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A mode equation is derived for surface wave propagation

along a rectangular bonded wire mesh over a lossy half-space.

The mode equation is solved numerically for the complex propa-

gation constant of the surface wave. For a sufficiently small

mesh size, the attenuation rate of this surface wave is con-

siderably less than that of the Zenneck surface wave for an

isolated half-space or homogeneous ground.

INTRODUCTION

Wire mesh screens are employed in numerous shielding and reflecting
.L-:

applications. The relevant plane wave scattering properties have been ‘

analyzed both for meshes in free space [Z&ntorcvichet aZ., 1962; Astrakhan,

1968; HilX and Wa{t, 1974; HiZZ and W&t, 1976] and over a lossy earth

[Otteni, 1973; Wa<t and Hii!l,1976]. The closely related problem of sur-

face wave propagation on a’tire mesh in free space has also been analyzed

[HiZZ and Wait, 1977a; HiZZ and Wait, 1977b] and studied experimentally

[VZrichand Tacke, 1973].
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Wire mesh screens are employed in numerous shielding and reflecting

applications. The relevant plane wave scattering properties have been

analyzed both for meshes in free space [Iiontorovfclzet aZ., 1962; As-trakhm,

1968; H<ZZ and Pla<t,1974; H<ZZ cixdWait, 1976] and over a Iossy earth

10tten-i,1973; Wait and HilZ, 1976]. The closely related problem of sur-
.

face wave propagation on a wire mesh in free space has also been analyzed

[HiZZ and Wait, 1977a; HiZZ and Wait, 1977b] and studied experimentally

[LIZr_iehand Taeke, 1973].

215



,.

251-4 EMP 1-27

Here we extend our analysis to the case where the rectangular mesh is

located at an arbirrary height above a conclucti.nghalf space. \~henthe o

height is small, this configuration can be considered as a model to study

surEace wzve propagation over a ground screen. The surface wave contribu-

tion to the total field is expected to be significant when the source and

observer are located near the ground screen. For example, a conical mono-

pole source over a ground screen has been used to illuminate test objects

(also located above the ground screen) with zn electromagnetic pulse [Rekver

and Bawn= 1975].

Our objective here is to calculate the propagation constant of the

surface wave. Due to the 10SSY earth, the wave suffers attenuation a~d the

propagation constant becomes complex.

FORMULATION

The geometry of a rectangular bonded mesh located az a ~eigkz d above .

40
a conducting half-space is illustrated in Figure 1. Arrays ‘ofidentical

perfectly conducting wires parallel to the x axfs with spacing b and parallel

to the y axis with spacing’a are contained in the plane z = 0. This con-

figuration is called a bondsd rectangular mesh because the cont”actbetween

the wire junction is bonded and the interwire spacings a and b are not equal,“ “

in general. Furthermore, ~he wire radius c is small compared to the spacings

a and b, the mesh height d, and the free space wavelength

only The axial wire c“urrentsare important, and the usual

mations are valid.

The region z > - d, external to the wires, is free

mittivity E and permeability Uo. The region
o

z<–d

with permittivity E
g’

conductivity G and free space
~’ ~

l.. Consequently,

thin wire approxi-

space with per-

is homogeneous

permeability )lO.
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/-%, 59,%
Figure 1. A bonded rectangular wire mesh over a conducting

half-space (perspective and side view).
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In the following formulation,

that d-is positive. However,

mesh (d<o).

EMP 1-27’

the mesh is located in free space which means
@

a similar formulation is possible for a buried

The formulation closely follows that for a rectangular bonded mesh in

free space [lii2Zati Wait, 1977b]. Thus, we seek modes which are propaga-

ting in x and y but which dec’ayabove the mesh (z>O) and in the earth

(z<-d). Ue invoke Floquet’s theorem [CoZZ~n, 1960] in order to express the

relevant electromagnetic quan~ity as an exponential function multiplied by

a function which is periodic in x and y. Thus, for a single mode propaga-

ting at an angle @ to the negative x axis, the current on the qth x-dir-

ected wire I and the current on the mth y-directed wire I
Xq

can be
P

written:

I = exp[y(x COS$ + qb sin$)~ ~ Ame”kp(i2mmx/a] (1)
Xq

m
and

IP= expry(ma cos~ + y sin$)l ~ Bqexp(i2rqy/b)

q

(2)

where a time factor exp(imt) is assumed. Here Am and B are the un-
~

knowm Fourier coefficients, and y is the propagation constant of the parti-

cular mode which we seek. The m and q summations are over all integers

including zero from -CU

The calculation of

and (2) in the presence

[Wait and HiZl, 1976].

to w.

the fields produced by the currents given by (1)

of a conducting half-space is straightforward

For the present analys%s, we employ the following

thin wire boundary condition for the assumed perfectly conducting wires:

Ex(x,o,c) = E+O,C) = O. (3)
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Although (3) is only applied to the m = O and q = O wires, the periodic

Floquet form of (1) and (2) assures that the boundary condition will be

satisfied at all wires.

Expressions (1) and (2) for the current are identical to those in the

plane wave scattering case except that y has replaced ikS where k is

the free space wave number (=2m/A) and S is the sine of the incidence

angle. Thus the previous equations for Am and B can be used with the
q

following modifications: 1) set the incident fields equal to zero (source-

free problem), 2) set the grid separation h equal to zero (bonded grids in

the same plane), and 3) set the wire impedance equal to zero perfectly con-

ducting wires. As a result, equations (24) and (26) from the plane wave

case [Wait and HCZZ3 1976] reduce to the following:

(k2-k:)P ik

(

ikqTs
Am -

2ikb
‘+ * ~ Bqkyr-lEexp(-rc) + r + ~ km

q mq
XY ‘)

(4)

exp(-21’d)] = o ,

(k2-k2)Q -

(
+ ~ ~ A k r-l [exp(-rc) -I-R

ikrlrsm
B - ~ik;
q mx mq-kkm XY ‘)

(5)

exp(-2rd)] = o ,

where

Pm = ~ [=p (-rc) + Rmqexp (-21’d)]T-1,
q

Qq = I [exp(-~c) + rmqexP(-2?’d)]T-1
m

rmq(=r) = (kj+kj-k2)1’2 ,

219
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k = (2nm/a) + kS COS$ ,
x (9) o

ky = (2Trq/b)+ M Siil+ , (lo)

and r-l= (vo/Eo)w S, being a complex quantity, is now defined as y/(ik).

The quantities R , r S and s
mq mq’ mq

are functions of the half-
Tllq

space parameters U
g

and z :
g

.

k2(r+?K ){r-~SxKx) + (kxky)2(l-Kx)2
R=

x
mq

k2@Kx)(r+?erKx) - (kxky]2(l-Kx)2 ‘

r =
lnq 9

k2(I’+fKy)@~rKy) - (kxky)2(l-Ky)2

-2ikxk T(l-Kx)/n
s
nlq. = k2(1’+fiKx)(W~srKx) - (kxky)2(GKx)2 ‘

2ikkxk r{l-Ky)/~
s
mq = k2(I%;Ky)@erKy) - {kxky)2(l-Ky)2 ‘

(11)

(12)

(13)

(14)

where

Kx = (k2-k:)/(kj-k;) ,

K = (k2-kj)/(k:-kj) ,
Y

l?= (k:+kj-k;)l’2 ,

k; = k2~
r’

& = (Og+iwcg)/(iOlso).
r

For two special cases, we note that (11) - (14) simplify considerably.

When the half space vanishes (i.e. & = 1), wer

which is the free space result [RiZZ and Wa5i5,

is perfectly conducting (i.e. CT = CO),we have
g

220

have Rmq = rmq = Smq = Smq = O

1977b]. When the half space

R . r = -1 and
mq lnq
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0 s =
Rlq o.

‘mq = By image theory, this is the result for a pair of identical

meshes ~fiiZZ,1977].

The summations involving exp(-I’c)in (6) and (7) are slowly convergent

as they stand.

Qq in the free

here to yield

More rapidly convergent forms have been derived for Pm and

space case lH{ZZ and Wait, 1977b] and they can be applied

- exp(-2~c/b)] + Am}

(15)

Rmqexp(-2rd)r-1 ,

- exp(-2Tc/a)] + dq}

rmqexp(-2rd)r’-1 ,

[
21T exp(-rc) exp(-2m\qlc/b)
T—- r’

Iql
1

[

~ exp(-rc) - exp(-2T~m~c/a)
a r

Iml
1

The superscripted prime over the sumation sign indicates

(16)

(17)

(18)

omission of the

q=O (orm=O) term.

The doubly infinite set of linear equations (4) and (5) for A arid
m

B is numerically inefficient in the present form because A
q and B

m q
decay slowly for large [ml and lql. The difficulty arises because the

current expansions (1) and,(2) are slowly

current that occurs at the wire junctions

vent the convergence problem by modifying

convergent for the discontinuous

in bonded meshes. We can circum-

the current expansions to allow

for a jump discontinue.tyat the origin. The procedure is nearly identical

22/2m-

,,
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to that employed for the rectangular,bonded mesh in free space (Hill and

Wait, 1977b]. Thus the Fourier coefficients of the current Am and B
~

are rewritten

and

where

Am = A’
m

A: and B’ are modified
~

current discontinuity in

i-A(l-dmo)/(2nim) (19)

- A(l-6qo)/(2~iq) (20)

I,ln=o

O,m#O

current coefficients, and A is an unknowm ~

I atx= o.
Xo

into (4) and (5)$ we obtain the following

for the modified coefficients:

By substituting (19) and (20)

equivalent set of linear equations

(k2-k:)P ik
A;

m
2ikb

i- ~ ~ B>yT-lEexp (-~c)

$!

(

ik@’Sm
-#r+kk

‘)
exp(-21’d)] (21)

mq
XY

{

(k2-k:)Pm (dmo-l) kx P’
-!-A

[

kS sin~ p
2kb 2’rrm - X

$+ Zm 1)lm =
o

(k2-k2)Q “
B’

2ika + ~ ~ A;kxr-~pxp(-rc)
q m

(

ikq17Sm
+R

‘)
exp(-2rd)l (22)

mq - kk
XY

{

(k*-k’) (1-6 o) + > ~’
+A

[
: + kS COS@

2ka 2Tq 2kb 2r IIQlq=0>

223
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where

P~m = ~’ [exp(-I’c)+ r + ‘k~r$
( ~q ‘)

exp(-21’d)J/(qI’),
q XY

(
ikrlrSm

+ ~’ ‘mq+ kk
‘)

sxp(-2rd)r-1 ,

q Xy

(~’ ~.exp(-rc)+ R
ik~rsm

Q1q = ~ w-kk ‘)
exp(-2T’d)I/@’) ,

XY

251-11

(23)

(24)

(25)

and

Q; = ~{- !LIIII - exp(-2Tc/a)] + 6q}

(26)

(
ikrirSm

+ ~’ ‘mq - kk
‘)

exp(-2Td)r-Z
m XY

Again the superscriptprime on the summation indicates omission of the

q = O (or m = O) term. Note that by setting A equal to zero in (21)

and (22), we could re~rieve (~) and (5).

Since we have introduced an additional unknown A, another equation

is required to have an equal number of equations and unknowns (A:, B~,

and A). The following equation

at the junctions (fiiZZati Wait=

can be obtained from charge continuity

1977b]:

A:
(

b ikSb
‘m=+ 27r ‘0s4)

, (27)

224



El@ 1-27
251-12

Since the doubly infinite set of equations, (21) and (22), are rapidly

convergent, they can be truncated with m ranging from -M to M and q ranging

from -Q to Q where M and Q are small integers. Thus (21), (22), and (z7)

yield a set of T(=2N+2@3)

A:

linear, homogeneous

TXT

coefficient

matrix

m’ $ andequations in A’

-_

o...........
..
a

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0

(28)

which is aA nontrivial solution to (26) exists only if the determinant,

function of S(=y/ik)~, vanishes. Thus the mode equation to be solved for

S is:

The above equation

Newton’s method.

TXT

coefficient

I matrix
I

has be;n programmed

225

. 0 (29)

and solved numerically for S by
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Convergence of the mode equation (29) was examined by increasing M

and Q until the value of S(=y/ik) did not change significantly. The

most rapid convergence was obrained by making M = Q for a~b ratios from

1 to 3. For the cases considered here, convergence was obtained for M=Q

= 2 (T=ll), and all results shown here were computed for M = Q = 2. The

required determinant calculation is fairly rapid for the resultant 11 X 11

matrix. The matrix fill time dominates the determinant calculation time

for such cases.

In Fig. 2, we

ratios. Note that

illustrate the $ dependence of Re(S)

for the mesh in free space, Re(S) is

for several a/b

always greater

than one (slow wave). For the half space environment where S is complex,

this is not always so. The relative dielectric constant &r = 10 - il.8

would correspond to a ground conductivity G = 10-2mho/m and relative
g o

permittivity E /c = 10 at a frequency of 100 MHz. The lack of $
go

dependence for a/b = 1 is to be expected for square bonded meshes which

are electrically small (e.g. b/A = 0.05). When a preferred direction of

propagation exists, a rectangular mesh (i.e. where a # b) can be useful,

and a 3 to 1 mesh has been used in some ~ simulator applications [Bazmz,

1!372;K.hrer and Bawn, 1975]. Note that Re(S) is closer to unity at

4=0” for the rectangular mesh, but that the ~ dependence is quite strong.

-2
A value of ch = 10 has been used in all calculations shown here, but

the results are only weakly dependent on the wire radius c.

For the same parame~ers, in Fig. 3 we illustrate the $ dependence of

Ire(S)for three a/b ratios. The actual attenuation rate E is determined

from S by

226
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— MESH OVER GROUND

----- MESH IN FREE-SPACE

t

II

H

1-
/’

\“
0.99 I ! I t I I I I &

0° ‘ 30” 60° w“

Figure 2. Real part of the
as a function of
Parameters: Clb

% = 10 = il.8.

normalized propagation constant S
propagation direction $.
. 10-2, d~b = 10-1, b/A = 0.05,
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5X10-2

2XK)-2

10-2

5X10-3

5

5XI0-’

—

—

alb=l

—

—

2X10-4
0° 30” , 60= 90°

P
Figure 3. Imaginary part of the normalized propagation constant

S as a function of direc~ion ~.
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a = Re(y) = -k Ire(S)(nepers/m) . (30)

No results are shown for the free space comparison because the free space

mesh is lossless (S real). As expected, the square mesh is again isotropic,

and the rectangular mesh is highly anisotropic. Also, the attenuation rate

is lowest when propagating in the direction of the more closely spaced wires

($=OO). For comparison, the result for the Zenneck surface wave of the

isolated half space is shown. It is computed from [Waitj 1962a; Eanos,

1966]:

s = [Er/(Cr+I)] 112
(31)

For Z= = 10 - il.8, S is approximately 0.9547 - iO.0076. Note the large

reduction in attenuation at @ = 0° due to the mesh.

In Table 1, we illustrate the dependence of S on b/A- and d/b for

+ OO.
-2. As before, &r = 10 - il.8 and c/b = 10 . Note that the attenu-

ation rate decreases as d/b is increased from 0.1 to 0.3. This is expected

because ground screen performance generally improves as the screen is slightly

elevated [Watt= 1962b]. The results for d/b = ‘X are those of the mesh in

free space [%22 and Wait, 1977b]. The variation of S is not necessarily

monotonic as d/b is increased from 0.1 to CQ. tiso note the large increase

in both the real and imaginary parts of S as b/A is increased from 0.05

to 0.1, particularly for the square mesh.

CONCLUDING REMARKS

A general mode equation has been derived for propagation along a bonded
d

rectangular mesh over a 10SSY earth. The

nwnerically for the dominant surface wave

ation due to the losses in the earth, and

mode equation has been solved

mode. This mode suffers attenu-

for most cases is a slow wave
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TABLE 1
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Normalized Complex Propagation Constant, S (&r = 10 - il.8, c/b = 10-~,
$=0°)

ah b/A djb s

1.0 0.05 0.1 1.002485 - iO.001396
tl 11 0.3 1.002247 - iO.001161
rq :1 1.0 1.002290 - iO.001200
11 !1

\ 100.0 1.010513 - iO.000002
1! 11 ‘m 1.010515 - iO.O
91 0.1 0.1 1.510056 - iO.518362

II !1 0.3 1.278652 - iO.338335
1* 11 1.0 1.114107 - iO.150493
IT IT 100.0 1.038768 - iO.O

~1 91 w 1.038768 - iO.O
o

3.0 “0.05 0.1 “1.001114 - iO.000399
91 It 0.3 1.000731 - i.o.000197
It It 1.0 1.000673 - iO.000170
1? 11 100.0’ 1.002683 - iO.000026
11 $1 m 1.002731 - iO.O
3; 0.1 0.1 1.003560 - iO.003103
91 11 0.3 1.002708 - iO.001680

11 It 1.0 1.002608 - iO.001471
t! 11 100.0 1.010828 - iO.O

II 19 CO 1.010828 - iO.O

230
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(i.e. Re(S) > 1). This is in contrast to the fast surface wave for the

10SSY earth without a ground screen. For a sufficiently small mesh size,

the attenuation rate of the surface wave is considerably less than for the

isolated half-space. However, for mesh sizes of O.lA or greater, the

attenuation reduction is not significant and, in fact, the attenuation rate

can even increase. For the rectangular mesh (a#b), the propagation con-

stant is highly dependent on the direction of propagation, and minimum

attenuation is obtained for propagation along the more closely spaced wires.

Several extensions to this work would seem worthwhile. The approxi-

mate method of averaged boundary conditions which has been applied to single

meshes [Astmak?zan,1968] and a pair of meshes Ilbntormieh .etaZ., 1964]

in free space could be extended to the lossy half-space geometry. Caseg

[1976] has recently applied this method to a square bonded mesh located

at an air-dielectric interface. Since the unbended mesh has superior re-

flecting properties [Ken-toroviehetiaZ., 1962; Hill and Va;t, 19761, it

could also be analyzed for surface wave propagation in the presence of a

Iossy half-space. Finally a thorough numerical

could be made for the mesh-earth structure. We

surface wave mode, but others may be possible.

search for all the modes

have examined the expected

Solution of a source prob-

lem (such as vertical dipole excitation) would be useful in assessing the

various pole (surface wave, etc.) and branch cut (continuous spectrum) con-

tributions to the total field.

231
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