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A mode equation is derived for surface wa;el.propagation
along a rectangular bonded wire mesh over a lossy half-space.
The mode equation 1is solved numerically for the complex propa-
gation constant of the surface wave. For a éufficiently small
mesh size, the attenuation rate of this surface wave is con-
siderably lesslthan that of the Zemneck surface wave for an

isolated half-space or homogeneous ground.

INTRODUCTION

Wire mesh screens are employed in numeroué shielding and reflecting

applications. The relevant plane wave scattering properties have been
analyzed both for meshes in free space [Kontorovieh et al., 1962; Astral‘chan,
1968; Bill and Wait, 1974; Hill and Wait, 1976] and over a lossy earth
[Otteni, 1973; Wait and Hill, 1976]. The closely related problem of sur-

face wave propagation on a wife mesh iIn free space has also been analyzed

- [HLll and Wait, 1977a; Hill and Wait, 1977b] and studied experimentally
[Ulrich and Tacke, 1973].
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INTRODUCTION

Wire mesh screens are employed in numeroué shielding and reflecting
applications. The relevant plane wave scattering properties have been
analyzed both for meshes in free space [Kontorovich et al., 1962; 4dstrakhan,
1968; Hill and Wait, 1974; Hill and Wait, 1976] and over a lossy earth
[Ottent, 1973; Wait and Hill, 1976]. The closely related problem of sur-

face wave propagation on a wire mesh in free space has also been analyzed

[HL1l and Wait, 1977a; Hill and Wait, 1977b] and studied experimentally

[Ulrich and Tacke, 1873].
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Here we extend our analysis to the case where the rectangular mesh is
located at an arbitrary height above a conducting half space. When the
height is small, this configuration can be considered as a model to study
surface wave propagation over a ground screen. The surface wave contribu-~
tion to the total f£ield is expected to be significant when the source an&
ébserver are located near the ground screen.v For example, a conical mono-
pole source over a ground ;creen has been used to illuminate test objects
{also located above the ground screen) with an electromagnetic pulse [Kehrer
and Bawm, 19757.

Cur objective here is to calculate the propagation constant of the
surface wave. Due to the lossy earth, the wave suffers attenuétion and the

propagation constant becomes complex.

FORMULATION

Thelgeometry of a rectangular bonded mesh located at a height d above
a conducting half-space is illustrated in Figure 1. Arrays bf'identical
perfectly conducting wires parallel to the x axis with spacing b and parallel
to the vy axis with spacing a are contained in tﬁe plane z = 0. This con-
figuration is called a bonded rectangular mesh because the contact between
the wire junction is bonded and the interwire spacings a and b are not equal.'
in general. Furthermore, the wire radius ¢ is small compared to the spacings
a and b, the mesh height d, and the free space wavelength A. Consequently,
only ﬁhg axial wire currents are important; and the usual thin wire approxi—
mations are valid.

The tegion =z > - d, external to the wires, is freg space Qith per—
mittivitcy € and permeability Uy - The region z < — d 1s homogeneous

with permittivity sg, conductivity Gg, and free space permeability Mg
-
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Figure 1. A bonded rectangular wire mesh over a conducting
half-space (perspective and side view).
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In the following formulation, the mesh is located in free space which means e
that d is positive. However, a similar formulation is possible for a buried
mesh (d<0).
Thg formulation closely follows that for a rectangular bonded mesh in
free space [HZll and Wait, 1977b]. Thus, we seek modes which are propaga-—
ting in x and y but which deday above the mesh (2>0) and in the earth
(z<-d). We invoka Floquet's theorem [Collin, 1960] in order to express the
relevant electromagnetic quantity as an exponential function multiplied by
a function which is periodic in x and y. Thus, for a single mode propaga-

ting at an angle ¢ to the negative x axis, the current on the qth x-dir-

ected wire qu and the current on the mth y-directed wire Iym can be
written:
qu = exply(x cosd + gb sind)] z Amekp(iZme/a) (1)
m
and : ‘E!I;
Iym = explLy(ma cos¢ + vy sing)] Z quxp(iZqu/b) (2)
‘ q

where a time factor exp(iwt) is assumed. Here Am and Bq are the un-
knownvFourier coefficients, and ¥y dis the propagation constant of the parti-
cular mode which we seek. The m and q summations are over all integers
including zero from - to <,

The calculation of the fields produced by the currents given by (1)
and (2) in the presence of a conducting half-space is straightforward
[Wait and Hill, 1976]. For the present analysis, we employ the following

thin wire boundary condition for the assumed perfectly conducting wires:

Ex(x,o,c) = Ey(y,o,c) = Q. 3
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Although (3) is only applied to the m = 0 and q = 0 wires, the pergodic
Floquet form of (1) and (2) assures that the boundary condition will be
satisfied at all wires.

Expressions (1) and (2) for the current are identical to those in the
plane wéve scatte?ing case except that vy has replaced ikS where Lk 1is
the free space wave number (=27/A) and S 1is the sine of the incidence
angle. Thus the previogs equations for A.m and Bq can be used with the
following modifications: 1) set the incident fields equal to zero (source-
free problem), 2) set the grid separation h equal to zero (bonded grids in
the same plane), and 3) set the wire impedance equal to zero perfectly con-
ducting wires. As a result, equations (24) and (26) from the plane wave

case [Wait and Hill, 1976] reduce to the following:

(kz_ki)Pm ik, , enls_
“n 2ikb * Tka Z quyf [exp(-Te) + <r + 9)
q Xy
) 4)
exp(-2ld)] =0,
(k*-k))Q ik kTS
bAR Y -1 _ ) na
®q 2ika * T%a ) Akl [exp(-Te) + (qu — >
m <5y
(5)
exP(—ZFd)] =0,
where
2= [ [exp(-Te) + R _exp(-2r)IT" 6
m q mq
Qq = g‘; EEXP ("FC) -+ rmqexp(_zrd)]r-l (7)
_ _ 2,12 .2 1/2
l‘mq(—F) = (kx—r-ky k?) , )
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(2mm/a) + kS cosd , (9 e
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k =
X
ky = (2mq/b) + kS sind , (10)

_ 1/2 . . . \ .
and n = (uolao) . S, being a complex quantity, is now defined as v/(ik).
The quantities R_, r , § and s are functions of the half-

mg mq mq mq

space parameters Ug and eg:

2 ol 5 2 2
} k (P+PKX)(F—FEer) + (kxky) (l—Kx) an
2 A A 2 2 ?
k (P+PKX)(F+F€rKX) (kxky) (l—KX)

R
mq

2 5 2 0 82
k (1"+I‘Ky) (T I‘erKy) + (kxky) (1. Ky)

L R (12)

2 (4T +7 2(1-x 2
k= TKy)(T TErKy) (kxky) (1 y)

! ] _ -21&xkyf(l—Kx)/n : i , 13)
. kz(F+TKx)(P+FerX) - (kxky) (1K)

. 2ikk k T(1-K_)/n
S =T E R s (14)
+I'K I'+I'e_K - (k k 1-K
KE(PHTR ) (T4Te, K ) = (kK )7 (1K)

where

=
i

(k*~k2)/ (kZ-K2)

~
§

2_y2 2.2
= (k ky)/(kg ky) >

)1/2

L M
|

= (k2+k2-k2
X'y 8

k? = x%e_
g r

m
[l

. (O’g-i-iwsg) / (iwso) .

For two special cases, we note that (11) - (14) simplify considerably.

When the half space vanishes (i.e. E. = 1), we have qu = rmq = qu = smq =0

which is the free space result [FZI7 and Wait, 1977b]. When the half space

is perfectly conducting (i.e. cg = o), we have qu = rmq = -1 and
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qu = smq = 0. By image theory, this is the result for a pair of identical
meshes [HZ717, 1977].

The summations involving exp(-Te) in (6) and (7) are slowly convergent
as they stand. More rapidly convergent forms have been derived for Pm and

Qq in the free space case [F{17 and Wait, 1977b] and they can be applied

here to yield

P = % {~ 2al1 - exp(-2me/b)] + 4_}
(15
~1 -1
+ exp(-Tmoc)Fmo + g quexp(—ZTd)F .
= 2 5. - -
Qq = = { nf1 - exp(-2me/a)] + éq}
(16)
-1 -1 ,
+ exp (=L eI+ E, TpgS¥P (DT,
where
- 1y 27 exp(-Tc) exp(~2T]qlc/b)
AR R ] an
q lq]
and
- 1 5 2m  exp(=Tc) exn(-wamIc/a)]
5q 2 g [ a T ‘ml (18)

The éuperscripted prime over the summation sign indicates omission of the
g=0 (orm=20) term.

The doubly infinite set of linear equatioms (4) and (5) for Am and
Bq is numerically inefficient in the present form because Am and BQ
decay slowly for large [m| and |q|. The difficulty arises because the
current expansions (1) and, (2) are slowly convergent for the discontinuous
current that occurs at the wire junctions in bonded meshes. We can circum-—

vent the convergence problem by modifying the current exXpansions to allow

for a jump discontinuity at the origin. The procedure is nearly identical
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to that employed for the rectangular bonded mesh in free space [HIIl and
Watt, 1977b]. Thus the Fourier coefficients of the current A.m and B

are rewritten

A=A+ A(1-8_)/ (2rim) (19)
and
L
B =B -~ - 2mi 20
. 0 AL Sqo)/( Tig) (20)
where

l, m=0
§ =
mo
¢ t

A and Bq are modified current coefficients, and A is an unknown
current discontinuity in Ixo at x = 0. By substituting (19) and (20)
into (4) and (5), we obtain 'the following equivalent set of linear equations

for the modified coefficients:

. (kz—k;)Pm ik v
A ST Ty é quyf [exp(-Tc)
iknfsm :
+ (fmq + ‘3:7;—41> exp (-2Td)] 21)
Xy
2 2 i
L ETER Gy [_P_m , kS sino ]} o
2kb 2Tm 2ka b 2m lm
. (¥*-k2)Q ik o1
Bq 2ika + 2ka é Amer [exp(—Tc)
1knTSm
+ (qu - —-——‘Lk T ) exp (-2Td)] (22)
Xy
(k2-k2)  (1-§_ ) K qQ
v qo Y ~q kS cos¢ ]} =
* A{ Tka 7rq T b [a =7 Qq 0>
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where
, 1ikn1‘sm
P, = ) [exp(-Tc) + (rmq + _1'ch> exp (-2Td)] /(¢ , (23)
q Xy
pé = %- {— 2a[1 - exp(-2me/b)] + Am }
_ (24)
’ ikﬂrsm : -1
+ ] (r + ——————3) exp(-2I'd)l = ,
mgq kk
q Xy
, ian‘Sm
qu = )} [exp(-Te) + (qu - % > exp(-2Td)]/ (mI) , (25)
m Xy
and
1 2
Qq = = {-— 2n[1 - exp(-2mc/a)] + 6q}
‘ (26)
' ian'Sm -1
+ z (qu - ———-—qk = > exp (-2Td)T
m Xy :
Again the superscipt prime on the summation indicates omission of the e

g =0 (orm=0) term. Note that by setting A equal to zero in (21)
and (22), we could retrieve (4) and (5).

Since we have introduced an additiqnal unknown A, another eqﬁation
is required to have an equal number of equations and unknowns (AI;, B;,

and A). The following equation can be obtained from charge continuity

at the junctions [HZ1l and Wait, 1977b]:

A b ' /. b ikSh
- 5 (1 + Z) + g Am (:un ’ + S cosdo)
(27)

' . iksSb .
- g Bq ,(1q+ > s:.nd))‘

fi
o
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Since the doubly infinite set of equations, (21) and (22), are rapidly
convergent, they can be truncated with m ranging from -M to M and q ranging

from -Q to Q where M and Q are small integers. Thus (21), (22), and (27)

, , ,
vield a set of T(=2N+2Q+3) 1linear, homogeneous equations in A;, Bq, and

A:

]
=

TXT . .
coefficient -Q . (28)

matrix v .

_ _ L a o]

A nontrivial solution to (26) exists only if the determinant, which is a
function of S(=y/ik), vanishes. Thus the mode equation to be solved for
S is:
TXT
coefficient = 0 (29)

matrix

The above equation has be?n programmed and solved numerically for § by

Newton's method.
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NUMERICAL RESULTS

Convergence of the mode equation (29) was examined by increasing M
and Q wuntil the value of S{(=Y/ik) did not change significantly. The
most rapid convergence was obtained by making M = Q for a/b ratios from
1 to 3. For the cases considered here, convergence was obtained for M = Q

o= 2 {T=11), and all reéults shown here were computed for M = Q = 2. The
required determinant calculation is fairly rapid for the resultant 11 X 11
matrix. The matrix £ill time dominates the determinant calculation time
for such cases.

In Fig. 2, we illustrate the ¢ dependence of Re(S) for several a/b
ratios. Note that for the mesh in free space, Re(S) is always greater
than one (slow wave). For the half space environment where S 1is complex,
this is not always so., The relative dielectric constant €. = 10 - il.é
wop.ld correspond to a grc;und conductivity é‘g = 10—2mh0/m and relative @
permittivity Eg/eo = 10 at a frequency of 100 MHz. The lack of ¢
depéndence for a/b =1 is to be expected for square bonded meshes which
are electrically small (e.g. 5/1 = 0.05). When a preferred direction of
propagation exists, a rectangular mesh (i.e. where a # b) can be useful,
and a2 3 to 1 mesh has been used in some EMP simulator applicatioms {Bawm,
1972; Kehrer-and Baum, 1975]. Note that Re(S) is closer to unity at
¢ = 0° for the rectangular mesh, but that the ¢ dependence is quite strong.
A value of ¢/b ; lO_2 has been used im all calculations shown here, but
the results ars only weakly dependent on the wire radius c.

For the same parameﬁers, in Fig. 3 we illustrate the ¢ dependence of
Im(S) for three a/b ratios. The actual attenuation rate o is determined

from S by
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MESH OVER GROUND
————— MESH IN FREE-SPACE

1.02 T T 'r rlr T T ] I T

1.0l

Re (S)

1.00

099 } L L ! ! { A B A
o° ’ 30° 60° . .80°
Figure 2. Real part of the normalized propagation constant S
as a function of propagation direction ¢.

Parameters: c/b = 10-2, d/b = 1071, B/} = 0.05,
e. = 10 = 11.8.
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5XK52 T ] g T | T T

21072

o=

-Im(S)

a/b=3

2XKT4 1 ] | 1 ! | i ! .
Q° 30° 60° S0°

. Figure 3. Imaginary part of the normalized propagation constant
S as a function of directiom ¢.

228




251-16 ‘ : ' EMP 1-27

a = Re(y) = -k Im(S) (nepers/m) . (30)

No results are shown for the free space comparison because the free space
mesh is lossless (S real). As expected, the square mesh is again isotropic,
and the rectangular mesh is highly anisotropic. Also, the attenuation rate
is lowest when propagating in the direction of the more closely spaced wires
(¢=0°). TFor comparison, the result for the Zenneck surface wave of the
isolated half space is shown. It is computed from [Wait, 1962a; Banos,

1966]:

_ 1/2
S = [er/(€r+l)] (31)

For e, = 10 - i1.8, § 1is approximately’0.9547 - 10.0076. Note the large
reduction in attenuation at ¢ = 0° due to the mesh.

. In Table 1, we illustrate the dependence of S on b/A” and d/b for
¢ = 0°. As before, €. = 10 - i1.8 and c¢/b = 10—2. Note that the attenu-
ation rate decreases as d/b is increased from 0.1 to 0.3. This is expected
because'ground screen performance generally improves as the screen is slightly
elevated [WMaZt, 19625]. The results for d/b = ® are those of the mesh in
free space [HZll and Watt, 1977b]. The variation of § 1is not necessarily
monotonic as d/b is increased from 0.1 to ®. Also note the large increase

in both the real and imaginary parts of S as b/A is increased from 0.05

to 0.1, particularly for the square mesh.

CONCLUDING REMARKS

A general mode equation has been derived for propagation along a bonded
rectangular mesh over a lossy earth. The mode equation has been solved
numerically for the dominant surface wave mode. This mode suffers attenu-

" ation due to the losses in the earth, and for most cases is a slow wave
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TABLE 1
Normalized Complex Propagation Conmstant, S (¢ = 10 - il.8, c¢/b = 10—2,
4= 0°) r
a/b b/A d/b
1.0 0.05 0.1 1.002485 - 10,001396
" " 0.3 1.002247 i0.001161
" B 1.0 1.002290 10.001200
" " 100.0 1.010513 - i0.000002
B " ‘o0 1.010515 -~ 10.0
" 0.1 0.1 1.510056 i0.518362
" ! 0.3 1.278652 10.338335
" " 1.0 1.114107 - 40.150493
" ' 100.0 1.038768 i0.0
" 1 © 1.038768 i0.0
3.0 0.05 0.1 '1.001114 - i0.000399
" " 0.3 1.000731 - i0.000197
" " 1.0 1.000673 i0.000170
" " 100.0 1.002683 - i0.000026
" " © 1.002731 - i0.0
" 0.1 0.1 1.003560 i0.003103
" v 0.3 1.002708 — 10.001680
" " 1.0 1.002608 - 10.001471
v - 100.0 1.010828 - 10.0
Y " © 1.010828 - i0.0
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(i.e. Re(S) > 1). This is in contrast to the fast surface wave for the
lossy earth without a ground screen. TFor a sufficiently small mesh size,
the attenuation rate of the surface wave is considerably less than for the
isolated half-space. However, for mesh sizes of 0.1lA or greater, the
attenuation reduction is not significant and, in fact, the attenuation rate
can even increase. TFor the rectangular mesh (a#b), the propagation con-
stant is highly dependent on the direction of propagation, and minimum
attenuation is obtained for propagation along the more closely spaced wires.
Several extensions to this work would seem worthwhile. The approxi~
mate method of averaged boundary conditions which has been applied to single
meshes [4dstrakhan, 1968] and a pair ofvmeshes [Kontorovich et al., 1964}
in free space could be extended to the lossy half-space geometry. Casey
[1976] has recently applied this method to a square bonded mesh located
at an air-dielectric interface. Since the unbonded mesh has superior re-
flecting properties [Kontorovich et al., 1962; Hill and Wait, 1976], it
coﬁld also be analyzed for surface wave propagation in the presence of a
lossy half-space. Finally a thorough numerical search for all the modes
could be made for the mesh-earth structuée. We have examined the expected
surface wave mode, but others may be possible. Solution of a source prob-
lem (such as vertical dipole excitation) would be useful in assessing the
various pole (surface wave, etc.) and branch cuf (continuous spectrum) con-

tributions to the total field.
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