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Abstract

Performance parameters associated wit-h the FINES (Finite
Intermediate Nuclear EMP Simulator) type of small simulator are
studied in detail. FINES is a type of simulator which is

p
intended to illuminate electrically small objects (such as

\ antennas) or apertures on conducting surfaces by means of a
locally placed simulator which produces the desired local surface
current and/or charge densities. In general, there are four
basic designing factors considered in this note: the response
sensitivity of the simulated field to the input current or volt-
age, the uniformity of the simulated fields, the simulator’s
efficiency, and the simulator/test-object interaction; these can
be used to characterize the performance of the FINES. Examples
in the use of the performance parameters to quantify some impor-
tant geometries pertinent to FINES published in the literature
are given in two parts. First, for the canonical problems of
unperturbed fields (i.e., simulators with all penetration being
short-circuited and objects removed), one can define the relative
field deviation as the deviation of the field within a desired
working volume from the field measured at the center of the
ground plane. Second, for the simulator/penetration interaction
canonical problems, one considers the changes in the surface cur-
rent ,and charge densities on the test object to be the important
measure of the interaction. Other simulator/penetration inter-
action-parameters, such as the change of the simulator impedance, -
the change of the impedance and the open-circuit voltage (or
short-circuit current) at the terminals of antennas and the

“ change of the polarizabilities of apertures, are also discussed.
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1, Introduct ion

The Finite Intermediate Nuclear EMP Simulator (FINES) is c,ne

type of the

pulse (EMP)

systems, in

conceptually simple, inexpensive small electromagnetic

simulators for testing the EMP hardness of–military

this case by individually exciting the electrically

small penetrations. The FINES is intended to illuminate a portion

of the system of interest (e.g., the deliberate antennas or the

inadvertent apertures aboard an aeronautical system) to create a,

surface current ~s and/or a surface charge Ps, locally over the

penetration region which would be modeled f-rem an incident nucl@ar

EMP .

Since a FINES is appropriate for driving (electrically) small

4P
penetrations (small antennas and aperture-s) on high conduct-ing sur-

faces of larger systems, a FINES can be designed which is also

electrically small and produces approximately locally uniform

electric and/or magnetic fields. Here, only the electric field

normal to the system surface and the magnetic field parallel to the

system surface are of interest. Thus , this type of simulator can

be considered as a static (quasi-static) simulator and can also be

●

termed zero-dimensional or point simulator which has been exten-

sively discussed in reference 1, The basic limitation of a static
b

1. C. E. Baum, “EMP Simulators for Various Types of Nuclear EMF
Environments : An Interim Categorization, ” Sensor and Simula-
tion Note 151, 13 July 1972, AFWL. Also adapted for Special
Joint Issue on the Nuclear Electromagnetic Pulse, IEEE Trans.
Antennas and Propagation, January 1978, and IEEE Trans.
Electromagnetic Compatibility, February 1978.
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(quasi-static) simulator is that the frequencies of interest- are

sufficiently low or the corresponding radian wavelengths are I.arge

*
compared to the simulator structure so that the low-frequency or

quasi-static form of the fields is applicable.

Generally, there are three kinds of designs for this class

of- simulators which are illustrated in figure 1. Figure l(a) shows

a loop type of simulator above the ground plane. The simulator is

quasi-statically equivalent to a simple inductor driven by a con-

stant current source and generates a uniform magnetic field near

the (closed) penetration. Similarly, figure l(b) shows a voltage

source connected between the simulator plate and the ground plane;

the plat-e and ground plane can be simply characterized by a capaci-

tor driven by a constant voltage source to generate a uniform .

electric field near the (closed) penetration. Figure l(c) shows

combined version of the electric and magnetic types of simulator

a

described by figures l(a) and I(b); note that a maximum of two com- *

ponents of–the magnetic field can be combined with one of the

electric field. The conversion of input- sources to fields of the

FINES is just opposite to the concept–of an electrically small EMP

sensor (to be seen as an electric or a magnetic dipole) which

induces an open-circuit voltage or a short-circuit current- ab its

termina~s by picking up the local electric or magnetic fields inci-

dent- to the sensor; this is a form of reciprocity (ref. 2).

2. C, E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D.
Sower, “Sensors for Electromagnetic Pulse Measurement Both
Inside and Away from Nuclear Source Regions, ” Special Joint
Issue on Nuclear Electromagnet-ic Pulse, IEEE Trans. Antennas
and Propagation, January 1978, and IEEE Trans. Electromagnetic
Compatibility, February 1978.
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a
a.

I

~ Penetration
Antenna or

Magnetic–field or Surf-a-c-e=Current–
Density Type of—FINES

(Small
Aperture)

Ground Plane

Penetration (Small
Ant-enna or Aperture)

b. Electric-field or Surface-Charge-
Density Type of FINES

/

T

E-field Simulator

H-field Simulator

Penetration
(Small Antenna

c. Combined Electric and Magnetic Fields (or Charge and
Current Densities) Type of FINES

Figure 1. Configurations of the FINIZS-type Simulators
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In designing a proper FINES, one studies the conversion OH

the input sources V and I by an appropriate constant to P~ and ~~,

respectively, on the surface of the system with the penetrat-i-on

short-circuited (i.e. , a smooth conducting surface). From the

study one predicts the simulator performance qualities which

include the field spatial uniformity, the u~eful ene’rgy

(efficiency), etc. However, in practice the simulator will be

placed near the penetration and the interaction between them

should also be taken into account.

In general., there are four basic factors that can be used

to characterize the performance of FINES:

(1) The response sensitivity of–the simulated fields to

the input current (or voltage).

(2) The uniformity of the simulated field in the neighbor-

hood of the test object with the test objecbremoved (or surface *

short-circuited, i.e. , a smooth conducting surface).

(3) The simulator’s figures of merit and efficiencies

relating fields and field energies to voltage or current and

energy delivered to the simulator.

(4) The interaction between the simulator and the penetra-

tion being excited.

In this report we will define these performance parameters

and utilize them to quantify various canonical problems via the

review of- the previous work published in the literature (particu-

larly, Sensor and Simulation Notes). Our anaLysis in this report

is limited to the quasi–static solution, i.e. , all radian

6
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wavelengths of interest are sufficiently large compared to the

simulator dimensions. Other important considerations related

to the design of the FINES, such as the type of input sources

and the feeding network to be used, will not be covered here.

Future studies should be extended to these areas.

. .
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11. Performance Parameters of FINES

A. Conversion Lengths

The conversion lengths are used to quantify the simulator’s

sensitivity of the simulated fields to the input sources. In

general, there are three types of simulators according

fields they generate, the E-field, the H–field and the

fields simulators. The fields which they generate can

in terms of the conversion lengths An defined by

H-Field Simulator

E. = Im !@
c
m

E-Field Simulat-or

‘m

Im , m= 1 or 2

v, m= 3

to the

combined-

be expressed

Here, fio and fio are the fields measured at the center of the

(f)

ground plane where a test object or aperture is to be placed, V

and Im are the voltage and current sources applied to the simulator,

and ~m(m=l,2,3) denote mutually orthogonal unit-vectors tangential

and normal to the ground plane in a right-handed system (see fig. 2).

Alternatively, we can express unit-vectors 11, 12 (or iT , iT ) as
-1 al

orthogonal

13 (or~s)

surface S.

unit vectors tangential to the ground surface&S, a~d

as unit outward pointing vector normal to the ground

Their orthogonal relations are

@



w

.

f

Simulator Volume

~Centerof Ground Plane, ~=d

Figure 1. Unit Vectors for FINES Description
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(2)

Combined Fields Simulator

This type of simulator is able to generate the E-fi-eld and

H-field, either an individual component or in various combina–

tions, and can be driven by a single source or a set of indepen-

dent sources. If the interaction between the different desired

field components of the simulator is negligibly small (by symmetry

in the design) and all radian wavelengths of interest are suffi-

ciently large compared to the simulator dimensions (quasi-static

approximation ), then we are able to consider that the E-field is

generated via a-constant voltage source and the H-field is gen-

erated via a constant current source. Under these restrictions,

the same relations given by (1) can be used to quantify the sen-

sitivity of the combined fields type of FINES simulat-or.

10



4P
B. Field Uniformity

To describe the field quality of a simulator, we

a maximum allowable volume, namely the working volume,

which the field is uniform everywhere within a certain

can define

inside

percentage

deviation from the field at the center of the ground plane. For*

convenience, a hemisphere with a radius aw (fig. 3) is chosen to

<. be an E-field simulator’s working volume with volume Vw as

(3)

The maximum allowable radius aw for a given electric field

variation is determined by the inequality-

[i(:) -“fiol
~Afor all ~ EVW (r ~ I;I < aw)

-Iiol ‘-

4P

(4)

30 = i(a)

where A denotes the relat=iv-edeviat-ion from the field at the cen-
—

ter of the ground plane and is less than 1. Ideally, for a simu-

lator of good field qfiality, A is much less than 1 (i.e.,

A << 1) for a given working volume radius aw,

In addition, by examining the derivatives of the f-ield at

the center of the ground plane and by making more higher order

derivatives vanish, sometimes we can obtain an optimal field uni-

formity if some geometrical constraints to the simulator are

given .

In general, the geometrical symmetry of a simulator can be

used to make at least the first “derivative (usually the derivatives

11



Simulator Volume V~

Simulator Plate (assumed a hemisphere of

/+[;dius~)=:~

/
/

as \
..-/ \

[ /\ \
[[’a “\ \

1’
\

/
I

/ / / / // / // / / / / // / / //[ //-

Working Volume Vw

(assumed a hemisphere
of radius aw)

Figure 3, Working Volume and Simulator Volume
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of all

and z)

ground

odd orders) of the field components (with respect to x, y,

vanish at the center (~ = b) which is by def-inition on the

plane (an equivalent–symmetry plane by image theory).

To complement the working-volume concept we can define a

simulator volume as a hemisphere of radius a“ s centered on ~ = 6

(with surface r z ]~1 = as) with volume

●

(5:)

Here, as is defined as the minimum r such that Vs cent-sins at

least the basic simulator conductors, dielectrics, etc., (perhaps

excluding peripheral hardware such as connectors, transformers,

etc.). For example, as is found to be the radius of a sphere cir-

cumscribed to the actual simulator plate as shown in figure 3.

0 If the penetration (e.g., a long slit) to be excited has

much larger longitudinal dimension than its transverse dimensions

and if the FINES has a two-dimensional configuration such as a

plate-ground-plane transmission-line simulator, it is more con-
.—.- . .—-–=———-

venient to use the hemi-cylinders to characterize the simulator

and working” volumes instead of using the hemispheres. Therefore,

a5 and aw can be denoted as the radii of the cylindrical simulator

13



c. Figure of Merit and Efficiency

One possible definition of the figure of merit of a simu~a-

tor can be constructed by maximizing the working-volume radius

to conversion-length ratio

where CR is a functiou of the field deviation A. For a given

allowable field deviation, one would like the simulator to have

a large working volume but a small conversion length.

Another definition of the figure of merit based on energy

considerations can be expressed in the form of the simulator’s

efficiency

ideal total energy enclosed within the working volume (Uw)
~:

total energy delivered to the simulator (Uin)

(7)

If the f-ield 3 or 3 is uniform inside a simulator working

volume Vw, the total energy inside the volume is given by

( *lJo,ifo,z Vw for the H-field simulator

Uw =

[

1
~ &ol~012 Vw f-or the E-field simulator

&
o

= permittivity of free space

(8)
.

V. = permeability of free space

where ~. and fio are the field measured at the center of the ground

plane enclosed by the working volume, This is taken as a

Y

i



definition of the ideal working-volume energy (i.e., fields are

assumed uniform throughout VW). .-

If the E-field simulator is assumed to be open-circuited

(a capacitor) and the H-field simulator is assumed to be short-

circuited (an inductor), we define the input energy by

.=~_ __==__= __=/ _

; L12 for the H-field simulator

u. = ‘—
In (9:)

+ CV2 for the E-field simulator

By using the linearity relation between the input source

and the simulated fields given by (l), we can rewrite the input-

energy as (quasi-static assumption)

(; LR~ ]fio12, m = 1,2 for the H-field simulator
m

u. =
In

I

(lo)

; Ck~31~012, m = 3 for the E-field simulate-r

Inserting (8) and (10) into (7), the efficiency of such a

simulator can be expressed as
—.

H-field Simulator (m = 1,2):



E-field Simulator (m = 3): (11)

&Ovw
=

cL2
C3

From this we define an equivalent volume V for the simulatoreq

from

(12)

<

,

which implies a definition

v=eq

{

-+P, m=1,2 for the H-field simulator
om (13)

& !t2 , for the E–field simulator
C3

:>0.

This energy-efficiency figure of merit gh or &e is relatable

to the working-volume radius to conversion-length figure of merit *

Cg in (6) as

H-field Simulator (m = 1,2):

E-field Simul&tor (m = 3):

(14)

(15)

Note that expressions (14) and (15) are derived by assuming that

the working volume is a hemisphere of radius aw.

*
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D. Two-Dimensional. FINES

For simulators with two--dimensional configurations (e.g., ... ..

a plate-ground-plane transmission-line simulator), their induc-

tance and capacitance are more conveniently expressed in per-
—

unit-length form and thus expressions (13), (14), and (15) can ‘

be modified as follows.

For the H-field simulator, the equivalent volume is given

by

v
.&2=zctL2 ——

eq PO c1 U. c c1

= fg~ k2 form= l(m= 2 being irrelevant)
c1 (16)

1
c = = speed of light

~

Jv
Zo= ~= wave impedance of free space

o

.

where L’ denotes the inductance per unit length, L is the length

of the simulator, and Zc is the transmission-line characteristic

impedance. Here, the simulator’s geometrical impedance factor

is defined by

simulator’s characteristic impedance Zc
f (17:)
g= medium (free space) impedance Z.

The simulator’s efficiency Eh can be written as

17



Note that Ch is normalized to aw because aw is the given dimension

of the desired working volume.

Similarly, for the E-fieI.d simulators V. eq
is expressed as

v
.fRR2 1 !?,~z=— .

eq &
o C3 ‘Ozc c C3

(19)

where C’ is the capacitance per unit length of the simulator.

The efficiency ~e is given by

27ra~/3Cc=>=
eq !//~z /fg

C3 (20)

Note that for a two-dimensional geometry (as above) the efficiency

Ee is inversely proportional to the length of the–simulator (as

expected).

The conversion lengths ic1 and fic3 and simulator’s effi-

ciencies ~h and ~e of the H-field and E-field, respectively, for

the two-dimensional simulator (TIM) are related to each other.

From (1) the conversion lengths can be expressed in terms of the

ratio of the input current and voltage to the simu~ated magnetic

and electric field, respectively, as

*



J? I

c1 ‘q

-%
v

C3
‘~ (22!)

By taking the ratio of (22) to (21), the geometrical impedance

factor f
–g

is given by

E02C 2
Vz 3 C3—=
Ic=fgzo=Ho8c=zo I—

1 c1
& (23)

-f
.2

g kc
1

Thus , the expression (16) or (19) of the equivalent volume V cam
eq

be rewritten as

v =k,!%
eq

c1 C3
(24)

Now substituting (23) for fg back into the efficiency expressions

(18) and (20), we obtain

(25)

19
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E. Interaction of Test Object with Simulator

One of the more important simulator design questions is

what one refers to as the simulator/object interaction. The

object inside a simulator scatters fields which in turn are re-

scattered from the simulator back to the test object, thereby

changing the ultimate response of the test “object. This process

can be viewed as a change in the kernel (Green’s funct-ion) of an

appropriate integral equat-ion for currents or charges on the test

object or as an infinite multiple-scattering sequence.

We would like to quantify the effectsof this process so

that the resulting errors can be kept down to an acceptable limit

by making the simulator structure sufficiently distantly spaced

from the test object. For the-present discussion, changes in

surface current and charge densities (for H-f.i.eldand E-field

types, respectively) on the test object will be considered as

the important measure of this error. However, depending on the

specific shape and function of the test object, there are other

parameters one might consider as weI.1. Examples are inductance

or capacitance changes in the test object–and mutual inductances

and capacitances t-othe simulator where appropriate for cert-ain

types of antennas; for such antennas one might also consider

changes in open-circuit voltage and/or short-circuit current at

their terminals. For apertures on the other hand, one might

consider changes in the equivalent dipole moments (magnetic

(m = 1,2) and electric (m = 3) as subscripts) due to the

simulator/aperture interaction mechanism.

.

,
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Other kinds of changes associated with this effect are also

observable at the driving terminals of the simulator. Specifi-

cally, the inductance of an H-f-ield type and the capacitance of

an E-field type of simulator will be changed by the presence–of

the object, and so parameters such as these should be considered.
j

a. H-field Simulat-or/Object Interaction

The parameters used to quantify the interaction

between the H-f-ield simulator and the object are:

(1) + as a function of- the object and simulator

geomet-ry parameters. Here, L is the inductance of the simulator

and AL is the change in simulator’s inductance associated with the

presence of the object (or aperture).

lA~s(~)l
(2) as a function o.f the object and. simu-

4)

13s(T)\

later geometry parameters. Here, ~s(~) is the surface current

density along the conducting object in the simulator (or perhaps

some equivalent current in an aperture) and A~s(~) is the change

of the surface current density on the object surface insid-e a

simulat-or compared to the “free field” solution. By “f-ree fi-eld”

solution, we mean that a ~ (%) is found from ~f(~) defined as
Sf

the actual field (for a given I) in the simulator with object

removed (i.e., ground plane shorted), and using fif(~) as an inci-

dent magnetic field on the object, but with the simulator removedII

(i.e., no interact-ion of the simulator with the scattered fields).

21



Define

with the object within Vw. By constraining As. as some dimension-

less number (ideally As. << 1) one can find a maximum allowable

object radius for given simulator dimensional parameters

(as, Rcm (m = 1,2), etc.), for which a desired A~o is achieved.

b. E-field Simulator/Object Interaction

Similarly, the important parameters which can be used

to quantify the extent of the i.nteracti-onbetween the E-field

simulator and the object are

(1) + as a function of the object and simulator

geometry parameters. Here, C denotes the capacitance of the simu-

lator without the presence of the object and AC is the change in

simulators capacitance with the presence of object (or aperture).
Ap~(r)

(2) as a function of the object and simulator
ps(;)

geometry parameters. Here , ps(~) is the surface charge density

along the conducting object in the simulator (or perhaps some

equivalent charge density in an aperture) and Aps(~) is the change

of the surface charge density induced on the objec~--surface inside

a simulator compar-ed to the “free field” solution. Again, the

“free field” solution is found to be the surface charge density

PSf(?) by using fif(z) as an incident electric field on the object

,with the simulator removed (i.e. , no interaction of the simulator

with the scattered field). ~f(~) is the actual field (for a given

V) in the simulator with the object removed (i.e., ground plane

shorted). Hence we have

22
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o
(28)

,.
Define for the object within Vw

By constraining A~o as some dimensionless

(29)

number (ideally

A << 1), one can find a maximum
so

allowable object radius (it

may be the radius of a sphere circumscribing the actual object

surface, i.e. , the worst case is considered) for given simulator

dimensional parameters (as, ~c3, etc.), for which a desired As.

is achieved.

..

23



111.

A.

above

where

Canonical Problems for Unperturbed Fields

Finite-Width Plate Above Ground Plane

The geometrical impedance factor f
g

of a finite-width plate

ground plane (fig. 4) is given by

SimulatorPlate

\J-a.
t Ground

b

Plane

Figure 4. Configuration of Finit-e=Width Plate Simulator

~ K(ml)
f
g ‘~K(m) ‘ ‘l=l-m

(30)

m is relat-ed to the simulator’s width-t-o-height ratio (a/b)

f~om equations:

~ ~K(m) E(@o/m) - E(m) F(@o/m)~—=-

.

sin’: [ ( )]

3
11 E(m)= _—

0 i K(m) (31)

F($o/m) = incomplete elliptic integral of the first kind

E($o/m) = incomplete elliptic integral of the second kind

$

,

24



. .

K(m) = complete elliptic int-egral of the first kind

E(m) = complete elliptic integral of the second kind —.
~.,.

The numerical values of fg are tabulated in table 1 (ref. 3).

Note that the–geometrical impedance factor fg of a plate above
—.

the ground plane is equal to one half the value of a two-parallel-

plate transmission line,

The conversion length L or ~ can be obtained by
c1 ‘3

~-1 =E
‘3

b ‘_2_K(m1~ E(m) yre].(0,0) = (! f )-1 b
cl ~ (32) .

-—

where Eyrel (x,Y) is the imaginary component of the complex elec-

tric field Erel(z) defined by

Erel(z) = Ex (xjy) -jE
Yrel

(xjy)
rel

(33)

z = x + jy = complex coordinates

The numerical values of Qc3/b can be found in table 1.

The complex electric field of–a finite-sized plate above

the ground plane can be expressed as

E _rel(x,y) - j Eyrel(x,z) = K(~l) ~rel(z) z Ex

(34)

z_ 2j -
E=c= ~ {K(m) E(w/ml) + w[E(m) - K(m)]}

3. C. E. Baum, D. V. Giri, and R. D. Gonzalez, “Electromagnetic
Field Distribution of the TEM hIode in a Symmetrical Two-
Parallel-Plate Transmission Line,” Sensor and Simulation
Note 219., 1 April 1976.
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Table 1

GEOMETRICAL IMPEDANCE, CONVERSION LENGTH AND EQUIVALENT VOLUME
FOR THE FiNITE-WIDTH-PLATE SIMULATOR

b/a

0.16670

0.40679

0.5

0.6

0.7

0.8

0.9

1.0

1,2

1.23526

1.4

1.6

1.8

2.0

2.5

3.0

6.9900

2ZC (ohms)

50.240

99.961

115.439

130.397

143.927

158,266

167.595

178.058

196.824

199.896

213.262

227.859

240.966

252.848

278.407

299.593

399.722

f
~

0.06668

0,13267

0.15321

0.17307

0.19102

0.20740

0.22244

0.23632

0.26123

0.26531

0,28305

0.30242

0.31981

0.33558

0.36951

0.39763

0.53052

!3Cb ‘1
3

1.0000

1,0003

1.0014

1.0041

1.0089

1.0155

1.0243

1.0346

1,0591

1.0639

1.0870

1.1166

1..1468

1.1769

1,2494

1.3163

1.6835

Veq(ib2)-1 =

(1 b-1)2 fjl
C3

14.9970

7.5420

6.5453

5.8258

5.3284

4.9727

4.7166

4.5290

4.2940

4.2667

4.1742

4.1226

4.1122

=4.1274

4.2244

4.3575

5.3423

.
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~dw=
~ [mlK(m)

-1
dz 2

sn2(w/ml) - E(m)]

w = u +jv = complex potential

sn = Jacobian elliptic function

The field deviation A from the field at the cent-er of–the

ground plane is defined as .

E
rel(z) ~ ‘rel(o)

Erel(o) =

(E
/[ x 1[(x,y) 2 + E

Yrel
(x,y) - E

Yrel
(o,o)]Z\*

rel
E (0,0)
Yrel_

._=-_A_...for b/a as the parameter (35)

The field deviation contour plots of various values of A can be

found in figures 4.2 through 4.18 of ref.e~ence 1, if desired.

Presently only maximum deviations are used as shown in table 2.

For a given A, we choose the working volume radius aw where

aIV = IzI is the maximum radius of a circle inscribed inside the

field deviation contour and we constrain a~<b. The maximum

field deviation for a given ratio aw/b is given in table 2 with

b/a as a parameter; it is plott-ed as a function of b/a for vari-

ous a~V/b in figure 5.

The simulate-r’s efficiency E is defined by

(36)

Vw=$~a3 aw=w’
working volume radius

v
eq

= equivalent volume of the simulator = Ik !
c1 C3
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aw/b

b/a

0.16670

0.40679

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.23526

1.4

1.6

1.8

2.0

2.5

3.0

6.9900

Table 2

MAXIMUM FIELD DEVIATION 102 A
max

FOR THE FINITE-WIDTH-PLATE SIMULATOR

0.1 0.2

0.00 0.00

0.01 0.01

0.01 0.03

0.02 0.09

0.04 0.17

0.08 0.30

0.11 0.46

0.17 0,64

0.25 1.02

0.27 1.07

0.35 1.38

0.42 1,71

0.50 2.02

0.56 2.28

0.69 2.79

0.78 3.15

0.96 3.94

0.3

0.00

0.02

0.07

0.20

0,40

0.71

1.07

1.47

2.32

2.46

3.13

3.85

4,54

5.18

6.42

7.27

9,31

0.4

0.00

0.03

0.13

0.37

0,76

1.31

1.97

2.69

4.19

4.45

5.60

6.82

8.08

9.30

11.73

13.45

17.78

0.5

0.00

0.06

0.22

0.61

1.26

2.16

3.22

4.38

6.69

7.09

8.80

10.59

12.58

14.64

18.92

22.07

30.64

0.6

0.00

0.08

0.34

0.95

1.96

3.32

4.89

6.57

9.84

10.37

12.70

15.04

17.83

21.05

28.07

33.61

50.34

0.7

0.00

0.13

0.51

1.43

2.90

4.84

7.04

9.32

13.62

14.30

17.21

20.05

23.42

28.10

38.94

48.22

81.58

0.8

0.00

0.18

0.74

2.06

4.14

6.80

9.73

12.67

17.97

18.80

22.21

25,44

28.59

34.87

50.37

64-.89

133.42

0.9

.——

0.00

0.26

1.06

2.90

5,75

9.27

12,99

16.59

22.80

23.74

27.28

31,00

33.58

39.96

59.72

79.82

216.06

1.0

..

0,00

0.36

1.49

4.05

7.81

12.28

16.82

21.03

27.94

28.95

32.96

36.55

39.15

41.86

63.44

86.14

279,12

!

,.
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where g is the length of the simulator. CR/aw versus b/a for field

deviation A = 0.05, 0.1, 0.2, 0.3 is shown in figure 6. From 9
this we see that b/a ~ 1.2 for A = 0.3 gives the best energy

efficiency (Zc roughly equal to 100 ohms) by the foregoing defini-

tions. Note that the answer is also dependent on A.
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Figure 6. Simulator Efficiency CL/aw versus b/a



B. Cylindrical Plate Above Ground Plane

The geomet-rical impedance factor fg of a curved plate above
o

ground plane (fig. 7)

SimulatorPlate k\A y <v

b Ground Plane
/

Figure 7. Configuration of Cylindrical Plate Simulat-or

can be expressed as (ref. 4)

2fg = ‘(m)
K(ml)

.

.

o
The value of f

g
is tabulated in table 3 and is also plotted in

figure 8. Note that the geometrical impedance factor of a curved

plate above the ground plane is equal to one-half- of the impedance

factor of a cylindrical two-curved-plate transmission line.

4. Tom K. Liu, “Impedances and Field Distribution of Curved
Parzllel-Plate Transmission-Line Simulators, ” Sensor and
$imulat-ion Note 170, February 1973.
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Table 3

GEOMETRIC IMPEDANCE FACTOR fg

FOR THE CYLINDRICAL PLATE SIMULATOR

fg f
(degaree) (dezaree) g

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

co 30

0.86493 31 .

0.75460 32

0.69005 33

0.64423 34

0.60868 35

0.57962 36

0.55503 37

0.53372 38

0.51491 39

0.49806 40

0.48281 41

0,46886 42

0.45602 43

0.44412 44

0,43302 45

0.42262 46

0.41283 47

0.40359 48

0.39483 49

0.38650 50

0.37856 51

0.37098 52

0.36371.. 53

0.35674 54

0.35003 55

0.34357 56

0.33733 57

0.33131 58

0.32547 59

0.31982 60

0.31982

0.31433

0.30900

0.30381

0.29875

0.29383

0.28902

0.28432

0.27972

0.27523

0.27082

0.26651

0.26227

0.25811

0.25402

0,25000

0.24605

0.24215

0.23831

0.23452

0.23078

0.22709

0.22344

0.21983

0.21626.

0.21272

0.20921

0.20573

0.20227

0.19884

0.19543

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

0.19543

0,19203

0,18865

0.18528

0.18192

0.17856

0.17520

0.17184

0.16848

0,16510

0,16171

0,15830

0.15486

0.15140

0.14789

0,14434

0.14073

0.13706

0.13330

0.12946

0,12549

0.12138

0.11711

0.11261

0.10783

0.10268

0.09702

0.09058

0.08283

0.07226

0.
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By definition, the conversion length 1 or t is given by
c1 C3

~-1 b _ 2 .=
‘E

=(R f)-lb
C3 K(m)(l + m$) cl !3

(38)

The numerical value of Ic /b is given in”table 4 and fE and ~
3 ‘Jb

are plot-t-cdin figure 9 as a function of a.

To quantify the field uniformit-y of a simulator, we obtain

.

the complex electric field inside the simulator to be (ref. 4)

The working volume radius aw is determined from

E
rel(z) - ‘rel(o)

E
rel(o) ‘A

(40)

A is the field deviation and A << 1 is desirable. Here, we

choose a~ = Izl to be the radius of a circle in-scribed to the

field deviation contour ‘for a given A.

From the symmetry of the problem, all. the odd derivatives

of Erel (z) at z = O vanish. If we let the second derivative of

. Erel(z) at z = O be zero, we obtain the maximum field uniformity

for a = 45°, For a = 45° the maximum allowable working volume

. radius a}V for a given field deviation A is given in table 5

(ref. 4).

ratio aw/b

angle a as

defined by

However, the maximum field deviation Amax for a given

is tabulated in table 6 with the simulator’s half-span

a parameter. The efficiency ~ of a simulator can be

35
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Table 4

VALUES OF CONVER-SION LENGTH $’,
C3

-1 -1 -1
(degaree)

%C3 b
(de~ree)

2C3 b
(degaree)

!LC3b

o 0. 30 1.07826 60 0.84287

1 2.71747 31 1.06496 61 0.83887

2 .2.37135 32 1.05233 62 0.83503

3 2.16934 33 1.04018 63 0.83136

4 2.02638 34 1.02853 64 0.82785

5 1.91586 35 1.01736 65 0.82450

6 1.82592 36 1.00663 66 0.82130

7 1.75021 37 0.99633 67 0.81826

8 1.68492 38 0.98644 68 0.81536

9 1.62766 39 0.97693 69 0.81262

10 1.57669 40 0.96779 70 0.81001

11 1.53085 41 0.95900 71 0.80755

12 1.48929 42 0.95054 72 0.80522

13 1.45127 43 0.94240 73 0.80304

14 1.41633 44 0.93457 74 0,80099

15 1.38403 45 0.92703 75 0,79907

16 1.35404 46 0.91979 76 0.79728

17 1.32607 47 0.91280 77 0,79563

18 1.29992 48 0,90608 78 0.79410

19 1.27536 49 0.89961 79 0.79269

20 1.25227 50 0.89338 80 0.79L42

21 1.23050 51 0.88739 81 0.79027

22 1.20992 52 0.88162 82 0.78924

23 1.19043 53 0.87609. 83 0.78834

24 1.17195 54 0.87075 84 0.78756

25 1.15439 55 0.86562 85 0.78689

26 1.13766 56 0.86070 86 0.78636

27 1.12177 57 0.85596 87 0.78593

28 1.10660 58 0.85142 88 0.78564

29 1.09211 59 0.84706 89 0.78546

30 1.07826 60 0.84287 90 0.78540

.
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Table 5

PERFORMANCE PARAMETERS
FOR

THE CYLINDRICAL PLATE SIMULATOR AT a.= 45°

*

a
w Vw

A h
T ~ b2L

0.01 0.35 0.090 3.44

0.02 0.45 0.191 3.44

0.05 0.55 0.348 3.44

0.10 0.65 0.575 3.44

38
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0.184

0.257



Table 6

MAXIhlUM FIELD DEVIATION 102 Amax

,
FOR THE CYLINDRICAL PLATE SIMULATOR

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

0.99 4.10

0.95 3.90

0.87 3,57

0.77 3.12

0.64 2.59

0.50 2.02

0.35 1.42

0.18 0.77

0.00 0.08

0.18 0.77

0.35 1.42

0.50 2.02

0.64 2.59

0.77 3.12

0.87 3.57

0.95 3.90

0.99 4.10

90 1.01 4.17

0.3

9.71

9.18

8.32

7.20

5.86

4,57

3.31

1.91

0.40

1.91

3.31

4.57

5.86

7.20

8.32

9.18

9.71

9.89

0.4”

18.64

17.45

15.59

13.19

10.44

8.16

6.14

3.83

1.25

3.83

6.14

8.16

10.44

13.19

15.59

17.45

18.64

19.05

0.5

32.44

29.90

~6004

21.31

16.16

12.71

9.96

6.72

2.98

6.72

9.96

12.71

16.16

21.31

26.04

29.90

32.44

33.33

0.6

54.20

48.57

40.57

31.53

22.46

18.07

14.75

10.72

5.91

10.72

14.75

18.02

22.46

31.53

40.57

48,57

54,20

56.25

t

0,7 0.8

90.70 159.02

77.00 119.90

59.84 82.24

42.95 52.66

28.02’ ‘- “-

23.97

20.33

15.79

10.20

15.79

20,30

23.97

28.02

42.95

59.84

77.00

90.70

96.08

3;5 . 0’/

30.15

26.43

21,72

15.77

21..72

26.43

30.15

33.07

52.66

82,24

119.9C

159.02

177.78

0.9

308.85

173.39

98,76

55.21

39.11

36.32

32.74

28.16

22.29

28.16 ~

32.74

36.32

39.11

55.21

98.76 I

-J
173.39

305.85

526.32

39
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Ma
v

K! T ~2= equivalent volume = ~ C3
eq =—=L!?!I.

o C3 ‘g c1 C3

Vw = working volume = ~ na~

(41) @--

where C’ denotes the capacitance-per unit length of the simulator
“

and L is the length of the. simulator. For a = 45°, the efficiency

~L/b is tabulate-d in table 5.

.
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c, Hemlholtz Coils

The Helmholtz coils consist of a pair of N-turn co,axial

circular coils separated by a distance equal to their radii

(a = radius of each coil = spacing between coils) as shown in

figure 10.

The magnetic field inside Helmholtz coils can be expressed

. in terms of the elliptic integrals and the normalized cylindri–

cal coordinates (R,Z), where R = Y/a and Z = z/a, by (ref. 5)

~(R,Z) = HY(R,Z) ~y + HZ(R,Z) tz (42)

Furthermore, the radial and axial field components Hy and Hz are

given by the sum of the ffelds due to two coils located at

z == fo,5. If each coil is wound with N turns and carries a

current I in each turn, we have

o HY(R,Z)
[

= ~ hy(R,Z) 1-hy(R,-Z)

NI
HZ(R,Z) = —4~a [. 1hz(R,Z) + hz(R,-Z)

(43)

hV(R,Z) =
2(Z-O.5)

I

-K(m) +
1 -i-R2 + (Z-0.5)2

E(m)
R[(1+R)2 + (Z-0.5)2]* (1-R)2 + (Z-0.5)2 1

hz(R,Z) =

[

1 - R2 - (Z-0.5)2

[(I+R)2 +2(Z-0.5)2J* ‘(m) +

E(m)
(1-R)2 + (Z-0.5)2 1

m(Z) 1
&

[

4R

(I+R)2 + (Z-0.5)2

5. K. D. Granzow, “Homogeneity of the Magnetic Field of-a
Helmholtz Coil,” SCR-193, Sandia Corporation Monograph,
July 1960.

0
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a. Helmholtz Coil Simula80r

‘t

Helmholtz

b.

Figure 10.

Coils

(’J. tan-1(2)

Helmholtz Coils Arrangement

Geometrical Configuration of Helmholtz Coils
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o where K(m) and E(m) are the complete elliptic integrals of the

first and second kind, respect-ively. The magnetic field at the-_ _

center (R,Z) = (0,0) of Helmholtz coils is readily obtained frorl

(43) to be

HZ(O,O) = @(O,O)l = 8“~;~N1

For the numerical calculations, it is more

express the field as a power series summation in

(44)

convenient to

Legendre poly-

nomials. For simplicity, we only consider the z-component

magnetic field Hz(r,@) in terms of the spherical coordinates

(r,@) in figure 10(b), by using ~ = V@m, to give (ref. 6)

sin8 ‘@m
a$m’

Hz(r,e) ‘—m-r ()Cos —ar

co
= z n Anrn-l Pn_l (COS6)

1

(45)

om = magnetostatic potential

cc”
=_ z Anrn Pn (COS6)

1

Because of the symmetry about the equatorial plane, the terms in

odd powers of r are zero and (45) can be rewritten as ,

Hz(r,6) = Al

= Al

6. J. C. hfaxwell,

(l+A) for2=l,2,3, ... ‘ (46’)

Electricity and lla~netism, Chapter XV,
Volume Two, Dover Publications, Inc., New York, 1954.

,b
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A = field deviation from the field measured at the
center of Helmholtz coils

w

Z( 21’+ 1)
‘2R+1 r2L= P2k(cose)

1 ‘1

Note that, in general, the field deviation A can be expressed in

terms of the magnetic f-ield as

A
= H(r,e) -B(O,O)

3(0,0)

Assuming that each coil contains N

current I, the coefficients Al and A2g+1

8NI
= HZ(O,O) = field

5fi a

For Helmholtz arrangements b

~.fia_—
2

(47)

turns and carries a

are given by

at-the center

f-or u = cos(a)

and a are given by (fig. 10)

(48)

(49)

.

Near the center of Helmholtz coils, the first significant

term of A is A5 and thus A can be expressed as
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4
A = 1.152(:) P@) + ...

PJU) = +(35114 - 3op3 + 3) , p = Cos(e)

(50)

Since Pn(cos6) s 1 and Pn(l) = 1 for 0 = 0°, each term in the

power series of A is greatest on the axis. Define a working

volume radius aw to

coils. For a given

mum f-ield deviation

coils)

A =
max

quantify the field uniformity of Helmholtz

working volume radius aw, we have the maxi-

Amax to be (near the center of Helmholtz --

{[Hz(r,@) - HZ(0,0)]2 + H~(r,8)}*

HZ(O,O)

The numerical values of Amax

on the axis

(52.)

can be found in table 7 (ref:--7) with

working-volume-to-loop radii rat-i-oas a parameter.

The conversion length of the Helmholtz coils type of the

H-field simulate-r can be obtained readily from (48) to be

!?c = ““ input current I .5fia

m
magnetic field at the center HZ(O,O) 8N

Subscript m, m = 1 or 2, indicates the conversion length

two degrees of freedom corresponding to the orient-ations

Helmholtz coil, i.e., the axis of the coils can be along

orthogonal vectors tangent-ial to the ground plane.

The inductance of-Helmholtz coils can be expressed

sum of the self-inductance L
self and mutual inductance M

constituent--current loops t-o-give

(52)

having

of

two

as the

of the

7. J. E. Everett and J. E. Osemeikhian, “Spherical Coils for

9)
Unif-orm Magnet-i-cFields,” J. Sci. Instrum, Vol. 43, pp. 470-
474, 1966.
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Table 7

MAXIMUM FIELD DEVIATION
OF

THE HELMliOLTZ-COILS SIMULATOR

aw/a

o

0.01

0.02

0.03

0.04

0.06

0.08

106 Amax

o

0.01

0.18

0.83

2.9

15

47

aw/a

0.10

0.15

0.20

0,25

0.30

0.40

0.50

103 Amax

0,11

0,57

1.8

4.2

8.4

25

54
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L = L~elf + M

Here, the self and mutual inductances of the (half) circular loops

can be found in referece 8 to be
-

Lse~~ ‘a “~n(~) ‘2] (53)

[

pa.’ 3
M=——

2. ~
K(m) - 1V%E(m) = 0.47251 Da.’ ,

2
m =—

6

where rw is approximately the radius of the bundle of N wires

(assumed closely packed) in each coil and K(m) and E(m) are com-

plete elliptic integrals of the first and second kinds, respecti~’ely.

The efficiency of the Helmholtz-coils

as

~v 2na~
Eh=@- , vm’~

c
m

~ ~h = 0.268 (>)3
4. Ha

simulator can be written

or

(54)

The coil inductance L and the simulator’s conversion length Lc
m

are obtained from (53) and” (52). Some numerical values of

ghL/(4N2ua) are tabulated in table 8. The normalization constant

L/(4N2pa) is a function of a/rw and can be evaluated by

L/(4N2pa) = 0.25 ln(8a/rw) - 0.38187 g 1.46 for a/rlV = 200

8. W. R. Smythe, Static and Dynamic Electricity, Chapt-er VIII,
3rd cd., McGraw-Hill Book Co., New York, 1968.
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Table 8

VALUES 0?? SIMULATOR’S EFFICIENCY Lk
FOR HELMHOLTZ COILS

.’

a
w

z

0.15

0.20

0.25

0.30

0.40

0.50

102 L

4N2ua ‘%

0.09

0.21

0.42

0.72

1.72

3.35

Amax

0.00057

0.0018

0.0042

0.0084

0.025

0.054
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D. Maxwell. Coils

Maxwell coils consist of three circular coils wound on a

spherical surface of radius b as shown in figure 11. If the coils

are connected in series and ca:rry current I in each turn, a typical

number N1 of windings in the center coil (large coil) is 64 and the

number N2 of windings in each of the other two coils is 49. The

radius of each of the smaller coils is ~ b and the distance of

either of them from the plane of the center coil is ~ b (ref. 6).

The magnetostatic potential @m of Maxwell coils is given

by, similar to (45),

$m . .~ Anrn Pn (coSe) (55)

1

The magnetic field component in the z-axis is obtained

from (55) to be

sine a%-~~o ~$rn ‘“-
Hz(r,O) ===- —ar

m

x n-1 p= n Anr n_l(cose)

1

(56)

Again, because of- the symmetry of the problem, the terms in the

odd pow7er of r vanish and (56) is reduced to

Hz(r,e) = Al + ~ (21 + 1) A2i+1r21 P2L(cose)

1

= AI(l + A) for ~ = 1,2,3, ...

49
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a. Maxwell Coils Simulator

jz

C%=49.10°
— sin(a) =

Cos(a) =

Maxwell

b. Maxwell Coils Arrangement

,

coils

.

.

Figure 11. Geometrical Configuration of Maxwell Coils

*
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where is the field deviation given by

A
2fi+lr22
A. (58)(21 + 1) P2L(cose)
J-

The coefficients Al and A2~+1 are found

2N21 sin2(a)

b

N1 I

‘l=T+

(59)

QP
d~ 2R+0) ~ P = Cos(a)

Maxwell coils arrangement be

49, sin(a) = ~ and cos(a)

Pjg++o =

Let the

‘1 = 64, N2 = =4577 (60)

the first several significant terms in (57) are

1201 =
b HZ(O,O)

‘5 =0

‘1

‘3

‘7

‘9

(61.)
2.043 A

7b6 1
A

‘1
2.878

9b8

of powerTherefore, the field deviation can be expressed as a sum

series :

A = -2.043(~)6 P6(COS6) + 2.878(f)8 P8(COS6) (62). . .

51
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P6(U) = *CW6 - 3151_14-f-lo5p2 - 5)

‘8(@ = &(6435~8 - 12012f + 6930p
4

J v = Cos(e)

- 1260u2 -f-35)

By using the same argument given in the previous subsection,

the maximum field deviation Amax is calculated on the axis for a

given working volume radius aw to”be (near the center of coils)

A
= Hz(r,O) - HZ(O,O) (63)

max Hz(o,o)

on the- axis

6
= 2.043(~) - 2.878(~)8 + ‘“”

The numerical values of Amax are given in table 9 for

varying aw/b.

The conversion length of the Maxwell coils simulator can be

obtained from (59) to be

kc =
I

HJo,o)
m

b 1.35=
= Ill + 2N2b’ m=lor2 (64)

N1 + 2N2sin2(a)

The inductance of Maxwell coils is given by the summation

of the self and mutual inductance of the coils:

L Lself + M=

L

.

L
self

= self-inductance of the coils

= L1 + 2L2
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Table 9

MAXIMUM FIELD DEVIATION
OF

THE MAXWELL-COILS SIMULATOR

aw/ b 109 Amax aw/b 105 Amax

o 0 0.10 0.20

0.01 0.002 0.15 2,25

0.02 0.13 0,20 12.34

0.03 1,49 0.25 45.49

0.04 8.35 0.30 130

0.06 94.83 0.40 648

0.08 530.73 0.50 2068

.. .

.
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M= mutual inductance of the coils

= 2M12 + ’22

From reference 8, the self and mutual inductances of the (half)

circular loops are given by, for N1 = 64 and N2 = 49,

[ 2 1 ‘1N2[1+ iin(~)‘(m)- ‘(m)]=1398437‘b}= p,1 + si.(~) *
’12

[

m=K
12

2 1 i-Cosz(a)
’122 = UbN2 K(m) - E(m)1=818.35 ub, III= K22

’12 = (A%ir = (1 :~f = 0’27’0

(65)

’22 = sin(a) = ~ = 0.7-5593

r = radius of bundles of Illwires and N2 wires (assumed
WI ,‘W2 closely packed) in each coil

The efficiency of the Maxwell-coils simulator is defined by

L
~h

‘W 3
= 1.149 (T)

(Nl + 2N2)2 ub

(66)

The numerical values of ~hL/r(N1+2N2)2ub] are given in table 10 and

the normalization constant L/[(N1+2N2)2vb] can be expressed as,
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Table 10

VALUES OF SIMULATOR’S EFFICIENCY ~h
FOR MAXWELL COILS

a 10Z L

+ (Nl+2N~)2~b<h
105 Amax

0.10

0.15

0.20

0.25

0.30

0.40

0.50

0.11

0.39

0.92

1.80

3.10

7.35

14.36

0.20

2.25

12.34

45.49

130

648

2068
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for N1 = 64 and N2 = 49

L

[
(Nl + 2N2)2 pb

1

= o.o,.o.~n(~). 2]

‘0”182’8Ha-2“281+0-13775
If-r = r = rw and b/rw = 200, we obtain

‘1 ‘2

L

[
()

=“0.26102 in ~ - 0.43552 = 1,49
(Nl + 2N2)2 ub

1
w

Comparing tables 8 and 10, we see that the Maxwell-coils

simulator produces much more uniform field near the cent-er than

the Helmholtz–coils simulator. Also , if we assume the normaliza-

tion constants L/~(2N)2ua] ~ 1.46 for a/rw = 200 and

L/[(N1+2N2)2ub] ~ 1.49 for b/rw = 2ooto

then theMaxwell-coils simulator has four

than the Helmholtz-coils simulator.

.

be approximately equal,
*

times better efficiency
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Iv. Simulator/Object Interaction Canonical Problems

A. Half Cylinder Between Infinite Large Plat-e–and Ground Plane

The-change of the admittance of a large plat-e simulator

above the ground plane due to the presence of a cylindrical test

object of radius d, as shown in figure 12, inside the simulat-or

is given by

AYL ~ d 2

Y. ()—=2% c1
(6’7)

Y. = characteristic admittance of medium (or free space)

The Fourier coefficients C2n_1 (Cl ~ C2n_1 for n = 1) for

the calculation of the surface charge density induced on the

Q
cylinder can be expressed as (n > O)

‘2X(+) [12(m+n-1) 2m+2m-1

c2n-1 = 6n,l
~(2n + 2m) c2m I (68)

~. 1 2n-2

where ;(z) is the Riemann zeta function and the numerical values

‘f c2n-1 are given by table 11 (ref. 9).

The increment of the simulator’s admittance due t-o the pres-

ence of–the half-cylinder inside the simulator is plotted in

figure13 (ref. 8),

.

!3. R. W. Latham, “Interaction Between a Cylindrical Test Body
and a Parallel Plate Simulator,” Sensor and Simulation Note
55, hlay 1968.
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Figure 12. A Half Cylinder Inside an Infinite Large
Plate Simulator and ‘the Ground P-1ane
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Table

FOURIER COEFFICIENTS
OF THE CYLINDER SURFACE

WHERE a($) = -2eEo(C1 sin$ + C3

Coeff,

1S/b
0.00

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0,60

0.64

0.68

0.72

0.76

0.80

c1

1.000

1.001

1,005

1.012

1.022

1.034

1.050

1.069

1.092

1.119

1.152

1.190

1.234

1.287

1.349

1.423

1.512

1.621

1,756

1.930

2.160

C3

0,001

0.001

0.003

0.005

0.008

0.012

0.018

0,027

0.038

0.054

0.076

0.105

0.145

0.201

0,280

0.395

11

FOR--CALCULATION
CHARGE DENSITY IJ($)
sin3@+C5sin5@+ ‘---”S)

C5
.“

0.001

0.001

0,002

0.004

0.007

0.011

0.017

0.027

0.043

0.069

0.112

59

C7

0.001

0.001

0.003

0.005

0.008

0.015

0.029

C9

0.001

0.001

0.003

0.007

0.001

0.001

.



AYL

Y.

.

2.2

2.0

1.8

1.6

1.4

1.2

1.0

.8

.6

.4

.2

0
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

dlb

.

Figure 13. Increment Admitt-znce Due to the Half-Cylinder
Inside the Large P-late Simulator
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The change of the surface charge density on the cylinder

with respect to the charge density induced on the same cylinder
.-

immersed in a u,niform electric field E. can be expressed by
.

a($) - ~m($)
AsO($) =

am(o)

m

(s($) = -2EE0
E c2n-1

sin[(2n - 1)$]

n=l

..— —=.”

~m($d= ~($) = charge induced on the cylinder
b+cn when the cylinder is immersed
Eo=constant in a uniform electric field EC,

= -2cE0 sin ~

v
Eo=f= electric field at the center of the ground

plane with the test- object removed (i.e.,
a smooth conducting ground plane)

The increment of the charge density Aso($) for @ = 30°, 60°, 90c’

are given by table 12with d/b as the parameter. However, the

maximum increment of the charge density is evaluated at $ = 90°

B, Half Cylinder Between a Finite-Width Plate and Ground
Plane

The change of the geometrical impedance factor of the

(69)

finite–width-plate

to the presence of

simulator above ground plane (figure 14) due

the cylinder can be given by

(7CI)

Here, f denotes the geometrical impedance factor of the
go

simulator without the presence of the circular cylinder.



Table 12

INCREMENT OF SURFACE CHARGE DENSITY A#j), @ = 30°,600,900

ON A HALF CYLINDER INSIDE LARGE PLATE SIMULATOR

0.04

0.08

0,12

0.16

0.20

0.24

0.28

0.32

0.36

0.40

0.44

0.48

0.52

0.56

0.60

0.64

0.68

0.72

0.76

0.80

30°

0.002

0.006

0.012

0(020

O.032

0.046

0,064

0.082

0.104

0,128

0,154

0.184

0.214

0.248

0.282’

0.320

0.360

0.404

0.448

0.498

60°

0.001

0.006

0.012

0.022

0.033

0.050

0.069

0.092

0.119

0.151

0.188

0.231

0.282

0.341

0,410

0.492

0,589

0.706

0.846

1.022

90°

0.001

0.005

0.012

0.022

0.035

0.051

0.072

0.097

0.127

0.164

0.209

0.263

0.329

0.411

0.511

0.637

0.799

1,011

1.298

1.705

‘e

.
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Figure 14. A Half-Cylinder Inside a Finite-Width-
Plate Simulator and the Ground Plane
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The numerical values of Af /f-
~ go

are tabulated in table 1-3

and are also shown in figure15 (ref. 10). From table 13, it shows

that for agiven d/b, Af- /f
g go

is not sensitive to the variation of

the simulator width-to-height ratio, a/b. For a/b greater than

one, values of Af /f
g go

can be thought of in the context of the

infinite plate case.

The change of the–surface charge density on the cylinder

compared to the induced surface charge density on the same

cylinder immersed in a uniform electric field E. can be given by

AsO($) =

o($) = 2n&Eo(b/a)~

k=l

b+co

‘2k-l sin[(2k - I)@]

sin @= -zn&Eo 2K(m1) E(m)

Eo=constant

where E. is the electric field at the center of the ground plane

without the presence of the cylinder.

The Fourier c-oefficients A2k-@ > O) are given by table 14

and the increment of the charge density Aso($) along the surface

of the cylinder is given by table 15 (ref. 9).

10. Soon K. Cho and Chiao–Min Chu, “A Parametric Study of a
Circular Cylinder within ‘I%o Parallel Plates of Finite
Width,” Sensor and Simulation Note 174, January 19.73.

.
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Table 13

INCREtiENT OF GEOMETRICAL IMPEDANCE Afg/fg

OF A FINITE-WIDTH SIMULATOR DUE TO THE HALI? CY;INDER

INSIDE THE SIMULATOR WITH d/b and a/b AS PARAMETERS

0.1 0.2 0.5 1.0
d/b

0.1 -0.00537 -0.00641_ -0.00761 -0.00694

0.2 -0.02147 -0.02565 -0.03047 -0.02899

0.3 -0.04841 -0.05781 -0.06867 -0.06311

0.4 -0.08654 -0.10329 -0.02250 -0,11323

0.5 -0.13688 -0.16308 -0.19258 -0.17915

0.6 -0.20169 -0.23947 -0.28022 -0.26437

0.7 -0.28601 -0.33722 -0.38799 -0.36495

0.8 -0.40151 -0.46635 -0.52101 -0.49195

0.9 -0.58110 -0.65042 -0.69112 -0.65589

0.99 -0.92472 -0.92978 -0.92334 -0.90017
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1.0

0.9

0.8

0.7

0.6

0.5

Af /f
g go

0.4

0.3

0.2

0.1

a/b = 1.0

.

.

0 0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

~~b

.

Figure 15. Increment otiGeometrical Impedance Factor
Afg/fg versus d/b

o
*
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o Table 14

FOURIER COEFFICIENTS An FOR CALCULATION

OF THE SURFACE CHARGE DENSITY o($) ON THE CYLINDER

WHERE #$#-- u($) = (Al sin$ + A3 sin3@ + A5 sin5@ + o.0O)
o

’11
A

\

n

I/b
‘3 ‘5 ‘7 ‘9

~/b =
0$1

0

0,1

-0.0172

-0.0172

0

0.1

0,2

-0.0418

-0.0418

-0.0427

~/b =

0.2

0

0.2

0.5

0,99

0

0,1

0.2

0.4

0.6

0.8

0.9

0

0.08

0,16

0.24

0.32

0,40

0.48

0.56

0.64

0.72

0.80

-0.1-352

-0.140

-0.168

-0.452

-0.3077

-0.31

-0,318

-0,354

-0.438

-0.667

-1.03

-0.637-

-0.640

-0,651

-0,668

-0.695

-0,733

-0.786

-0.859

-0.963

-1.118

-1.375

~/b =
0.5

i/b =
1.0

~/b =
2.0

0.006

0.077 -0.01

0.0018

0.015

0.1

0.32

-0.01

-0.085

0.022

0.029 -0.011 0.003

0.003

0.008

0.017

0.034

0.067

0.128

0.251

-0.004

-0.011

-0.027

-0.071

0.001

0.002

0.005

0.008

-0.002

-0.007

0.001

0.001



Table 15

INCREMENT OF SURFACE CHARGE DENSITY A~o($) for @ = 30°,600,900 9
DUE TO A HALF CYLINDER INSIDE THE FINITE-WIDTH-PLATE SIMULATOR

a/b = 0.1

a/b = 0.2

a/b = 0.5

a/b = 1.0

a/b = 2.0

1 ‘$
d/b

0.1

0.1

0.2

0.2

0.5

0.99

0.1

0.2

0.4

0.6

0.8

0.9

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

30°

0.0

0.0

0.0215

0.0355

0.154

1.278

0.0075

0.0335

0.139

0.326

0.622

0.577

0.005

0.022

0.049

0.083

0.127

0.181

0.250

0.322

0.404

0.498
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60°

0.0

0.0

0.0215

040355

0.243

2.269

0.0075

0.0335

0.151

0.423

1.063

1.987

0.005

0.022

0.049

0.091

0.151

0.234

0.341

0.492

0.706

1.022

90°

0.0

0.0

0.0215

0.0355

0.287

2.987

0.0075

0.0335

0.156

0.472

1.597

3.803

0.005

0.022

0.049

0.096

0.163

0.261

0.410

0.637

1.006

1,705

.
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flb.+-
For

using the

a/b greater than one, A~k_l can be approximated

simple relation

Here, C2k ~ is Fourier coefficients of

by

(72 )

infinite plate case and

is tabulated in table 11. If (72) i-sused to calculate A2k ~

for a/b = 1, the error of the leading. term coefficient Al of

charge density o($) is found to be less than 0,04. In table 15

the increment of charge density As. for a/b = 2.0 is calculated

by using (72).

.
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c. Prolate Hemispheroid Inside a Half Circular Loop

The test object inside a current loop simulator is a per-

fectly conducting prolate hemispheroid of major and minor axes

2d and 2b (d > b), respectively, situated on a perfect-ly con-

ducting ground plane (fig. 16). The spheroidal coordinates

~, ~, @ of figure 17 are used to define the circular loop by

n no and g= = O and the test body by rl= nl (ref. 11).

The change of the magnetic field (equivalent to the skin

current on the spheroid) on the surface ofithe spheroid compared

to the induced magnetic field on the surface of the same testi

body immersed in a uniform magnetic field Ho can be given by

~(c,n~) - Hm(E,ml)
A =
so Hm(C,~l)

on the surface of the spheroid

I$&d-ll) = H(hl) = induced field on spheroid when

qO+w the spheroid is immersed in a
homogeneous magnetic field Ho

Ho=constant (73)

-H. P;(L)
=

Ol;-E2)(n;-1) Q+(h)
HO=*= field at the center of the current- loop without

the presence of the spheroid (a smooth conduct-
ing plane)

11. A, D. Varvatsis and M. I. Sancer, “Low-Frequency l!agnetic
Field Interaction of a Half Toroid Simulator with a Per-
fectly Conducting Half Prolate Spheroid,” Sensor and
Simulation Note 131, June 1971.
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Figure 16. Half Prolate Spheroid Inside a Current Loop

I

Figure 17. Spheroidal Coordinate-s
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for 1 < q < m are the associate-d Legendre funct-ions of the first

and second kind.

For a fixed finite value of--a (a equal to the current loop

radius} the limiting cases b/d + 1 and b/d + O correspond to the

problems of a sphere and an infinitely long cylinder.

The plots of-Aso versus z/d and z/a (z being the symmetrical

axis of the prolate hemispheroid and the circular loop) of a

spherical test object (b/d = 1) and of an infinitely long cylifider

(b/d = O), respectively, inside the current loop are shown in

figures 18and19 with b/a as the parameter. However, the maxi-

mum value of As. is shown in figure 20. Note that the maximum

deviation Amax for b/a s 0.5, in general, is not at the locatibn
.

z = O of the nearest distance between loop and object.
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Figure 19. Increment of the Magnetic Field Density Along an
Infinitely Long Cylinder (c?/b+ W) due to the
Simulator/Object Interaction
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max is the Maximum Value of A over the Spheroid



D. Charged Filament Above an Earthed Slotted Sheet

A filament of charge per unit length denoted by q is situ-

0ated at a distance d in front of the center of a slit of width

2b in the ground plane, as shown in figure 21.

By using the conformal mapping techniques, the complex

potential function w can be found-to be (rgQf. 12) —A

(74)

z =x+jy= complex coordinate

If the imaginary part–o-f the square root in equation (74)

is always taken positive, then we use the upper sign (positive

sign) for y > 0 and lower sign for y < 0.

The complex electric field E(z) can be obtained by differ-

entiating the potential function with respect to z to give

(75)

Ifweletb=Oandz= O, we obtain the short=circuit

f-ield at the center of the ground plane. Thus, equation (75)

reduces to

EsC(o) = j ~~ = jEo
(76) .

E. = the short-circuit electric field at the
center of the ground plane

r

12. W. R. Smythe, Static and Dynamic Electricity Chapter IV,
3rd cd., McGraw-Hill Book Co., New York, 196~.
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Figure 21. Charged Filament above the Slotted Ground Plane
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only,

Inserting E. into equation (75) and taking the upper sign

we rewrite equation (75) by

E(z) = jEo (1 + z//zv)[l + A + (b d)’

[(z + =)/d]’+ [1 + $,#]’ ’77)

However, if the slotted ground plane is illuminated by a

homogeneous electric field Eo, the resultant field can be

expressed by

Em(z) = E(z)
d+cu

‘%(’+ti)
Eo=constant

(78)

Again, we define a parameter Aso, where A~o denotes the

change of the aperture electric field (equivalent to the ficti-

tious aperture magnetic current) associated with the simulator,

charact-erize

by

“As. =

the interaction between the simulator and aperture

E(z) - Em(z)

Em(z)
aperture

(x+jA-wf+b2

(x+ jib’-x’ )2+ (d + ~)’
at–a ertur-e–z=x
and 71x <b

The numerical values of A~o are given in table 16.

to

(79)
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-.

x/b

\}/d

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1$0

1.2

1.4

1.6

1.8

2.0

3.0

4.0

5.0

10.0

Table 16

DEVIATION OF THE APERTURE ELECTRIC FIELD 102 A~o

DUE TO THE INTERACTION BETWEEN SIMULATOR AND APERTURE

0.1

0.050

0.198

0.440

0.770

1.179

1.659

2,201

2.797

3.440

4.122

5.580

7.135

8.757

10.42

12.12

20.71

29.00

36.66

63.99

0.2

0.100

0.396

0.879

1.536

2.349

3.300

4.370

5.542

6.798

8.123

0.93

3.88

6.89

9.93

?2.95

17.08

J8.77

j7,97

30.94

0.3

0.150

0.593

1.316

2.295

3,502

4.907

6.478

8.186

10.000

11,90

15.86

19.93

23.98

27.96

31.80

48.22

59.98

68.21

85.85

0.4

0$199

0.790

1.750

3.043

4.630

6.464

8.499

0.69

3.00

i5.38

?0.27

?5.14

~9.y3

14.38

18.61

j5.37

56.21

73.33

37.80

0.5
-

0.249

0.985

2.177

3.777

5.725

7.959

10.41

13.03

15.75

18.52

24.10

29.51

34.62

39.36

43.70

59.97

69.83

76.12

88.74

0.6

0.299

1.180

2.600

4.494

6.783

9.382

12.21

15.18

18.23

21.31

27.37

33.10

38.38

43.17

47.48

63.01

72.07

77.77

89.27

0.7

0.348

1.373

3.016

5.193

7.799

10.73

13.87

17.14

20.45

23.75

30.13

36.02

41.34

46.09

50.29

65.07

73.53

78.83

89.59

0.8

0.398

1.564

3.425

5.869

8.767

11.99

15,40

18.91

22.42

25.88

32.44

38.39

43.68

48,33

52.41

66.53

74.52

79.53

89.80

0.9

0.447

1.754

3.826

6.523

9.687

13.16

16.80

~().50

~4.15

27.71

34.37

40.31

45.52

50.07

54,03

67.59

75.23

80.03

89.95

1.0

0.496

1.942

4.217

7.152

10.56

14.25

18.08

21,91

25.67

29.29

35.98

41.88

47.00

51.44

55,28

68.38

75.75

80.39

90.05
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E. Large Plat Above Slotted Plane

Figure 22 schematically shows a large plate simulator in

front of a slot-ted plane which is maintained at-potential V = -1.

The slit has width 2b and is located at a distance h from the t-op

plate. By utilizing the conformal mapping method, the complex

coordinate z can be expressed in terms of the complex potential

function w by (ref. 12)

[

a’
z- jh.$ tanh(~) + ~

12-a 1
z=x+jy

(80)

w(z) = u(x,y) + jv(x,y)

where u(x,y) is the stream function and v(x,y) is the potential

function.

The above equation can be rewritten in two equations which

correspond to the real and imaginary parts of (80):

2h

[

a2
x =—

n
l-a2

Y
[

-h=~ a22T 1 -a

sinh(nu)
cosh(mu) + COS(TTV) ‘? 1

sin(nv)

cosh(m) + COS(UV) ‘?
1

(81)

Here, a is a parameter and is related to the slit width 2b by

b = $ (tanh-’a + ~a2) fora<l (82)
1

The complex electric field E(z) is obtained by taking the

derivative of (80) to give

.
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Figure 22. Large Plate in Front of a Slotted Sheet
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E(z) = Ey(x, y) + jEx(x, y) = ~

E.
=

1+ a’
sech’(~)

12-a

(83)

E. = short-circuit electric field = - ~

In the previous subsection, it has been shown that the- field of

a slotted plane immersed in a uniform elect-ric field E. is given

by (for the region y 2 O)
.
;

Here , imaginary part of the square root is always taken positive,

i.e., lm(jz~)>O

Similarly, the field deviation As. at the aperture is defined

by
E(z) - E@(z)

A =
so Em(z)

aperture

[

a2 1
-1

= 21i- sech’(~)
12-a

Letting z = x, th-e complex potential w

and (82) which reduce to

.

$
(85)

at aper-
ture 25x

‘1
-1

:-/i& “
and

“\xl<b

is determined f-rem (80)

..

[

2
x- jh=~a2 tanh(~) + ~

1 -a 1
b=%

(
tanh-la + a- z

)
for a < 1

1 -a

(86)
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It is of interest to examine the field function (83) by

taking the limi,t h + m and (83) should be reduced to (84). As

*

e

one can see, if the top plate V = O of figure 22 approaches to

infinity, the field near the aperture is small and the potential

-.

near the aperture will be very close to the potential of the

slotted plane V = -1. Then we can express the potential function

w as

w’ -j+~, 6<<1 (87)

where 6 denotes the stream function near the aperture and 6 is

small.

As h + ‘, from (82) we find t-he parameter a to be

(88)

By utilizing expressions (87) and (88), from (80), we obtain

6.2 b’ o.;6+—=
4h2

or
(89)

Note that the positive sign in front of the square root is used
.

here. Thus, the denominator of the field function (83) is

reduced toc.

D=l+
a2

z sech’
1 -a

(2) s 1 + (%)2(% - 1) [J Csch (g)]2

.2-:=2[z~b2] (90)
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Inserting (90) into (83), we have

E
E

[

=+1+

e 1=Emh+m
Eo=constant - bz

The field deviation A~o in the aperture due to the interaction
.

of simulator plate and aperture is tabulated in table 17.
.

.

,-
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Table 17

DEVIATION OF THE APERTURE ELECTRIC FIELD 102 As.

DUE TO TH.E....INTERACTION BETWEEN SIMULATOR AND APERTURE

—

0.0 0.1 0.2 0.3 0.4 0,5 0.6 0.7 0.8 0.9.
b/d —

0.2 0.808 0.847 0.845 0.835 0.819 0.800 0.784 0.788 0.830 0.833

0.3 1.791 1.810 1.811 1.809 1.804 1.798 1.794 1.793 1.788 1,795

0,4 3.122 3.132 1.132 3.128 3.121 3.113 3.103 3.093 3.053 3.057

0,5 4.757 4,758 4,753 4.743 4,727 4,707 4,682 4.652 4.595 4.570

0.6 6.641 6.637 6.625 6.603 6.571 6.530 6.481 6.421 6.334 6.270

0.7 8.729 8.718 8.695 8.656 8.601 8.531 8.446 8.330 8,215 8.099

0.8 10.97 10.95 10.92 10.86 10.77 10.66 10.53 10.36 10.19 10.01

0.9 13.32 13,30 13.25 13.16 13,03 12.88 12,69 12.46 12.21 11.95

1.0 15.74 15,72 15.64 15.52 15.35 15,14 14.89 14758 14.25 13.90

1.1 18.20 18.17 18.07 17.92 17.70 17.42 17.10 16.71 16.29 15.83

1.2 20.67 20.63 20.51 20.32 20.05 19.70 19.29 18.81 18.29 17.73

—

.,
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v. Summary

!
Analysis of–other important geometries pertinent to FINES

has appeared in the literature and is not included in this report-.

Those–geometries are a circular disk (ref. 13), a spherical cap

(ref. 14) above the ground plane f-or the E–field simulators, the

multiloops wound on a hemi-cylindrical surface (ref. 15), and a

hemispherical surface (ref. 7) above the ground plane for the H-

field simulators. For simulator/object int-eraction problems, dne

of the important generic studies concerning a circular disk in

front of a circular aperture in the ground plane has. been solved

by reference 16, and a cylindrical post sited on the ground plane

below a large simulator plate can be found in references 17, 18,

and 19,where the static solution is of interest. Solutions to

13. C. E. Baumj “The Circular Parallel-Plate Dipole,” Sensor and

14.

15.

16.

17.

18.

19.

Simulation Note 80, March 1969.

C. E. Baum, “The Single-Gap Hollow Spherical Dipole in Non-
Conducting Media,f’ Sensor and Simulation Note 91, July 1969.

C. E. Baum, “Some Considerations for Electrically-Small.
h!ulti–Turn Cylindrical Loops,” Sensor and Simulation Note 55,
May 31, 1967.

F. C. Yang and L. Marin, “An Electrical-Field–Penetration
Simulator for Apertures, ” Sensor and Simulation Note (to be
published).

C!layborn D. Taylor, George A. Steigerwald, “On the Pulse
Excitation of a Cylinder in a Pzrallel Plate Waveguide, ”
Sensor and Simulation Note 99, March 1970.

R. W. Latham and K.S.H. Lee, “Electromagnetic Interaction
Between a Cylindrical Post–and a Ttvo-Parallel-Plate Simulator,”
Sensor and Simulation Note 111, July 1970.

Lennart hlarin, “A Cylindrical Post Above a Perfectly Conduct-
ing Plat-e, I (Static Case),” Sensor and Simulation No~e 134,
July 1971.
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these problems are considerably difficult to obtain, Future

studies are suggested to choose one or two configurations from the

above canonical–problems for–detailed considerat-ion.

One of the s-imple driving networksf or_ single- and

multiple-field-component FINES can be shown schematically in

f-igure 23 in which a circular disk simulat-or is driven by gener-

ators spaced in quadrants along its circumference. If the simu-

lator is driven by a source pair of opposite polarities, as

shown in figure 23(a) of the source pair 1 and 3 and also in

figure 23(b) of..the source pair 2 and 4, the simulator becomes

the H-field type. From the directions of current flow as indi-

cated in figures 23(a) and (b), the fields El and fi2 generated

by the simulator are orthogonal, However, if all the sources

are identical (including the connecting cables between the source

and simulator) and are in the same polarity, as shown in figure

23(c), the simulator becomes the E-field type. The possible

network in feeding this simulator is shown in figure 24. Here,

two independent current sources are used to drive the transformer

pairs A and C, and B and D to generate the magnetic fields fil and

i2 , respectively. A single voltage source is connected in such

a way to generate only the electric field. Note that the trans-

former pair A and C is not coupled to the transformer pair B and

D, To achieve mutual.=coupling between A and C a bifilar (or

trifilar or quadrafilar) winding is used, and similarly for B and

D. The details of such a design need study,
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/ ‘J’p=y
a. H-field Type

b. H-field Type

c. E-field Type

Figure 23. SimuIator with the Sources Spaced in Quadrants
Along the Disk’s Rim
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Figure 24. Feeding Network for the Multiple-Field-Component FINES
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Another possible combined fields simulator, as shown in .

figure 25, is the combination of an H-field simulator consisting

of some current loops such as the Helmholtz coils and an E-field

simulator such as a circular disk above the ground plane. It fs

desired that the E-field simulator be driven by a voltage source

and the H-field be driven by a current source. An exact analytic-

al solution to the combined structures by solving a rather com-

plicated boundary–value problem may be difficult to obtain. ‘Y,

However, by symmetry in design, we are able to keep the coupling

between the multiple field components negligibly small. Hence ,

the problem of a composite structure can be resolved into two

rather simple canonical problems where the analytical solutions

are possible. Other engineering problems in the design of a

FINES, suchas the choices of the sources and the matching net-

works which will directly affect the desired waveform and power

efficiency, should also be included for future consideration.
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Figure 25. Combined Field Simulator
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