
I .

. .

Sensor and Simulation Notes

Note 227

September 1977

Modes on a Finite-Width Parallel-Plate Simulator
III. Numerical Results for Modes on Wide Plates

Lennart Marin ‘“
G.C. Lewis, Jr.

Dikewood Corporation, Westwood Research Branch
Los Angeles, California

Abstract

Numerical results are presented for (1) the transverse wave numbers,

(2) the frequency ,variations of the longitudinal propagation and attenuation

constants, and (3) the field distributions of the higher-order modes on two

parallel wide

antisymmetric

plates. It is found that the least attenuated modes are the

TE modes.
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SECTION I

INTRODUCTION

The working volume of most bounded-wave simulators consists of the

forward region between two parallel plates (figure 1). Test objects such

as aircraft and missiles are placed in the simulators’ working volume during

tests. The electromagnetic field in the parallel-plate region can be decomposed

into a TEM mode, higher-order TE and TM modes and a part due to the continuous

spectrum. The TEM modes on two finite-width, parallel plates have been

investigated extensively (refs. 1, 2, and 3). In all these references the

method of conformal mapping is used, the actual conformal transformation

being that derived in ref. 4.

The properties of the higher-order modes on two finite-width parallel

plates have been investigated in some limiting cases. When the width of the

plates is small compared to the distance separating the plates then it was found

in ref. 5 that the TE modes are more attenuated as they propagate along the

simulator than are the TM modes. The field lines and the field distributions

of the fundamental TM modes are also investigated in this reference. ●
A transverse-resonance method of calculating the propagation constants

for the higher-order modes on a finite-width parallel-plate waveguide is given

by Weinstein (ref. 6). This method is used in ref. 7 to find the propagation

constants for the fundamental higher-order modes whei: the width of the plates

is larger than the distance separating the plates.

The method of Wiener and Hopf was used in ref. 8 to derive Fredholm integral

equations of the second kind for the electromagnetic field on two parallel,

finite-width plates. These integral equations were then used to find approxi-

mate analytical expressions for the propagation constants and field distributions

of the higher-order modes on two wide plates. In the wide-plate case it was

found in ref. 8 that the TE modes are the least attenuated modes as they

propagate along the.simulator.

“Injt&s’,,&@nt we will use the results of ref. 8 to Cabulate and graphically
,.‘ . .?’‘%

display the fol~@i~g quantities: (i) the transverse (complex) wavenumbers of
. .

.
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the higher-order TE and TM modes, (ii) the frequency variation of the longi-

tudinal propagation and attenuation constants of the most important higher-order

modes, (iii) the field strengths of the fundamental higher-order modes, and

{iv) the field lines of these modes.
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SECTION 11

TRANSVERSE COMPLEX WAVE NLJMEERS

In a previous report (ref. 8) modes other than the TEM modes on two parallel

wide plates are investigated. It is found that the most natural decomposition

of these higher-order modes is to use-(l) transverse electric modes (H-modes)

and transverse magnetic modes (E-modes), (2) symmetric and antisyrmetric modes,

referring to the symmetry of the electromagnetic field in the direction per-

pendicular to the plates (or y-direction, figure 2), and (3) even and odd modes,

referring to the symmetry of the electromagnetic field in the transverse direction

parallel to the plates (or x-direction).

Let us pause for a moment and discuss this decomposition. The notation

antisymmetric is used for those modes where the E , E
x z

, and H
Y

components

vanish at the y=O plane. Thus, the antisymmetric modes on two parallel plates

coincide with the modes of one plate above and parallel to a ground plane

(figure 3). Furthermore, the antisymmetric modes are the only modes excited

in the simulator at the top of figure 1. The notation odd is used for those

9 modes where the E , E
Yz

, and Hx components vanish at the x=O plane. For

a general discussion of symmet~ properties of the electromagnetic field we

refer to ref. 9.

It is found in ref. 8 that the antisymmetric TE modes are of main interest,

the reason being that these modes have the smallest attenuation constant as

they propagate along the plates. The second most important modes are the

symmetric TE and TM modes. The antisymmetric TM modes are the most highly

damped ones. In this section we will therefore scrutinize the transverse propa-

gation, constants of (1) the even, antisymmetric TE modes, (2) the odd, antisymmetric

TE modes, (3) the even, symmetric TE modes, (4) the odd, symmetric TE modes,

(5)

1.

the even, symmetric TM modes, and (6) the odd, symmetric TM modes.

Mathematical Expressions for the Transverse Complex Wave Numbers

The transcendental equations and their asymptotic solutions from which the

transverse wave

completeness we

numbers are obtained are presented in ref. 8. For the sake of

list here the transcendental equations together with their

5
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asymptotic solutions when IPwl >> ~ for the four types of modes listed

previously. The symbol p represents the transverse complex wave number and

the symbol w denotes the half-width of the plates. Superscripts ‘ and “

pretypify TM and TE, respectively. Superscript e indicates even whereas

superscript o indicates odd. Furthermore, subscript s stands for symmetric

and subscript a stands for antisymmetric. The quantity n portrays the

integer order of a particular mode.

A. Even, Antisymm etric TE Modes

B. Odd, Antisymm etric TE Modes

h—<<1
w

1+ exp + ph [.n(*)-Y+l]\-h rl?-W’Tr

(1)

0

c. Even, ‘Symmetric TE Modes

2fi~exp(2pw) +1 = O

(3)

8

.



D. Odd, Symmetric TE Modes

2&~exp(2pw) - 1 = O

(4)

,,0 (P w=n -s,n

E. Even, Symmetric TM Modes

16~ (PW)
3/2

exp(2pw) - 1 = O

(5)

P~;nw=(n-~)ni
- ~ En(256 n4n3) + O(n-lf.n n)

(6)

F. Odd, Symmetric TM Modes

16A (PW)
3/2

exp(2pw) + 1 = O

~~nw = (n + ;) ‘i
- $ 2n(256 m4n3) + O(n

-1
P %n n)

2. Calculated Values of the Transverse Complex Wave Numbers

The transcendental equations (1) through (6) were solved numerically and the

results of these calculations are shown in figures 4 and 5 and table 1.

We observe from these results that the absolute value of the real part of

P;,n is much smaller than those of p“ and p’ In the next section we
s,n s,n “

will see how this fact implies that the antisymmetric TE modes are less attenuated

as they propagate along the simulator than are the symmetric TE and TM modes. We

also mention that the roots of (1) through (6) occur in complex conjugate pairs.

The only ones included in figure 4 and 5 and table 1 are those in the second

quadrant.
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Table 1

Transverse complex propagation constants for the
symmetric TE and TM modes as h/w + O

Symmetric TE M~des

even odd

n Re{p~~nw} Im{p”es,*W} ~e{P;:nw}, Inl{p:’’nw}

1 -0.6863 1.0313 -0.8913 2.6683

2 -1.0019 4.2620 -1.0783 5.8449

3 -1.1368 7.4233 -1.1842 8.9994

4 -1.2240 10.5741 -1.2584 12.1479

5 -1.2886 13.7211 -1.31i5 15.2938

Symmetric TM Modes

even odd

n Re{p~enw} Im{p;enw~ Re{p :‘nw} Im{p::nw}
9 > ,

1 -2.4024 1.1100 -2.7184 2.9796

2 -2.9562 4.6828 -3.1390 6.3306

3 -3.2868 7.9528 -3.4106 9.5605
I

4 -3.5172 11.1593 -3.6107 12.7521

5 -3.6939 14.3408 -3.7689 15.9264

‘

●
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SECTION 111

LONGITUDINAL COMPLEX WAVE NUMBERS

.

The variation of each mode can be separated into its transverse and

longitudinal variation in the following manner

Fn(x,y,z) = Fn(x,y)exp(gnz) (5)

where Fn(x,y,z) denotes an arbitrary field component and Kn is the longi-

tudinal complex wavenumber given by

where k (= is/c) is the free-space

positive z direction and with the

i8n = i ~ (6)
n

wave number. For a wave propagating in the

harmonic time dependence exp(-iwt) then

both the damping constant a and the propagation constant en
n

positive. For the square root on the right hand side of (6) to

real part and a positive imaginary part requires that we choose

of (1) - (4) in the third quadrant.

From (6) it is clear that the imaginary part of pn plays

cut off wave number in ordinary waveguide theory. However, due

in (6) are

have a negative

Pn to be a root

the role of

to the real

part of pn , Cn has always a negative real part. In fact, we have

g =~=/’’2+p’ -~i+2ip p
n n nr nr ni

(7)

/.7’-=~+2ip p k’-p’
nr ni ni

when k2 > p~i and since !Pnrl ‘< [P .I ● Here, Pnr (pni) is the realnl
(imaginary) part of pn . From (7) and the results of the previous section

that IpnrI is much larger for antisymmetric TE modes than it is for symmetric

TE and TM modes we draw the conclusion that the damping constants an for the

13



●
antisymmetric TE modes are larger than those for the symmetric TE and TM modes.

Thus , the most important higher-order modes on two wide parallel plates are the

antisymmetric TE modes.

The propagation

frequency in figures

TE modes when h/w =

odd antisymmetric TE

constants and the damping constants are plotted versus

6 and 7 for the four fundamental even and odd antisymmetri.c

0.01. From these plots we observe that the fundamental

mode has the lowest “cut-off” frequency.
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SECTION IV

MODAL FIELD DISTRIBUTION

..

Analytical expressions for the field components of the antisymmetric TE

modes which are valid in the region between the two parallel plates are derived

in ref. 8. It is found in that reference that the field components of the even,

antisymmetric TE

,. <’=

.=
g=

where

...

modes are given by
.-

.

-. <~=i
i
k2+(p”e )2

n,a

. .

and H is an arbitrary constant.
o

Similarly, it was found in ref. 8 that the field compon&ts of the odd,

antisymmetric TE modes are given by

(9)

g= iHoZo(k/p “~a)sinh(p~’’ax)exp(g~z)~.

1. Transverse Field Distribution
.-

The transverse field distributions of the four fundamental even and odd

antisymmetric TE modes are presented in figures 8a through 9C (when h/w= 0.01).

These curves were obtained by putting Ho = O and z = O in (8) and (9). To

obtain the curves for-the x component of the magnetic field and the y com-

ponent of the electric field requires that we choose a particular value of the

free-space wave number k . This wave number (kn) is chosen so that the

guided wavelength 1 of each mode is 1.5 w ; i.e., kn is determined from
g

the following equation

17
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,* = R,{= }= ,T,3W . (lo) o

The reason for this choice of k will become obvious in tkle. next subsection.
n

2. Vector Representation

One way of depicting the H-field in the X,Z plane is the use of a vec~or

plot * In this plot the magnitude and direction of the real and imaginary parts

of the magnetic field is visualized by arrows at certain regularly spaced

lattice points (the base of the arrow). The size of the arrow is proportional

to the field strength and the direction of the arrow shows the field direction.

Figures 10a through lld show vector plots for the four fundamental even and odd

antisymme”tric T’Emodes when h/w = 0.01.

.,Some comments are in order concerning figures 10a through lld. First, both

the’real and imaginary parts of one particular mode have been normalized with

the same constant. Therefore, the vector plots show the relative magnitude,

direction, and phase for each mode. Second, ~he x-coordinate in the vector

plots have been normalized with respect to the half width w of the two plates, ●
and:the z-coordinate has been normalized with respect to the guided wavelength

A
g

= 21T/@n of ‘each mode. As men~ioned previously the frequency (or free-space

wave number) is chosen so that 1 = 1.5 w for each mode. The value of k used
$3

for each mode is indicated on the respective graph. Thus, the z variable

varies between - lg/Z and Ag/2 (as shown in figures 10a through lld) or between

- 3w/4 and 3w/4 (as indicated by the frame size in figures 10a through lld).

>..
3. Field Lines

Another way of representing the magne~ic field is the use of field lines.
,---

The magnetic’ field l&es of the four lowest order even and odd antisymmetric TE

modes are shown ,in figures 12a through 13d. We observe from these graphs that

the magnetic field tangent to the X,Z plane has apparent sources. These

apparent sources can be understood from the following arguments:

1. According to (8) and (9) the magnetic field has no y-component.

However, these expressions are approximate and the small y-component

of the H-field has been omitted.
o
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of the magnetic field of the lowest odd antisymmetric TE mode.

33



●
✎

0.9

x/w
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
-c

.

1.0

0.9

x/we*

0.7

0.6

0.5

0.4

0.3

0.2

0:1

0
-0

1 I

5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0,3 0.4 0.5

●

-0.4 -0.3 -0.2 -0, i o 0.1 0,2 0,3 ().4 ().5

z/Ag

pw =- ().()28 - i46Z, kw =6.24
Figure 12b. Field lines for the components tangential to the X,Z plane

of the magnetic field of the second lowest odd antisymmetric

TE mode.

34

,-
.,



..

I.0 I

0.9 -

Xlw o ~

0.7 -

0.6 -

0.5 –

0.4 –

0.3

0.2-

0.I

o 1
-0.5 -0.4 -0.3 -0’2 -0.1 0 0.I 0.2 0.3 0.4 0.5

I .0

0.9

x/w
0.8

0.7

0.6

0.5

0.4

0.3

0.2

al

o
-c

~&—’——
I I I I I I

-0.4 -0.3 -0.2 -0.1 0 0.1 0,2 0.3 0.4 0.5

pw=-O.045-i7.71, kw =8.77
Figure 12c. Field lines for the components tangential to the X,Z plane

of

TE

the magnetic field of the third lowest odd antisymmetlic

mode.

35



1.(

o.!

x/w
0.[

0.7

O.E

0.5

0.4

0.3

0.2

0. I

o

23
n-l
D
r

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 ().4 ().5

z/Ag

Zlig

pw =-0,062- i10.81, kws 11.59
Figure 12d. Field lines for the components tangential to the X,Z plane

of the magnetic field of the fourth lowest odd antisymmetric

TE mode.

36



,
I .0

0.9

X/W 08

, 0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

x/w

I

II I i I 1’
-0.5 -0.4 -0.3 -0.2 -0,1 0 0.1 0.2 0.3 0.4 0,5

I .0 I

0.9 -

0.8 -

0.7 -

0.6 -

0.5 -

0.3 -

0.2 -

0.1

0-’ - .’

T P I
\

I I I )’ I

-0.5 -0.4 -0.3 -0.2 -o. I o 0. I 0.2 0.3 0.4 0.5

pw =-0.019- i3.08, kw= 5.20
Figure 13a. Field lines for the components tangential

plane of the magnetic field of the lowest

TE mode.

to the X,Z

even antisymmetric

37



I.c

0.$

x/w *~

0.7

O.t

0.:

0.4

0.3

0.2

0.1

Xlw

oL4AJd--_AJ_LJ_
-0.?5 -0.4 -0.3 -0.2 -o. I o 0,1 0.2 0.3 0.4 -0.5

0.9 -

0.8 –

0.7 –

0.6 –

0.5

0.3 -

0.2 -

0.1 -

o~ I 1 I I I 11 I I 1 i I I 1 II I t ! I I I
-0.5 -0.4 -0.3 -0.2 -0.1 0 0,1 0.2 0.3 0.4 0,5

z/Ag

pw =- O.os& i6.16, kwa7.45
Figure 13b. Field lines for the components tangential to the X,Z plane

of the magnetic field of the second lowest even antisymmetric

TE mode.

38



0.9

x/w
0.8

0,7 –

0.6 –

0.5 ?J

r
0.4–

0.3 –

0.2

0.1 -

-0.5 -0.4 -0.3 -0.2 -o. I o 0, i 0.2 0.3 0.4 (3.5

i.c

0,$

x/w
O.E

0.7

0.6

o.~

0.4

0.3

0.2

0. i

o
-(

1

i -0.4 -0.3 -0.2 -0. i o 0. i 0.2

pw =-O.053-i9.26,k
Figure 13c. Field lines for the components tangential

of the magnetic field of the third lowest

TE mode. .

0.3 0.4 0.5

z/Ag

w=IO.16
to the X,Z plane

even antisymmetric

39



. .

1.0

0.9

Xlw ~ ~

0.7

0.6
XJ

0.5 m
D
i-

0.4

0.3

0.2

0. I

o
-0.5 -0.4 -0.3 -0.2 -o. I o 0. I 0.2 0.3 0.4 0.5

I.0

0.9

x/w
0.8

0.7

0.6

0.5

I
I

f’n’ FFsr
2

-
0. i -

[
01 I f I I 1} I I 1 {1 I 1 1 I 1
-0.5 -0.4 -0.3 -0.2 -o. I o O.i 0.2 0.3 0.4 0.5

z/Ag

pw =-o.070-i12,35,kws13.04
Figure 13d. Field lines for the components tangential to the X,Z plane

of the magnetic field of the fourth lowest even antisymmetric

TE mode.

40



.

2. The divergence equaeion VC~ = O implies that ‘?to~ = -(a/ay)H
Y

where t denotes operations and components in the x,2 plane.

This latter equation shows that the (small) y-component can

be viewed as a source function of the

x,z plane.

The intensity of the field for a given mode

field tangent to the

can be indicated by the

intensity of the field lines only if the magnetic field lines in the X,2

plane are divergence less in this plane. Since this is not the case for the

considered Ii-field we can not use the density of field lines as a measure of

the field strength. In fact, the vector plots show that the H-field is weak

in regions of strongly concentrated field lines.

The field lines are constructed simply. An initial point (xl,zl) is

chosen arbitrarily. The field is evaluated at (X1>Q ●
A line segment of

length A is extended from (X1,21) in the direction of the field at (X1,21) .

The new point (X2,22) is located at the end of the completed line segment.

The process is repeated , etc. , and a mythologically smooth field line is

formed.
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