\prime}+I_{8}{ }^{\prime \prime}$
where

$$
\begin{align*}
I_{8}^{\prime} & =\frac{-k^{2} A e}{1-e^{2}} \int_{r_{n-}}^{r} \frac{e r^{\prime}+f}{R} d r^{\prime} \\
& =\frac{-k^{2}}{1-e^{2}} \frac{e^{2}}{1}\left[e\left(R_{n+}-R_{n-}\right)+(f-b e) \ell n\left|\frac{R_{n+}+r_{n+}+b}{R_{n-}+r_{n-}+b}\right|\right] \tag{B-26}
\end{align*}
$$

and

$$
I_{8}^{\prime \prime}=\frac{-k^{2}}{2} \int_{r_{n-}}^{r n+}\left[(A f+B e+W) r^{\prime}+B E+U\right]\left(\frac{1}{R-C}-\frac{1}{R+C}\right) \frac{d r^{\prime}}{R}
$$

The substitution $\sinh \theta=\left(r^{\prime}+b\right) /^{\sqrt{c-b^{2}}}$ enables one to write $I_{8}{ }^{\prime \prime} \mathrm{as}$

$$
\begin{aligned}
& I_{8}^{\prime \prime}=\frac{-k^{2}}{2} \int_{\theta}^{\theta} \int_{n-}^{\theta+}\left[(A f+B e+W)^{\left.\sqrt{c-b^{2}} \sinh \theta+B f+U-b(A f+B e+W)\right]}\right. \\
& \times\left(\frac{1}{\sqrt{c-b^{2}} \cosh \theta-e^{\sqrt{c-b^{2}} \sinh \theta-f+b e}}\right) \\
&-\frac{\left.\sqrt{\sqrt{c-b^{2}} \cosh \theta+e^{\sqrt{c-b^{2}}} \sinh \theta+f-b e}\right) d \theta}{}
\end{aligned}
$$

Using GR 2.451 .2 and $G R 2.451 .4$, we obtain finally

$$
\begin{aligned}
I_{8}^{\prime \prime}= & -k^{2}\left\{\frac{A f+B e+W}{2\left(1-e^{2}\right)} \ell n\left|\frac{\left(R_{n+}-C_{n+}\right)\left(R_{n-}+C_{n-}\right)}{\left(R_{n-}-C_{n-}\right)\left(R_{n+}+C_{n+}\right)}\right|\right. \\
& +\frac{e(A f+B e+W)}{\left(1-e^{2}\right)} \ell n\left|\frac{R_{n+}+r_{n+}+b}{R_{n-}+r_{n-}+b}\right| \\
& +F_{7}\left\{\tan ^{-1} \int \frac{r_{n-b^{2}}\left(R_{n+}-C_{n+}\right)-(b e-f) R_{n+}+b^{2}-c}{\left(r_{n+}+b\right) F_{5}}\right) \\
& \left.-\tan ^{-1} \int \frac{\sqrt{c-b^{2}\left(R_{n-}-C_{n-}\right)-(b e-f) R_{n-}+b^{2}-c}}{\left(r_{n-}+b\right) F_{5}}\right]
\end{aligned}
$$

$$
\begin{align*}
& -\tan ^{-1}\left(\frac{\sqrt{c-b^{2}}\left(R_{n+}+C_{n+}\right)+(b e-f) R_{n+}+b^{2}-c}{\left(r_{n+}+b\right) F_{5}}\right) \\
& \left.+\tan ^{-1}\left(\frac{\sqrt{c-b^{2}}\left(R_{n-}+c_{n-}\right)+(b e-f) R_{n-}+b^{2}-c}{\left(r_{n-}+b\right) F_{5}}\right]\right) \tag{B-27}
\end{align*}
$$

where

$$
F_{7}=\frac{[B f+U-b(A f+B e+W)]\left(1-e^{2}\right)-e(b e-f)(A f+B e+W)}{\left(1-e^{2}\right) F_{5}}
$$

Equations ($B-22$) through ($B-27$) complete the evaluation of the integral, ($B-21$). Recall that the integral ($B-21$) needs to be evaluated only for observation points at the bicone edge (see Eq. (B-12)). For the source current pulse associated with the bicone edge, there results a nonintegrable singularity (with respect to ϕ^{\prime} integration) which comes from the term $1 / R_{n+}$ in ($B-24$). Each of the derivative terms in ($B-12$) contains such a non-integrable singularity, however, and they are of opposite signs so as to cancel each other. For numerical integration, of course, the canceling singularities must be analytically subtracted. The integrals I_{1} through I_{8} contain integrable singlarities such as the usual one where source and field points coincide (ie., $R=0$). In addition, however, there are also integrable singularities introduced by the transformation (B-6). These arise from current sources which lie along and are directed transverse to the line which passes through the observation point and which is in the direction of the

[^0]: †The abbreviations Dw and GR refer to Tables of Integrals and other Mathematical Data, Fourth Ed., H.B. Dwight, Macmillan, N.Y., 1961; and Tables of Integrals, Series and Products, I.S. Gradshteyn and I.W. Ryshik, Academic Press, N.Y., 1965, respectively.

