
,.- ..~

.
Sensor and StimulationNotes “’

Note 253

October 1977

Source Excitation of an
Open, Parallel-Plate Waveguide

“V.Krichevsky
R. Mittra

University of Illinois at UrbananChampaign
Urbana, Illinois 61801

CLEARED
FOR PUBLiC REMSE

WFW?S;*gqi
.

Abstract

In this work, we consider the problem of an open, finite-width,

parallel-plate waveguide which is excited by a y-directed current source.

‘1’ hesourcecurrentis assumed to be conftied at x =xb, have a sin(NT/2H)

or cos(NIT/2H)variation in the y-direction, and an exp (iBz) behavior along

the longitudinal z-direction. Such an excitation can be interpreted as

one spectral component of a transversely ’confined source.: The solution to

the longitudinally confined source problem can be subsequently constructed

by an appropriate superposition of the spectral solutions derived in this

paper. The important question of the excitation or non-excitation of the

zero-mode in the guide is examined and the resonance condition for a leaky

mode in an open, finite-width waveguide is derived.
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1. INTRODUCTION
.

“a
The parallel-place simulator [1] is an important device for

EMP testing and has been investigated by a number of authors [2-8].

However, all of the previous analyses of this problem have been limited

to the investigation of leaky modes in such open waveguides and the source

excitation problem of such waveguides has not been previously discussed

in the literature.

It is well knmrn [9] that the leaky wave expansion of a source-

excited field is an approximation to the exact, continuous spectrum

representation.* Thus, an investigation of the complete solution ‘

expressed in terms of the con”tinuous,spectrum representation is useful

from the point of view of evaluating the accuracy of the leaky wave

representation,

The present study represents a first step toward this goal. In

this work we derive the solution to the source excitation problem for an

iBz
excitation function which is assumed to have an e variation along the

longitudinal (z) direction. Such an excitation can be interpreted as one

spectral component of a transversely confined source, and the solution

to the confined source problem can be subsequently constructed by an

appropriate superposition of the spectral solutions derived in this paper.

* Note that in contrast to
parallel-plate waveguide
the proper sheet.

surface wave type of
configuration admits

4

structures the open
no discrete modes in
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The organization of the report is as follows: Section II

presents the statement of the problem we wish to investigate.

In SectionLIT we formulate the integral equations and present the

solution of these equations in Section IV. Section v is devoted to the

calculation of the vector potentials which are useful for the derivation

of the fields. In Section VI we investigate the special case when

only the zeromode can propagate in the guide and derive the resonance

condition

case when

a summary

for leaky modes. Finally, in Section VII, we discuss the

more than one mode can propagate in the guide and present

of the results in Section VIII.

6
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In this work we

of an open waveguide

11. STATEMENT OF THE PROBLEM

address ourselves co the problem of source excitation

when the source is located inside the waveguide. The

open waveguide is formed by two parallel, perfectly .conducting strips:

,
We will investigate two types of sources, viz.,

Case A

5= () i$z
jd(x + xo) sin ~ e 3 here N=l, 2, ... (2.1)

Case B

5= ()~ ei~z
;6(X + Xo) Cos 2H , hereN=O, 1, 2, ... (2.2)

—
where the current J has only a y-component. The time factor exp(-iut) is

implicit throughout this report. We assume that Refl> 0 and Imf3= O.



. . .
.

,

6’ Fig. 1

Geometry of the problem of source excitation
of a parallel-plate waveguide.
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111. BASIC FORMULATION

We begin with Maxwellfs equations:

where

— ——
V7xH+iusE=J .

d.

(3.1)

(3.2)

V;= LJJ=V2J .
ax2 8Y2 az2 az2

The electromagnetic fields may be expressed in terms of a vector poteqtial

function 1(1) by means of the following equations:

wier.e1{1) is a solution to the following inhomogeneous equation:

(3.3)

(3.4)

(3.5)

–(1) = A(l)’Since the excitation current has only a y-component,we may let A YY

and express the various field components in terms of A (1) as:
Y

.
1

32A(1)

EX=-—* -__&
iuEp

E = iwA(l) - ~ ● W
Y Y iucp

ay2

~2A(l)

Ez =-~* Y
i(lJE1.1 ayaz

3A(1) 3A(1)
Hx=-+ ; H’ =0 ; H = ~ .

Y z

8

. .

(3.6a)

(3.6b)

(3.6c)

(3.6d)

,

*

I

‘e..



.
.

A(l) satisfies the inhomogeneous
Y

~2A(l) +
,/-- ly

e

wave equation:

#’eBA(l) = .,. (3.7)
Y Y“

We look for the solutions of (3.7) having the form A (1) = Aei6z. The reduced
Y

potential A satisfies

V2A -1-k2A = -vI , (3.8)

where k2 = U2SU - ,82,and

[.1()sin ~

2H
for case (A) N = 1, 2, ...

I = 13(x+x~

0

=05, &
2H

for case (B) N = 0,1, 2,...

Enforcing the boundary condition on the tangential E-field at the

plates, we have

aA
==0

,-2L<x<() . (3.9)
y=-H,H

For mathematical convenience we initially assume that c has a small

imaginary part, with Imc > 0, intending to let Imc + O after the derivation

of the solution is complete. We then have

r

.——

k’= ~2cp - fi2=k1+ik2 ,

where kl, k2 > 0.

We next proceed to derive the solution to the problem at

Wiener-Hopf technique. To this end we”define the transformed

m

@(ct,y) = J A(x,y)e
iaxdx

Y
-m

,(3.10)

hand using the

function O as

(3.11)

where a is the Fourier transform variable. Since the region Iyl > H is

source free,we have o satisfying the differential equation

9

.-

. .-



a20 ‘—. Y2@=o ,y= m,
ay2

which admits solutions of the form

o(a) =

with the requirement that

Rey = Re

c3eyy for y < -H

C@’ fory>H

[m)++. .. w. .

(3.12)

(3.13a)

(3.13b)

Figure 2 shows the branch cuts for y in the complex a-plane. Taking the

principal branch we get

Y = -i (- for la] < lkl . (3.15)

In the region interior to the waveguide, i.e., for Iyl < H, the differential

equation for @ takes the form

Case (A)

Case (B)
(3.16)

and the ‘solutionmay be written as [see Appendix 1]:

rsin mlo )Case (A) N= 1,2,...
@(y) = cleyy + c2e--fyi-’?~ 2H

ICos &
L()

Case (B) N= 0,1,2,...

(3.17]

10
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Fig, 2

Branch cuts in the complex a-plane.
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. ,,

with

The coefficients

A and B. Since

from (3.13a) and

Let~,- .

3A
~

Y

2A
&

Y

Then from (3.”9),

-isxxo

FN= e v

()Y2+ ~“’
. (3.18)

c1 and C2 will, of course, be different for the cases

co

a@—.
ay J

% eiax dx ,
-m ~y

(3.19) we have:

- M

J

eiax
~ dx = c3Ye-yH .

-m Y ~-~ ,=-
..

(3.19)

(3.20)

(3.21)

IaA “
=x2;~ = xl for O<x<~ ‘.

= -H Y =H

(3.20), (3.21),

-2L . m
4-I ~2e=ax dx + ‘X2e

)
‘ax dx = c3ye-yH

J-03 0

(3.22)

or

[1’-2L w
-leyH r

‘axdx+ ~ X2eic!xdxC3=Y *2e

1

. {3.23)
-m o

Using the inverse Fourier transform,we finally obtain the representation

A(x,y) for y < -H:

.
.-.

12

.. .

.

e



6

‘=+ib

A(x,y) = & J
-=+ib

-leyHeWe-iaxda
Y

Similarly for y > H we

+ib

A(x,y) = -& j

-=+ib

(;.24)

have:

~-leyHe-Yye-iaxda

L .~(3.25)

where

-k2<b<k2.

Letting y = t H, we obtain from (3.9), (3.17), (3.19):

where

-yH yH+;~

[1

‘)
co, ,j

‘2
= ycle - yc2e ,

N 2H

()
sin ~

L .J

-2L m

[11 ‘-m $le /‘axdx + ‘axdxxle
o

-2L m’

12 = 1 *2elaxdx i-f X2e‘axdx
-m 0

where c, and C9 are constants, given by
J. .

1
c1 = 2 sinh (2yH)y

(3.27)

(3.28)

(3.29)

[see Appendix II]:

\..

[

I1eyH

[

l\- 12e-yH+;N~2 ‘Cos(% ‘inh ‘YH) ~

sin (~) cosh (yH)j, I

(3.30)

13
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. .

.,’

1
C2 = 2 sinh (2yH)y

In the interior

{ [

X .sinh(YH)
11e-yH-12eyH+lN $&2 CoS (&)

1}

.
sin (~ Cosh (yli)

(3.31)

+ib

A(x,y) =+ f
-=+ib

@-ib

region Iyl < H.we have

1.— !2r .c+.~b

Q(ci,y)e‘iaxda

[

11 cosh[y(y+H)] - 12

L

+-ib ‘- cos ~

[

E sinh

‘“’w “2fib+ 2T 2H sin ~ cosh

1
‘%

) -iax
cosh[(y-H)y] ye~inh ~2yH)da

,.

.1--(YH) sinh (YY) ~’ ~-iux
(YH) cosh (YY) Y sinh (2YH)

b
+-ib

sin (~) “ _
TNe-iaxdu .

Cos (~)
-+ib

Imposing the boundary conditions:

A(x,+H+O)=A(x,+H -O)

{

--<x< _21 ‘1

for and’ )
O<x<m ‘

A(x, - H+O)=A(X, -H-0) J

da

(3.32)

(3.33)

we derive from (3.24), (3.25), (3.32) [see Appendix 1111 for -COc x < -2L,

o<x<~:

.

.

and .

,.

.

.-



,/--

–2L m -2L

f
(*)(kjx -

~ ~
(*)(klx -(*)(klx _m ‘2K1

IJ1K2 GIBE + X1K2 - C\)dg- El)m

-m 0

m

-~
X2K:*) (klx - Cl)dc = f;*)(x),

o

k’here

=+ib,

~

~2Hy

K~*)(klx - &/) ‘~
~ia(g - X)da

y sinh (2HY)
-+ib

+-ib

(*)(k/x - ~1) =+
~

1

‘2 y sinh (2HY)
-=+ib

b.

TNe
-iax

da
Y

(3.35)

(3.38)

Adding (3.34) and (3.35) we obtain

15

(3.39)
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—. .. ——-. . . . ......

. -!

-m o

where

=+ib

‘*)(k]X - ‘*)(klx - J
~yH

K1(k\x - E]) ‘Kl El) +K2 g!) .* ia(g - X)da
y sinh(yll)e

-+-ill

(3.42)

,,

“’{

o Case A
fl(x) = (3.43)

F?) (X) Case B

.-
-~ib -=-bib

(3.44)

Equation (3.40) represents one of the integral equations we have been

seeking to derive. The unknownsin this equation are Yl and Z1 and fl(x) is

a known function related to the source.

Next we subtract (3.35) from (3.34) to get:

-2L m

f
y2(E)K2(klx - El)dC+

f
Z2(&)K2(k~x - gl)d~ = f2(x)

-co i)

(3.45)

-s

where

(3.46)
Z2(E) = xl+ X.2

16

,.

9-



-+ib

{

(W (x)

‘2
Case A

f2(x) ~
Case B

~yHeia(~-x)

y cosh(yH)
da

(3.47)

(3.48)

+-ib

(3J

(NJ
(N)(x) =&cos y

; tanh(yH) e-iaxda 1
‘2 Ny

-; sin,—j
;2)

-+ib
I

r-.

TNe‘Laxdci

-&ib

(3.49)

which is the second integral equation we have been seeking. Thus,in surmary,

we have reduced the original problem to that of solving a pair of integral

equations (3.40) and (3.45) with four unknown functions, viz., Y1(~),Z1(~),

y2(&), and 22(E).

/--”

e“

“17
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IV. SOLUTION OF THE INTEGIUiLEQUATIONS

AS a first step we rewrite the integral equations (3.40) and (3.45)

as:

/

-2L CO

~ ~

i

fl(x) -~<x<-2L, O<x<m

y@K1(k\x- 51)d5 + Z1(E)K1(klx - El)dE

-m o cl(x) -2L<x<0

(4.1)

and

-2L m

[

f2(x) -m<x<-2L, ()~x<m

I
Y2(G)K2(klx - tl)dg + \

Z2(&)K2(klx - ~l)d~ =

-w o e2(x) -2L<x<0

(4.2)

where we have deliberately introduced two new unknown functions, viz., el(x)j

e (x),in order to extend the range of x from -~ to +.
2

This is important

for the next step which is to multiply (4.1) and (4.2) throughout by

exp(iax) and integrate wi~h respect to x from -m to ~. This gives

-m u ,

-2L o m

1 1

.
. fl(x)e=axdx + el(x)e

laxdx +

\
fl(x)e‘axdx

-m -2L o

and

–2L m

I
Y2(E)e‘ffEd~.K4(c.)+

I
Z2(C)e‘aEd5”K4(a)

.
-m o

-2L o w

1 I ~

.
= f2(x)e‘axdx + e2(x)e

iaxdx + f2(x)e1axdx

-m -2L o

(4.3)

(4.4)

18 e—’



,

where

[-

●

are

and

eyH eyH

‘3(a) = y sinh (yH) ‘ K4(ct)= y cosh (yH)
(4.5)

analytic in the strip -k2 < Ima < k2.

Defining the transforms of the unknown functions in (4.3) and (4.4)

indicating their domains of analyticity, we have

m

0+((3)=
f
Z1(&)eiugd& ,

0

(4.6)

-2L

@ (a) =
I
yl(t)e

ia(&+2L)dC , (4.7)

-m

(4.8)

-2L

1

:,,
~ ~c)eia(E+2L)dC , .

$+(a) =
2

(4.9)

-m

where the functions @+(a), y+(a) are analytic for Ima > -k2and @ (a),

V_(a) are analytic for Ima < k2. We can also write the transforms of the

known functions fl(x) and f2(x) in the range -~ < x < -2L as
,,

-2L

Hj(a) =
~

fj(x)elaxdx = e‘ia2LHj,-(a)

-m

where j = 1, 2 and

-2L

Hj_(a) =
~

fj(x)e
ia(x+2L)dx

.

-m

Likewise for the range O < x < w we have the transform

(4.10)

(4.11)

1.9

—.. ..—---- –—...——



.,

co

Hj+(~)=(fj(x)e‘axdx

o

.,

-(

o s Case A

H1~ (~) =

- ?& (a) , Case 3

(4.12)

where

,..

where the superscript (N) is associated with

(4.13)

the excitation function and is

defined in (2.1) and (2.2). To obtain the expressions for H
. .

~~ (~),

we have to calculate the functions f~ (x) for two cases: (a) -CO<x<-2L

and(b)O <x<=. We also need to perform these calculations for N b“oth

even and odd. For Case (A) we need to ‘closethe contour with a semicircle

in the upper half plane, whereas the closure for the second case is in the

lower half plane, Substituting the results of these calculations in

(4.12), We obtain the final expressions for $_~l) and %f~L-l) , which.,

read:

1-0?+ lJ
..

)’ 2 1

([)

i ‘aixo

i
(2!t- 1)2-k(utk) Oe..

‘1

-1
1

n=l 2

[ J
n 1- ‘k;l’2)2-

n a“ (~ *’U;)

-0

(4.15)

..

20 9

.



Note that we have neglected the exponentially decaying terms by retaining

only n~ terms in the summation. The integer nl satisfies the conditions:

f-

0

where

nT
1

(nl+ I)r
—<k,
H H

>k.

We can also show that

Liij~)(a) , Case A

k=l,2, ...

,,
/

‘2

I
n=1

9 Case B

1

“\

([1

1’ ici‘

[J-

07 ia; ~,2(2L-xo)
●

n-1/2x0 + )
Oe le ./

and n. is determined from the condition
L

(n2 - 112)T (n2+ 112)~

H
<k ,

H
>k

and

1

L = 1,2,...

Utilizing the

(4.4) as:

definition

(4.16)

(4.19)

\

([11 [1%-1/2tl * -0 )ia~-1,2(2L-xo)

Oe le
.

,.

(4.20)

of various transforms,we rewrite (4.3) and

[

M1(a)@l(u) = e
-ia2L 1Hi_(a)+Hi+(a) y2HN1(a)

(4.21)

21
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,.
and

~-ici2L

[

$-(a) +~+(a) - yM2(a)$1(a) = e-ia2L 1H2_(a) + H2+(a) yM2(a) (4.22)

,,
where

o

y4 =
\

el(x)e‘axdx

-2L

(4.23)

o

$I(a) = I e2(x)e‘axdx (4.24)

-2L

Ml(a) = e
-yH sinh(yH)

yH (4.25)

M2(a) = e-yH Cosh(yli) . (4.26),.

The next step is to factorize the functions Ml(a) and M2(a) in the form of

products,

Ml(a) = Ml+(a) Ml_(a) ,, (4.27)

M2 (u) = M2+(a) M2_(u) (4.28) ‘

~+(~), M2+(~) are regularwhere M and non-zero in the upper half plane

T >-$, whereas Ml_(a), M2-(u) are regular and non-zero in the lower half
. .

plane T < k2. Then, multiplication of

,e+ia2L

(a-k)Ml-(a)

and (4.22) by

eia2L

~ M2_(a)

(4.21) by

lead: to the ‘following coupled equations in the transform domain:

22



.

Q+(a)e
ici2L

(a) ici2L
(a+k)HM1+(a)@l(a)e

(a-;);l-(a) ‘—-+ (a-k) M1-(a)

= (~+k)~l+(a) H1-(a)+(a +k)HM1+(a)H1+ (a)eia2L
(4.29)

and

$-(a) ~+(a)eia2L
+ ~ M2+(a)$1(a)eia2L

~ M2- (a) ~ M2-(a) -
,.

= -M2+(a) H2-(a) + ~M2+(a)H2+(a)eia2L .

(4.30)

The first terms on the left-hand side of (4.29) and (4.30)are regular in

the lower half plane, whereas the third terms on the left-hand side and the

second termson the right-hand side of (4.29) and (4.30) are regular in the

upper half plane.

To solve these equations we carry out the decomposition

,, eia2L
O+(a)

(a-k) Ml-(a)
= R+(a) +R-(a)

(a+k)HM1+(a) Hi-(a) = ~l+(a) +“;l-(a)

ia2L
~+(a)

e = Q+(a) +Q-(a)
= M2-(a)

~ M2+(a) H2-(a) = ~2+(cf)+ ;2-(a) .

Using the method of factorization we obtain the equations:

@_(a)

(a-k)M1-(a) ‘R-(a)
- FI-(a) = o

23

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)



+ Q-(a) - F&) = o

.-

(4.36)

where

dc (4.37)

~iC2L
$+(c)

dc (4.38)Q_(a) . -L
27ri [

id-w

,“ id+=

(4.39)

;,

.,

.

.;

id-co

FkM2+(Q H2_(0 ~
.
c.- a’”““-

.,. .

,,(4.40)

id-b=

F2_(ct)= --%27J- (
id-m

byl/[(a +k)t$+(a)] and (40Z0 by J/[~”2+(a)lAfter multiplying (4.21)

we obtain:

‘~a2%1 (a)(a-k) HM1-(a)O+(a) e-ia2L@_(a)
- (a-k)HM1-(a)Q1(a)=e -

(a+ k)M1+(a) + (u+k) Ml+(a)

+Ftl+(a)(a - k)HNL_(a) (4.41)

and

.

e-ia2L H2-(a)=k M2_’(a)+H2+(a)~M2-(a) o (4.42).
.
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Note that the first terms on the left-hand side of (4041) and (4”42) are

regular in the upper half plane; the third terms on the left-hand side

and the first terms on the right-hand side are regular in the lower half

plane.

We now use the decompositions:

-ia2L@
e (a)
(a + k);l+(a)

~kM2+(a)

= U+(a) + U-(a)

= O+(a) + f3-(a)

Hl+(a)(a - k)H~l_ (a) =Vl+(a) +Y1-(a)

H2+(a)_M2_(a) = V2+(a) + V2_(a) .

Substituting (4.43) into (4.41)and (4.42) and using the Wiener-Hopf

technique [10,11] result in the equations:

Q+(a)

(a +k)M1+(a)
+ U+(a) - Vi+(a) = O

where

*+(a)
+ e+(a) - v2+(a) = o

mM2+(@

I

(4.43a)

(4.43b)

(4.43C)

(4.43d)

(4.44)

(4.45) ‘

(4.46)

(4.47)

25
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it+=

~
V2+(a) = A27ri

ic.-cn

i
-k2 <

The above manipulations have

(4.35), (4.36), (4.44) and (4.45)

resulted in four coupled integral equations

each of which contains two unknowns. We

,
now proceed to derive a set of new equations each with only a single unknown.

To this end, we replace C(by -a in (4.35) and (4.36) and c by (-c) in (4.46)

and (4.47). Using the representations - = i ~, ~ = -i-,

adding and subtracting the resulting equations and defining 1

1

i
(4.50a)

(4.50b)

We obtain the two sets of coupled equations

(4.51.)

[

S2+(J
id+=

I

i S2+(L)

~[1

ii2L
. T*

e d~

D2+@?j
m M2+(0.) 21T1

D2+(G) =M2-(G)(L + ~)id-m

-[ )
iV2+(a) f’?2_(-a) = o .

;.
(4.52)
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It is shown in Appendix IV that for k2L >> 1 the integrals appearing

in (4.51) and (4.52) can be evaluated in a series form as follows:

id+=
1 S1+(L)+] ei~2LdC

2ni (c - k)Ml_(C)(? + a)
id-m ‘l+(~?

nil

and

(4.53)

id+
1

S2+(S)

/[]

eiC2LdC

m ‘2+(S) i’~M2 (G)(<+a)
id-m

= : e-i@4)T m W_l [1@’L(a+k)] eik2LMz+(k) ● ~2+~~
2+

ia’ 2L

[1

‘-1’2 ‘2+(a~-l/2)~an-l/2‘2 s2+@;_l/2) e
, +k

+* 1 .
(a + a~_l/2)a~-I/2n.1 D2+@;-1/2)

(4.54)

Substituting the various series expressions given in (4.53), and (4.54) into

(4.51)

[.

Sl+(a;

Dl+(a)

and (4.52) gives:

{!1“sI+(k) eik2%1+(k)
‘~ (a + k) Ml+(a)

Dl+(k)
a+k

.
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‘1

“[l

Sl+(cr)
-+2
n=1 D1+(Q

, . .

f

(4.56)

Our next step is to obtain the expressions for the vector potentials which

depend on the unknown functions O_(a), O+(u), ~+(u), ~_(a), and which are

in turn expressed in terms

From (4.50) we have

of the functions S~+(@, D1+(~), S2+(LZ),D2+(@~

(4.57a)

Vk(fa) =% [S2+(U) * D2+(a)1 . (4.57b)

Changing a + -a in (4.57) yields

@_(a)=%[Sl+(-@ - Dl+(-c%)]

V_(~)=k[s2+(-a) - D2+(-a)l .

We can rewrite (4.57) and (4.58) as:

(4.58a)

(4.58b)

(4.59a)

(4.59b)

—,



To obtain the expressions for O+(a) and ~+(a),we need to substitute

(4.55) and (4.56) into (4.59). Likewise @_(a) and ~-(a) are obtained by

changing a + -a in (4.55) and (4.56) and substituting the results in (4.59).

Following these steps we derive the equations:

and
,---

1
● —

T

1-—
H

+2

(4.60)

[ D-iV2+(a)

$ _ (a)
. (4.61)

two equations provide us with the expressions for the functionsThe last

O+(a) and ~t(a). They depend on the group of constants [S~+(k), Dl+(k),

S2+(k), D2+(k)] and also on [Sl+(a;), D1+(a~), S2(a~_112), D2+(a;_1/2)1.
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We can express the first set of four constants in terms of the ones appearing

inside the second bracket. This is accomplished by returning to (4.55) and
A.

%

(4.56) and substituting a + k. The resulting relationships can be further
‘4

simplified for 2kL >> 1, i.e., for wide plates,by introducing the asymptotic.,

forms

W-l(z) =-fi for z+=: -ti<argz<7r . (4.62)
z

We then obtain the following desired equation relating S~+(k), and Dl+(k)

with S1+(a~), D1+(ff~),etc.,

(4.63)

and

+ [$_(-k) i iV2+(k)]
}

3

where J

‘1 [ 0=[M1+(k)]2eik2L l+&e-i~/4 ~
6

2 ik2L e
i~14

1’T2 = [M2+(k)].e — , —
6 z“

(4.64)

> (4.65)

(4.66)

The conscants S1+(u~), D1+(ct~),S2+(a~-1,2) and D2+(a~-1,2) satisfy a set of

algebraic equations, which is derived by substituting a = a: into (4.55),

a = %h/2
into (4,56) and using the asymptotic representation W-1 (z) and ,.

e30



(4.63) through (4:66) [see Appendix

For S1+(a~), Dl+(a~):

v]. These equations take the form:

● ✍ 16: = Jl)f where m = 1,2,....n~ (4.67)
m

,.

where

(4.68)

(4.69)

(4.70)

m=n
m+n

Case A

Case B

(i) for N-even:

f--

●

2kT1 (a; + k)(a~ + k) -
+

(a; + a~) .,,

t= 0,1,2,...

(ii) for N-odd

4 Ml+(k)

(%1)2

[

- ikx
o

ik(2L-xo)
. e ~e 1-

M1+(a~)
●

n2a~[l-{L-l/2~n)21

L=l,2, *..

(4.72)
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‘0= ‘2+%1/2);
D (a’
2+ n-1/2);

, ,~[:;-;j] . p:)%i:] =Pf)t , (4.73)

where

. 2L
i~aO

‘all-l/2
ul-1/2+ k M2+(a&1/2)M2+@:_ I/2)e

Ha”
n-l/2

2kT2

(15 T2)
1

, (4.74).

.

Case A

Case B
J2)t =
m

(4.75)

L

{i) for N-even:

-!!‘2 M2+@:-1/2)
, T3(2)*

2“&M2+(a&2)
m,2e

= i(-1)
ri:l (n-1/2)2a:-1,2[1-(!?J@-l/2)~1

!.=l,2,...
,,

r. +k ~a” +k
am-1/2

2kT2
●

n-1/2
;—.

(’3;-1/2+ %-1/2) lfT2
1

1 +k ~cie
%/2

+k
n-1/2 1

r .
eian-1/2x0 ~ ~iaOn-1/2

(2L-xO)
● J (4.76)

)M (IX-2.1,2)‘2+(%-1/2 2+

r

+k ~a”
%-1/2 %-1/2 + k

(a~_1,2+a~_1,2)

1.=1,2,...
2kT2

z ● —
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‘he ‘1+ and ‘2+
functions appearing in the last few equations will now

be written explicitly. To this end, we return to the definitions of Ml and

‘2 :

Ml(a) = e-yH ‘in~$H)= M1+(a)M1_(a)

M2(a) = e‘YH cosh(yH)

where [see [1oI pages 131 and 175]

‘1+(”)=w ‘xP{+k-
[%’.(+W

n=1

● exp

= M2+(a)M2-(a)

Ml- (~) = M1+(-CY) ,

(4.78)

(4.79)

M2_(a) = M2+(-a) .

Substituting a = k and a = a; into (141) and a = a~-112 into (143), we

obtain:

33

(4.82)

(4.84)
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L

. .
m .

n(~+am-1/2
)

la rn-1/2H

● . e (n-1/2)m

~.1 an-1/2 -
/

which are the

.

(4.86)

desired expressions for Ml+(am) and M2+(a~-112) we were seeking.

.=

‘*.
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v. CALCULATION OF THE VECTOR POTENTIALS
.
,-

● ✍

6-

From (3.41) and (3.46) we have:

(5.la)

H
VJZ=+[Y2(E) -Yl(c)] (5.lb)

xl (5.lC)=+[Z2(J) +zl(&)l

X2 =+[Z2(C) - Zl(g)] . (5.ld)

Substituting (5.1) into (3.28) and (3.29) and using (4.6) through (4.9) we

obtain:

1 -ia2L
ll=ze [+-(~) + +-(a)] + + [$+(u) +

1 -ia2L
$_(a)] ++ [$+(a) -‘2=7e [$-(~) -

It is known from the theory of the integral equations
b

equation g(y) = / g(x) K(y,x) dx + f(y) has a unique
a b

++(a)] (5.2a)

$+(a)] . (5.2b)

that if an integral

solution for every

f(y) then the integral equation g(y) = ~ g(x) K(y,x) dx has only a trivial
a

solution g =’O. In view of this, we obtain:

For Case A:

Sl+(a) = O, Dl+(a) = O and from (4.50) $+(a) = 0, $-(-a) = 00

Furthermore, by substituting u = -a we have $-(a) = O.

For Case B:

s2+(a) = 0,,D2+(a) = O and

Again, ,substituting a = -a

from (4.50) V+(aj

we obtain q (a) =

= o, +-(-a) = 0.

0.

35

—.— . . . .. ——._



——. .

and from (5.2)

( 1–~-ia2L*-(a) ++j$+(ct)
2

.-

9 Case A (5.3a)

‘1=

‘2 =

Next, inserting (5.4)

potential” ““

\
1–e-ia2L$_(a)++++(a)2

, Case B (5.3b)
L

[
11 ‘

i -11 ,

Case A
,“

Case B

into (3.32),we obtain the expression

‘i~ QmYi-d 1 -iax
A(x,y) =% cosh(yH) —da+

%e y

, -Aibl%$%J
I

‘1

(5.4a)

(5.4b)

for the vector

.
-Lb

J[

‘ 1

Nn sinh(yy)
‘cOs(@cosh(yH)

-iax
N % ~u

‘z Y
-+-ib y) :;;;:;;sin(

I 1’
1 1

‘2

(5.5)

I L .J I
‘3

To calculate the integrals in (5.5) we complete the contours by semicircles

in the proper half

c1=~a - andm-1/2’

planes. Integrands

integrands connected

connected with Case A have poles in

with Case B have poles in u = i k, t a;.

36

. .



.

,

0-

6“-

..

The result:

where

A(x,y) =

“{

~) (X,Y)

~B) (X,Y)

Case A

Case B

‘2

#)(x,Y) .~~ ~ (.~)@lsin[(2m- l)Ty/2H].
n=l am-1/2

N=i,2, ...

I -ici’
.

.

~

~ (N)
+ (a”

m-1/2)’ . m-1/2) e ‘a;-’’2(H2L)

m-1/2x + ~(N)(-a.

‘1)(X,y)+ QN

Q~) (X, y) =iu(-l)f’+i$ ;2 (-~)m

m=l

(5.7)

ial&@+x~lsin[(2m-l)ry/2H]e

a~_l/2(m - 1/2)2[1- (fJ(,n- 1/2))2]

Q$~l (X, y) =--+---
ia~ ~,2/x+xo[

sin[(22-l)~y/2H]e -
2%-L/2

and

[ 1~B)(X,y) =* +~)(k)e-ikx++(N)(-k)eik(fi2L)
N=O, I,...

‘1
+* ~ (-~)mcos((m~/H)y)

m=l a“
m

1’

ia~(x+2L)
+ $(N) (-a- )e

m + Q~2)(x,y)

L

where

37

(5.8a)

(5.8b)

(5.9)

(5.10a)
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‘N)(a) ~The expressions for *2 (N)~al
=~a” and $+

ill-l/2 ‘ -
(4.60) and (4.61) by substituting si+~k) and Dif(k)

We obtain:

where

are obtained fromU=+k, ,~a- ‘

from (4.63)mand (4.64),

,. r

(.
2kT2

.
‘am-l/2 + k ‘2-t-(a&l/2)(a;-l,z+ k)H

. ~ki- a’
an-1/2 n-1/2

8 =1,2,,..
. .

J 2kT2 ‘2
.

[

I
@;_~/2 +k)(l - T;) n=l

M2+(a~_1,2)

(n-1/2)2u~_l,2[l -(!U(n-l/2)2]~

/

(5.13)

/
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● ✍

M2+(CI’-1/2)
$(28-1)(t a; ~/2)= i~~1j2 +k M2+(a;_l,2)(-1)2~
*2 ai-1/2

1.=1,2,...

2kT2

([1

‘2 e ‘ai-l/2xo

(a;’1,2 + k)(l - T;)~a&,2+k -1

[

-1
+ 1e )‘a;-l/2(2L-xo) +

p2

J%12 + k
.

am-1/2 + %112

where

‘1
“1
n.1

‘ai2L~(N)
“e

1+ (~;)M1+(c+ 1 ‘1
a’ -1
n n=l

,.

(5.17)

[“”i ici’x
. .e n O+

\[ 1

-Tl
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(5.19)

. .

where

Q= O,l,...

(5.20)

(5.21)

-a..
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●

(5.22)

This completes the derivation of the vector potentials. We now write

them explicitly for the two different excitations, viz., Case A and Case B,

and for the zero mode as Case A:

A.f~(x,y) = o
9

Case B:

1) N-even

6 ~

(5.23)

iklx+xol ~ . “@(2q(k)e-ikx+ @_ip

1
1

ik(x+2L)(2fi)(-k)e -
A~~)o (x,Y) =x e

3 ‘t% +

1= 0,1,2, .,.

2) N-odd

(5.24)

iklx+x.1
u’

21-1 O(x,y) = ip(-l)L+l ~(2~-1) e k
A(B)

Y

JZ =1,2,...

-1 ik(x+2L)~(2L-l)(k)e-ikx+ ~_
+ 4:H + 1(&+_k)e-

(5.25)

where

(5.26)

.
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VI. INVESTIGATION OF THE SPECIAL CASE WHEN ONLY THE ZERO MODE
.

CAN PROPAGATE IN THE GUIDE AND DERIVATION OF RESONANCE CONDITION

From (5.15) through (5.18) we have

iklx+xOI ikx
o

A$;(x,Y) = ~e -~ [M1+(k)]2e ~(T1>xO,x)

A(B)
~L,o(x,Y) = o !L =1,2,.,.

%= 1,2,...
‘~(T1,xo,x)

(6.1)

(6.2)

‘ .(6.3)

where

~(T1,xO,x) =
1 I - ~ _ T ~ik2(L-xO) -ikx

\l 1
e

(1- T;)
1 .

(“ -ik2(L-xo)

1

\
ik2(L-xo) ik(fi2L) . .

L

-!-1 - Tle e e

)

(6.4)
.’.

If k(L - XO) = nm where n = O, i 1, i 2,...,+ n3; n3 satisfies inequalities

l<L
‘3 k (6.5)

(n3+l)~>L

or

nn_— .
‘O=L k

Then

~(Tlxo,x)
[

-ikx ik(x+2L)

1‘(l:T1) e ‘e ,
XO=L-%

(6.6)
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and the resonance condition

f--

(-

0

if 2k (L-xO) = (2n+l)lT

or

= L_(2n+l)m
‘o 2k

is

T1= -1 (6.7)

(6.8)

—

where n = O, ~ 1, .... ~ n4; n4 satisfies inequalities:

(2n4+ l)7r

2k
<L

(6.9)

(2n4-t-3)n

2k ‘L

1

[

-ikx
then L(T,XO,X) 1ik(x+2L)

= L_ (2n+l)~ = (1 ‘Tl) e ‘e
‘o 2k

(6.10)
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and the resonance condition is

Tl= 1 .

Thus, in general, the resonance conditions are given by

Tl= t 1 .

We can rewrite (6.12) as

[Ml+(k)12 e
5k2L .f=fl

where

f . 1 +
-iv/4
e

,

Hk

(6.11)

(6.12)

(6.13)

.

The expression Ml+(k), as given in (4.84), can be simplified for the case

when only the zero mode can propagate in the guide. For this case we have

‘[
... \

![
..

Ml+(k) = =p i% 1 - C+ln(&)+i~+i ~
“kH

[
.. 1~ .1 ~Y- arcsin(~~ j (6.15)

Let us investigate the case

2-

(~ ~ &“l (6.16)

returning only the terms with an accuracy O[&]. We then have

f = 1 + O“(*) (6.17) “

The resonance conditions for this case reduce to

,

exp (Li2~-1-C +ln(~)+i~,’1+

44



For the choice of a positive sign in the r-h-s” of (6.19) we get

( [expi2~l- ‘1
c+ln(~)+i~

)
i-i2kL = +1 = exp(i2mn) (6.20)

.

or

[

2$1-
2

(3 ]
C+lnk+i~+2kL= 2mn

where m is an integer. Since (6.21) implies that m >> 1, we can rewrite it as

where

and

(6.22)

(6.23)

Solving (6.22) by the iteration method we obtain:

‘(+) = ‘1++ ‘k2+

where

k - w ln(~)
1+=% ~2 , -*(1 - C + ln2)

k
Hm u-—.

2+ = ~22”

In a similar manner for the choice of negative sign in (6.19) we obtain

1 01
,,

q-) =(m+$)n-~ln&-~(1 -C+ln2+i~)+0 ~ln~
.

(6.25)

(6.26a)

(6.26b)

(6.27)
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and

,.

‘(-) = ‘1-+ 1k2-
where

(6.28)

(6.29a)

(6.29b)



.
,

VII . INVESTIGATION OF THE GENERAL CASE WHEN MORE THAN ONE MODE CAN PROPAGATE
,

(-’e- by

in

f

As a first step we show that the resonance

the conventional formulas Tl = t 1 when more

the guide.

condition is no longer given

than one mode can propagate

Let us consider the case T1 = -1. Then from (4.67) we have

‘1 exp(ia;2L)n1n M1+(a~)

1 . .
a“

[Vi+(k) - ~l~-k)]
n=~ n

where we have used

Sl+(ci;)= nlm+- ~2m(l + Tl) -1- . . . .

(7.1)

(7.2)

Inserting (7.1) in the equation for O+(k),we obtain

O+(k) = O[(l+T1)O] .

It is possible to show in the same manner that

@-(-k) = 0[(1 - T1)O] . (7.4)

The resonance conditions are given by

Case A: G(2)f - an = o
m Ill

Case B: G(l)f - an = o .
mn m

47

(7.3)

(7.5)

(7.6)
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VIII . SUMMARY OF RESULTS .

.f

,

In this work we have addressed ourselves to the problem of a

fintte-width, parallel-plate waveguide excited by a source ’located in

the interior of the guide. Two types of sources have been investigated,

viz. :

Case A:
.

T= y 6(x+xO) sin (~) ei~z, N = 1,2,..

Case B:

Y=- y ~(x-l-xo)cos (~) ei~z, N = 0,1,2,...

.

We have assumed that the current has only a y-component and that

B is real and greater than zero. Using the vector potential approach,

we havereduced the original problem to that of solving the inhomogeneous

wave equation (3.8) together with the boundary condition stated in (3.9).

Next, two coupled equations for four unknowns (Y , Y , Z
121

and Z ) have
2

been derived where these ‘unknownsare related to the vector potential

at the extensions O! the parallel plates. These equations read

[same as (3.40)

jL Y.(E)K. (k
1 1-m

and (3.45)].

where the functions fi(x) appearing in the r-h-s are related to the

prescribed source and are given in (3.43), (3.44), (3.48) and (3.49).

The kernel functions Ki appearing in the integral equation may be found

in (3,42) and (3.47).
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Our next step was to solve the integral

transforms and the Wiener-Hopf technique. The

potential constructed in this manner are given

(5.22) for both

mode excited in

N < 2Hk/r, if N

in Case B.

equations using Fourier

results for the vector

in (5.6) through

cases considered. We have shown that there is no zero

Case A,and in Case B this mode is excited only when

is even. For N odd, the zero mode is alwaYs excited

An important result of the analysis

for the resmance condition. We have shown

presented here is the expression

that this is given by

T = (M1+(k)12 ei2k1 f =~1

-i7/4 ~#2 ~k,~
where f = 1 + e

and Ml+(k) is given in (4.84).

Hk2-1
For (~)

‘%
<< I the function f above can be replaced by unity and

the resonance condition is correspondingly simplified. It is interesting

to note that for the source located at x = L - n~lk
o

the resonance

(n+%)IT
condition is reduced to T = -1 whereas for x

1
=L-<

o
the

same condition becomes Tl = +1. In general both the plus sign and the

minus sign are admissible for the resonance condition. Equations (6.25)

and (6.29) state the resonance condition under the constraint that onlY

the TEM mode can propagate in the infinite, parallel-plate guide. For

the more general case, the condition for resonance is given by (7.5) and

(7.6) and an examination of this reveals that T = ~1 no longer represents

/
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APPENDIX I

.

The general solution of the equation

c.

is

a’~—. y20(y) = f(y)
ay2

o

For

we have

‘o(y)

where

NiT~

Hsin(~)
-iax

f(g) = -l.!
e o

NIT~
Cos(~)

. c eyy+ c2e-yy+ TN
1

&.in(&)-

Cos(*).

-iaxo

FN = ‘2
y + ~N&$~2 “

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)
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APPENDIX II

Write (3.40) as

where

clyeyH - C2y’e-yH s I - F
11

-yH _
.Clye C2y’eyH= 1 - F

22

The solution of the system equations (11.1) is

c1=

and

C2 =

1
2sinh(2yH)y

1
2sinh(2yH)y

(11.la)

(11.lb)

(11.2) -

.\

!/cos(~)sinh(yH)

sin(~)cosh(yH) o

.

(11.4)

,

.-0

_!

,.
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The continuity condition of the vector potential across the boundaries

-m ~x<-2L, O< x<mfory=+H and y=-H is given by (3.44). Substi-

tl~tingthe expressions for the vector potential for all three fields from

(3.38), (3.39) and (3.43) into (3.44) and

integrations gives

-2L cm

where

-m

changing the order of the

-2L

-m o

?

exp(2Hy)i
~ eia(~-x)

1 \ da .
ysinh(2Hy)

L -;

.

~ ]~

*)k sin(
=+ib

1 ‘w .
_—

2X , TNe‘Laxda

\ Cos(y)
-~ib
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APPENDIX IV &

We are interested in calculating the integrals:

Multiplying the numerator and

.,J

denominator by Ml+(r),we obtain

eiC2L ~-f~M1+(~)

—..—
(C-k)(~+a)sinh(yH)/yH ‘G

)

We have branch cuts from

Closing the contour

theory or residues,we get

(IV.1)

k t.O

with

Rek + im and from -k

a semicircle in the

to -Rek - iUJ.

upper half and using the

eiG2L ~yH
Ml+(c) dc

(G-lc)(L+a)sinh(yH)/yH

(IV.2)

where

(IV.3)

It can be shown that ~ + O, when R+ m. Calculating ~ when ~ +-O gives

CR CT

1 Sl+(k) eik2Lm Ml+(k)

m ‘-
Dl+(k)

a+k
CT

(IV.4)

~+o

m-.



._

“CY \-

-k

l?i,q.3

\ CT

Contour for integration of the integral

I in (IV.1)

.55
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t

For ( + i~ , taking note of the fact that g’ - k2 has the -i-sign
.

‘i% c’on the rig ~-hand side and the - sign on the,left-hand side

respectively, we get ,,

To calculate the integral in the r-h”se of

k2L>>lwe note that the integrand decreases

integration from k to k + im. This allows

in a

This

~~-k (c+a)

(IV.5) for large

of the cut,

d<’ . (SI.5)

guide width, i.e.,

exponentially along the path of

us to expand

Taylorrs series and retain only the first term for asymptotic evaluation.

gives the r*h”s” of (IV.5) = I .,.

Introducing a new variable u

(c - k)2L = iu , d~
r

i:
-k=’;e

c2L = iu + 2kL , d~=~du

wc obtain

k)
1

(IV.6)
..

“.)

56



where

>

/--
(\

e’

m

I
-u

W_l[-i2L(a + k)] =
e

du .
&[u - i2L(a + k)]

From “(IV.’2)through (Iv.6) we get

“’[ 1Sl+(k) e ik2L
I= Ml+(k)

‘l+(k).
a+k

o

\

“[l
ia~2L

‘1 Sl+(a:) e Ml+(a:)

+1
n=l D1+(a~)

a;(a -1-a--)

Note that in (IV.8) we have neglected

in the summation.

In the”same manner we can show:
f--

),[-i2L(a + k)]

(SJ.7)

./

. (IV.8)

the exponentially decreasing terms

3
le-i–~

4 fiW_l[-2L(a + k)]eik2L

[1

s2+
(k)

=—
T M2+(k)

D2+(k)

,<

[1
2L

‘2
‘an-l/2

;1
‘2+(%-1/2) e

M2+(a&,2 )ia’n-1,2+~
+– . (CY+ a;-1,2)

(IV.9)
*=1

‘2+%-1/2).
an-1/2

, I
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APPENDIX V

!-l

In this appendix we discuss the problem of deriving the systems of the

equations that are satisfied by the constants Sl+(~;)> D~+@;)J s&;-@$

D2+.@;-l/2)” ,We present only the calculations for S~+(a~) and Dl+(a”)

because the same procedure can be followed to solve for the other constants.

After substituting u = a; into (4.55), and using the expression (4.63)

together with the asymptotic form of the function W-1[-2L(a + k)], we have

where

.

To calculate the constants

the expressions for Hit(c) from

u = k and a = a“, This yields
m

,,

(v. 1)

(V.2)

(V.3)

“vl+(a)lpj=k,~rand ~l_(-u)lU=k,a, we insert
m m

(4.13) into (4.39), (4.48) and substitute

certain integrals which we can calculate

using the theory of residues. We are interested in examining two cases

a) N-even; b) N-odd. Substituting results into (V.3) we obtain the

expressions for P(’)i. In the same manner we ‘naveobtained results for Case A.
m
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