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Abstract

.

I
.

The simulator studied consists of a pair of current loops
(similar to a Helmholtz pair) and the generalization to two and
three pairs. The loops are constrained to lie on the surface of
a sphere. The loop positions and current ratios are found that
minimize r.m.s. error functions defined in terms of integrals over
the volume and surface of spherical test volumes. The functions
are also minimized for various (easily realizable) integer ratios
of currents for the two-pair case. Spatial error plots are
included as well as mutual inductances needed to calculate the
low-frequency driving-point impedance. Figures of merit and
efficiency as defined Qy Chen and Baum are evaluated and discussed.
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1. INTRODUCTION

The study described in this report wns motivated by ti~c

need for practical design information for x low-frequrncy, ul~j-

form magnetic-field EI!Psimulator usin~ simple curre[lt 100PS.

Such a simulator could be used to measure F.\lPma~netic. fi~~ld

interaction with systems situated in the close–in r(’~liotlof :L

nuclear burst. (Knowledge of the ma~netic field cl~:~t’:~c”t(’l’isti~s

at the point of simulator app~ication ;vould be rcquir~cl.) Tt][*

simulator could be used to measure field pen[’tration tl]r{>[ig}]

poor conductors such as earth, the induced currents on sr:~tt.t’~.-

ing objects of various shapes, or the field penetration ~hl’tj~l}<l]

points of entry into highly-conducting shielc]s.

The simulator loops are assumed to lie on tf~csurfac:cof

a sphere and are in pairs; the loops of each pair fir~’symmcLri- 0
)

tally placed on each side of the cqumtor. Th~s gcomct.ry is

illustrated in Figure 1. Configurations with one, two, znd

three pairs were studied.

The approach toward optimizin.q the loop currents and lJosi-

tions for maximum field uniformity is a dep:~rture from LI1(’

approach that began with Ampere’s loop, the llclml~olt~,p:~ir,:~n[l

hlaxtvell’sthree-loop combination. This classical ap!>r(}:~cl~is

described and generalized by Garrett. (Ref. 1). Its b:~sicprin-

ciple is to xttaiu uniformity by forcinK LO xerr)ns mn~]y :~s

possible of the lowest order derivatives of the field [itthe

1. Garrett, !I,W,, “.fixinllySymmetric Systems for Gc’)lcr:lt.inR
and \!e~Slll’illR\!:lRtlC’iie.Fi(’ld.sl”p:lr~ T, ,J(~\~rt]:tlof ~1111)1i(.,(1
Pl~ysics, vol. 22, N(}.9, pp.

——
1091-1107, S(’p[(wll)(’)”1!)51,
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center of the geometry. This procedure is

forcing the low-order coefficients to zero

function expansion of the field potential.

equivalent to

in the Legendre-

In the present study, it was recognized that uniformity

was desired in a finite-size ~rtestvolume.” Or possibly it

would be the effect of a uniform field, the induced currents in

a test object, that should be optimized. Therefore, optimiza-

tion was performed using two separate criteria, both defined as

minimizations of relative errors calculated in an integral sense.

The first was defined in the sense of a volume integral over a

spherical test volume; the second was defined in the sense of a

surface integral over a sphere. In both cases, as the radii of

the spheres were allowed to become small, the optimum loop cur-

rents and positions approached those predicted by the classical

theory, For test volumes of a realistic size, however, these

parameters are significantly different.

After finding the optimum loop currents and positions for

the two-pair case, physically realizable (fractions-of-small-

integers) current ratios were defined close to the optimum

values. New optimum positions were found while holding the cur-

rent ratios constant to determine the effect on field uniformity

of given realizable current ratios. It was found that little

degradation occurred in the relative errors. This will be

elaborated in the body of the report.

Finally, mutual inductances were calculated for the one-

pai.raud two-pair cases. These can be combined with the self

inductance of the current loops to obtain the driving point in- 0

ductance for simulators under study.
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II, ISANALYS

m)
%2

In this section, the Le efid,re functi.on expa,nsi,ons for the

field componen

a single loop

ts Br and

given by

are deri

the-(Ref.

ved

2)

from

. The

the e

two

xpressions

optimization

for

n

methods are t hen defined. That is , quantiti-e-sxv f-or the volume-

integral method), and Xs (for the surfa,ce-integral method) are

defin ed wh-ere these quantities are functi.ons of the loop cur-

rents an

that min

problem.

uniformi

d positions

,imize Xv or

Since it

ty (indepen

(th

Xs

is t

dent

e “parameters”)

represent a sol

he relative cur

of their absol

.

Ut

‘re

,Ut

The parameter v

ion of the optim

nts that det-ermi

e magnitude), on

alues

,izati

ne fi

e cur

on

eld

rent

is set–to unity and the other currents are allowed t-o– ‘vary to mini-

mize xv or x~” Therefore, for L pairs of loops there are (L - 1‘)

curren parame ters and L pos iti (polar-angle) parameters for a

total of (2L 1) parameters.

Concluding this section is a brief discussi on of the numeri--

cal me t hods used mini,mize xv and Xs “

1. FIELD
..

The magnetic field due

the (Ref. 2) as

t-oa cir

P;(

cular Cu

Pn

rrent 1

(coSo)

.Oop is

by Smy

PI sins
2a )

n-1
r
E

Br cosa) (la)

?’
n=l (rz‘)

n-1
P~(cosa) P+(cose‘o 1b )

2. Smythe
McGraw

)

,-

lliam R.,
1 B~ok Co

ic Electricity
, 1950.

, 275,P.
.



where the current loop lies on a sphere of radius ~ at,angle a

from the z axis (i.e., a is the spherical polar coordinate 0 of o

the loop). Equations 1 yield the m~~netic field at points (r,O)

such that r < a (the field is independent of $).

If a second current loop is present in the symmetrically

opposite position (i.e. , at 0 = n - a) and carries the same cur-

rent, the synrnetry properties of the Legenclre function result in

the even terms canceling and the odd terms adding to yield

PI sins ~ r n-1

‘6=- a I ()
—— P;(cosa) P:(cosO

n=l(2)m na

where the notation n = n1(n2)n3 indicates that Che summation

‘Ver ‘1’ (nl + n2), .... (nl +mn2), .... n3. Finally, if L

pairs of current loops are present with the pair at al and

Tr-a ~ carrying current 11, the resulting magnetic field is

given by

(2a)

(2b)

Note thzt the n = 1 term of Equmtions 3 represents a uniform

magnetic field in the z direction. That is, the n = 1 term i~

12



.-

and

B
rl ‘~ ~ Ifl sin2ak COS8 =Bzl COSQ

Jt=l
—

B & ~ IL sin2cii
zl=a , a constant

.2=1

(4a~)

(4b )

(!5)

Next, the surface current density induced on a perfectly

conducting sphere centered at the origin and immersed in the field

given by Equation 3 will be determined. Using Smythe (Ref. 2,

P. 273) Equations 2, 6, and 8, one finds that a current density

‘o on a spherical shell of radius ~ given by

(6)

produces a magnetic field inside the shell given by

n(n + 1) Cn n-1
Br=-~~

()
2n+l~ pn(cOse)

Zn

v (n -+1) Cn r n-1

%==n
()

2n+l~ p~(cOse)

(7a)

(7b)

If the shell is immersed in the field of Equations 3, the induced

current density must be such as to result in a total field inside

the shell of zero; hence,

.

—

——..



.

f ~ ~ 11 sinaLP~(cosat) , nodd

~
n(n + l]Cn t=l

En 2n+l=

o , n even
f

()2n+l~ n ~ It sinat P~(cosal)
n(n + 1) a

, n odd

CD =
~=1(

o , n even

(8)

The first term (n = 1) of Equation 9 is the induced surface current

due to the uniform part of the field given by Equations 4.

2. VOLUME-INTEGRAL-MINIHUM DEFINITION

It is desired to find the loop positions and currents that

yield the most nearly uniform field over a spherical test volume. e

For purposes of this study, the most nearly uniform field is defined

to be that with the least r.m.s. deviation from uniformity over

the test volume, normalized to the uniform component of the field.

The r.m.s. deviation is defined in terms of an integral over the

spherical test volume. That is, x: is minimized where

x: =

I
B’~1 dV

T.V.

(lo)

T.V. is the test volume

~ is given by Equations 3

Bzl is given by Equation 5

14



The quantity x: is a function of the parameters Ik and al and the

@)*2 radius 5 of the test volume.

The integrals of Equation 10 can be evaluated analytically.

(11)

,Since the first (n = 1) t-ermof Equations 3 is exactly Bzl~, one

obtains

where ~r and ~~ are given by Equations 3 with the n = 1 term

omitted. The orthogonality of the sets of functions Pn and P:

1
imply that only the squared terms of Pn and Pn survive the 8

integration in Equation 12; thus, u can be written

77

J[
Pn(cose)12 [()

1 r ‘-1 Lx sine d9 + ~ ~ ~ Ii sinak
o R=l

1
2T

J[ 1
2

X P~(cosak) P;(coSe) sint3de r2 dr
o

From Abramowitz and Stegun (Ref. 3), one obtains

1:[PJCOSU12 Sine ‘e= J:: [pn(x)12 ‘X =2:+ 1

(12)

(13)

(14a)

— 3. Abramowitz, Milton, and Stegun, Irene A., Handbook of ~lathe-
maticml Functions, AMS 55, p. 338, National Bureau of Stand-

‘%)
ards, 1970.
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and

r

H 1

2
P:(coSe) sin9 d6 =

l; F:’”]’ ‘x = 2“;;::’ 0
(14b)

o

Substituting these values into Equation 13, performing the inte-

gration over r, and combining terms, one obtains

Let v be defined by

Since Bzlis constant over the test volume, the integration is

trivial; substituting from Equation 5 one obtains

and x: (Eq. 10) can be written

x: =

(16)

(17) e

(18)

3. SURFACE-INTEGRAL-IIINIMUH DEFINITION

In this case, the purpose of the system of wire loops is to

induce a surface current thxt approximates the surface current

induced by a uniform field on a spherical, perfectly conducting

scattering object. This ideal surface current is given by the

first term (n = 1) of Equation 9. The method is similar to that o



..

—

given in the preceding section. The r.m.s. deviation is defined

in terms of a surface integral over the sphere rather than by a

volume integral.

The quantity to be minimized is

where i
4

is given by Equation 9, ‘$1 is the first term (n

(19)

1) c)f

Equation 9, and S is the surface of a sphere of radius ~ centered

at the origin. The integration can be performed analytically. Let

u=
J

Ii$ - i4112 da
s

Again, using the orthogonality of P1
.—

one obtains
n’

Tr

H 1

2
x P:(coSe) sine de

o

Let

[()L
1

2

v= Gn : ~ IEsin2 al
8=1

(:20)

(21)
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Then x: (Eq. 19) is given by

x: = (22)

Note that the form of x: is identical to that of x;; only

the values of’the coefficients of the expansion in the numerator

are different.

4. THE MINIMXZATION PROCEDURE

Several algorithms for finding the minima of XT,and XS in

parameter space were programmed and run on the AFWL computer sys-

tem. None of-the methc.ds quickly found minima if the number of

pairs was greater than two (three parameters); that is, for three

pairs (five parameters), the procedure was tedious. No serious e

attempts were made to find optimum parameters for four or more

pairs.

The reason for the difficulty is found in the nature of the

functions xv and XS in parameter space. These functions have

paths through parameter space along which they have (1) extremely

small values, (2) a very large gradient perpendicular to the path

axis, and (3) an extremely small gradient parallel t.o these axes.

Most algorithms tend to converge to the axis of such a path with

reasonable speed, but can make little progress along the axis.

Though this behavior causes difficulty in finding the mini-

mum points, it can be both a help and a hindrance from the engi-

neering standpoint. It is a help in that there are many sets of
o

parameter values that yield small values of Xv or x~. Hence, for



the two-pair case, realistic current ratios can be chosen close to,

@~ but not equal to, the ideal; then loop positions can be found such

that either xv or xs is almost as small as the minimum value. Such

a point is on, or close to, the path of small values. However,

the property of having a large gradient perpendicular to the path

axis can cause a fabrication tolerance problem. Small variations

in the parameters such that their vector displacement is not

parallel to a path axis can cause a large increase in xv or xs.

This property requires careful consideration of the required tol-

erances when constructing such a simulator.

Four methods to locate the minima of X(xv or xs) were

written into computer codes. Each method will be discussed.

First , the method will be described including the derivation of

q
required formula; then, comments will be given as &o its useful-

- ness.

a. hlethods of steepest descent--The gradient of X2

was calculated in parameter space.

ing in the direction of smaller x2

that direction until x2 increased;

Since -VX2 is a vector point-

) small steps were taken along

then the step size was decreased

and the process continued. A modified version took 25 st-eps,

stored the parameters, took 25 more steps and subtracted to find

the vector displacement over the last 25 steps. It then extrap-

olated a distance determined by the analyst and used the new point

to start the process over. The gradient expressions are given in

the Appendix for tll-e–!!odifiedNewton-Raphson method and are not

repeated here. This was the least successful of any of the methods

tried and was discarded early in the study, Many thousands of steps

19



often led to a very poor result. After the minima were found us-

ing other methods, it was discovered that some of the results, @

primarily for Z/a > 0.6, were fairly close.

b. Brute-force minimum seeking--In this method, a first

guess of the parameters, say ~o, and a distance of 6 is entered

as input to the code. The value of X2 is evaluated for all the

possible vector locations given by ~. with O or 16 added to its

components. For N parameters, X2 N
is evaluated at 3 such points

(including ~. + #), the location of the smallest value of x2 be-

comes the new j5’o, and 0.9 6 becomes the uew 6. The procedure is

then iterated. Tertiary numbers were generated to calculate the

vectors. A DO loop for M = 1, 3N was entered, then the tertiary

digits of M-1 were found; i.e.,

M-1= (nl, n2, .... nN)3

where the ni =

components

Pi =

This

a point with a

smallest value

is very close;

O, 1, or 2. The vector of interest, then, has

POi+(ni-l)d, i= 1, ...jli

(239 *

(24)

method appears to be very deliberate. It alwaysfinds

smaller value of X2. It does not converge to the

of X2, however, except when the first guess point

i.e., accurate to 3 to 7 places (depending on the

number of pairs and E/a) and 6 is appropriately small. This method

was used extensively to find a “downhill “ direction to extrapolate

along as input to the Modified Newton-Raphson method described next.

The minimum X’S for three pairs were found primzrily by alternating
m

between this method and the h!odified Newton-Raphson method.

20



c. Modified Newton-Rnphson-- To find the minimum of X2 in

parameter space, one seeks the solutiol~ of the equations

axz=o, i=l
~ J ...,N (24)

where the pi are the parameters, i.e. , the current ratios and
●

positions (polar angles) of the current loops. Solving the Equ:l,-

tions 24 using Newton-Raphson, one assumes a “first guess” for the

parameters, say ‘j3=~”; near~o, aX2/ap+ can be approxim:~tcd by

the first two

ax2
7q

terms of–a ‘‘aylor expansion . Tl~at—is,

22X2

+ ! apj(5p @j

-o J i
P 17°

(2!5)

For matrix notation, define the matrices

A

x=
a2x2

~Pjapi
-o
P

, an N x N matrix (26a)

, an N columnvector

an ;?column vector

(26!3)

. (26C)

21



Hence,
--+

an improved value of = is p , where

--b
P =50+@

4+ ‘-l-

P = 5° -Ay (29)

the Newton -Raphson formula. The required derivatives (elements

of ~ and ~) zre .&iven in the Appendix.

Since Equation 24 holdsat both maxima and minimzof X2,

this algorithm may converge to either a maximum or a minimum.

Therefore, the code was modified to test whether x
2

increased or

decreased over each step. If X2 increased, the correction term

(~-ly) was multiplied by a factor of (-0.9) to force downhill

movement and avoid an unending oscillation if, indeed, the step

was across a minimum. The (-0.9) factors were cumulative and the

number of multiplications ~vere counted, In the final version of

the code, this was allowed to continue for 50 steps at which time

the factor (-0.9)n was reinitialized to +1 and the procedure was

repeated until the total number of steps were taken that had becj)

chosen by the analyst. The number of multiplications by (-0.’3)

in each 50-stsp block pro~’ided an indication of the convergenc~

properties of the run,

It was found that neither this method nor the Brute-Force

method converged quickly unless very accurate initial guesses w’ere

provided. Each method ~vouldmake a great clezlof progress (in

terms of reducing X2) when it began calculating, then it \Vould

seem to ‘~convergef’to a parameter value. This “convergence” was

an illusion; giving the “final answer” to the Brute-Force code

22

2
usually resulted in a lower x and pzrnmeters modified much more
I



than one would expect, making it very difficult to estimate the

@ accuracy of any given result..

This problem led to further modification of the Newton-

.Raphson code. The final version accepts two parameter values ~1

and~2 (such as the beginning and ending values of a Brut-e-Force

run) , These t~vovalues are used t-odefine a straight line in

parameter space. Another input parameter defines a number of in–

-1– –2crements b-etween p and p along the line. Two index parameters

are then used t=rdefine a set of points along the line chosen as

first guesses for Newton-Raphson iteration. Th-epoints chosen
.

can int-erpolat.ebet;~een, or extrapolate beyond, the points p-L and

:2
. Using the points along the line as first guesses, Newton-

Raphson was alloi~ed to iterate typically 100 times from each

@
starting point. By carefully choosing the points, one could find

Wb a region along the line where the Newton-Raphson results had a

2
minimum value of x . The parameter vector at this point-was then

typically used as input to the Brute-Force method. When neither

the Brute-Force method nor the Newton-Raphson metilod changed the

results in the seventh or eighth place, it was assumed that the

result was ne:ii-a minimum.

d. Ne\vton-Rnphson shotgun method-–A version of the Newton–

Raphson code \vas\\’rittenthat used as first guesses the same array

of points generated in the Ilrute-Force method (Eqs. 23 and 24).

A limi.tcdnumber of Newton-Rzphson iterations (typiczlly 25), t~ere

performed from each point. The final value of-~ yielding the

smallest ~ bccnme the center poin-for the next calculation, 6 wms _
.

)
reciuccdby t.l)cf:~ctor0.5 findtilel~l]oleprocess repeat-ed, This

‘%
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scheme seems to combine the best features of the Brute-Force and

Newton-Raphson schemes. However, it does not converge to the dc- *

sired result any faster or more consistently than its predecessor

schemes. It was developed late in the effort and not used exten-

sively.
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111. RESULTS AND CONCLUSIONS

1. OPT IMUh!PARAMETER VALUES

“For a single pair of loops (one parameter), the Newton-

Raphson method converges in 3 to 5 iterations. The Optimum par~Lm-

eters are given in Table 1. The parameter R is the ratio of the

test-volume radius (Z) to the radius of the sphere containing the

loops (a). (The radius of a loop is given by a*sina. ) The posi-

tion of the loops for the llelmholtz configurat-ion is given at the

bottom of Table 1. For the two-pair and three-pair cases the cur-

rent ratios are also optimized. These results are given in Tables

2 and 3. The “generalizecl Helmholtz configurations” given at the

bottom of Tables 2 and 3 are the classical solutions discussed in

the Introduction and in Reference 1.

It should be pointed out that the values of x gi~ren in Tables

1, 2 and 3 are the values of x calculated with the full (double--

precision) values of current (I) and position (a) in the computer.

The values of—x are the minimum values to the three places given.

The accuracy of the parameters yielding the small values of x is

unknown; her.ce,parameter values rounded to four places are given

here, (We are highly confident that four places are correct. )

Since x is extremely sensitive to chances in the parameter values,

the values rounded to four places yield much larger values of x

in some cases, namely, for two and three pairs and small values

of R. The actual \ralues of x implied by the rc,unded values of

the parameters thlt differ from those shown in Tables 2 and 3 are

given in Table ‘1.

—.
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R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Volume Integral Surf:irc In~t’}:r:tl
a (Ileg) ~iiIll~U~ x CI (l-)(’g) !iIinimilm[

63,44 4.20 X 10-5 63.44 8,90 x 10-~

63.45 6.73 X 10-4 63.4G 1.42 x 10-3

63.51 3.41 x 10-3 62.56 7.21 x 10-3

63.67 1.08 x 10-2 63.82 2.28 x 10-2

64.01 2.65 X 10-2 64.39 5.60 ~ 10-2

6fl.63 5.55 x 10-2

65.65 1.05 x IO-*

65.42 1.17 x 30-1

67.17 2.23 ~ 10-’

67.28 1.S8 X 10-1 70.02 4.08 ~ 10-1

Helmholtz Configuration: a = 63.4349°



TABLE 2. OPT I!lUMPARA!IETERS--TWO PAIRS OF LOOPS

Volume InteRral Surface InteKral
a (DeK) I ilinimum x a (I)eg) I Minimum xR

0.1

0,2

0.3

0.4

0.5

0.6

[O 0.7
Q )

0.8

1

0.6821
2.99 X 10-9

7,65 X 10-7

1.96 X 10-5

1.96 X 10-ZJ

1.17 x 10-3

5.07 x 10-:3

1.76 X 10-2

5.30 x 10-2

1
0.6822

8.46 X 10-973.43
40.09

73.43
40.09

73.44
40.11

73.49
40.20

73.61
40.43

73.88
40.97

74.37
42.05

75.21
44.14

76.65
48.22

2,16 X 10-673,44
40.10

1

0.6827
1

0.6S29

5.55 x 10-5 -. .73.47
40,.17

1
0.6851

1
0.6860

5.55 x 10-473.57
40.36

1
0.6918

1
0.6945

3.31 x 10-373.78
40.76

1

0.705;
1

0.7126

1.43 x 10-2

4.95 x 10-2

74.16
41.54

1

0.7318
1

0.7459

74.78
42.98

1

0.7754
1

0,8003

1.48 X 10-175.77 1
0.s422

1
0.S76345.54

Generalizecl Helmholtz Configuration: c (Deg) I

73.4273 1
40.08S1 0.682110
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R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

77.92
53.72
29.34

77.92
53.72
29.34

77.95
!53.79
29.40

78.01
53.94
29.53

78.14
54.25
29.84

78.38
54.86
30.46

78.78
55.94
31.71

79.45
57.85
34.22

.

0.81270
0.5108

1

0.8270
0.510s

1

0.8289
0.5135

1

0.8328
0.5195

1
0.8409
0.5326

1

0.S546
0,5583

1
0.8753
0.6059

1

0.9053
0.6922

2.43 X 10-13

9.95 x 10-10

1.29 X 10-7

4.07 x 10-6

5.94 x 10-5

5.31 x 10-4

3,41 x 10-3

1.73 ~ 10-2

77.92
53.72
2!3.34

77.’32
53.72
29.34

77.95
53.80
29,41

78.03
53.9s
29.57

78.18
54.36
29.94

78.46
55.09
30.73

78.95
56.45
32.39

79.84
5!3.01
36.08

o.;~70
0.510s

I
0.8270
0.510s

1
o.s~gz

0.51’10

1

0.8339
0.5211

1
0.8589
0.56s1

1
0.8827
0.6273

1

0.!3174
0.7337

Generalized Helrnholtz Confi~uration: a [lle~> I

8.25 x 10-*3

3.38 x 10-9

4.39 ~ 10-7

1.39 x 10-5

2.02 x 10-’1

1.80 X 10-3

1.15 x 10-2

-2
5.81 x 10

..,,

77,9187 1
53.7222 0.8270~17
29.3385 0.510849
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R

0.1

0.2

0.3

R

O.l

0.2

0.3

0.4

0.5

0.6

TABLE 4. VALUES OF ~ THAT DIFFER DUE TO PARAMETER ROUNDING

a. Two P-airsof Loops

Volume Integral Surface Integral
x--Rounded x--Rounded–

Minimum x Paramet-ers Minimum x Parameters_

2.99 X 10-9 6.84 X 10-7 8.46 X 10-9 5.07 x 10-7

7.65 x 10-7 3.46 X 10-6 2.16 X 10-6 2.44 X 10-6

1.96 X 10-5 2.04 X 10-5 5.55 x 10-5 5.72 X 10-5

b. Three Pairs of Loops

Volume Integral
*--RoundedA

Minimum Y

Surface Intezral
Y--Rounded–

2.43 X 10-13

9.95 x 10-10

1.29 x 10-7

4.07 x 10-6

5.94 x 10-5

5.31 x 10-4

Parameters Minimum x ~~ra~eters —

4.05 x 10-8 8.25 X 10-13 6.70 X 10-8

1.75 x 10-7 3.38 X 10-9 3.02 X 10-7

4.62 X 10-6 4.39 x 10-7 5.88 X 10-6

1.35 x 10-5 1.39 x 10-5 3.34 x 10-5

6.22 X 10-5 2,02 x 10-4 2.03 X 10-4

5.32 X 10-4

2“9



2. BEHAVIOR OF TllEERROR FIELD

The variation of the field within the test volume is of

interest to simulator designers. To gain insight into the be-

havior of this variation, several types of graphs were made.

The first quantity plotted was the relative error field

(30)

where B is the constant part of the field and ‘~ is the total
Z1

field. The quantity Bre yields an overall view of the variation

of the field independent of the vector direction of th~t v:lriation.

In Figures 2 through 7, Bre is plotted versus 6 on the surfocc of

the test volume for R = 0.1 through 0.8, for one, two, and three

pairs and for both \’olume- and surface-integral me~hods. In

Figures 8 through 14, the behavior of ~re as a function of r is

shown for 9 = O, 45°, and 90°, where r is tl]eradial dis~:ince

in units of the loop-sphere radius a, The values of r shown arc—

inside the test volume; hence, r takes on values from y,croto R

only. The plots indicate that Bre is a smooth function with no

large spikes. Its value is largest on the surface of the test

volume and decreases rapidly as the observer moves toward the

center of the test volume. At about 0.8 of the radiua of the

test volume, half the volume is inside and halftoutside; at this

point Bre approximates xv as one might expect.

To display the vector behavior of the error fields, contnurs

of constant values of the two error-field components were plot~ed,

That is, contours of constant BP/Uyl (where B is the cylindrical ,
. Q

o
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10°

10-1

10-2

10-3

10-4

R=O.8

~
R = 0.6

R = 0.5

R = 0.4

b

R=o.1

,.-5L . ~ ● s

i

;

.

-i-w

o 10 20 30 40 50 60 70 80 90

0 Degrees

Figure 2. Bre versus 8 for one pair --

volume-int-egral method.
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10°

10-1

10-2

10-3

Q1

d’ 10-4

10-5

10-6

10-7

R = 0.6

,
R= 0.2

Figure 3. 13reversus $ for two pairs --

volume-integral method.
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10°
i

10-3
R = 0.4 1

10-4

10-5

al

ah 10-6

10-7
,

lo-8i

10-9

10-10

10-1’
+

10-’20 io io 3’0 io 5’0 60 ‘0 80 ‘0

o Degrees

Figure 4. Bre versus 6 for three pairs --

volume-integral method.
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10°

10-1

_21
10 \

OJ

cfr
10-3’

10-4

R= 0,3

t

t

R = 0.1

i

t
b

,

-5 ‘ F
10 & ~o 2’0 ~0 40 50 60 70 80 90

6 Degrees

Figure 5. Bre versus O for one pair --

surface-integral method,
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10-2

10-3

‘a)

d’ 10-4

c
10-’

10-[

lo-

+

10-fo ~’ 2’0 3(3 4(3 50 60 70 80 90

13Degrees

Figure 6. Bre versus 8 for two pairs --

surface-integral method.
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10°

10-1

10”2

10-3

10-4

10-5

al

d’ 10-E

10-7

m-g
10-$

10-1(

10-1’

R = 0.7

R = 0.6

-

Io-’zf ~. ;0 ~. ~. ;0 ;0 ;.+O
i)

0 Degrees

Figure 7. Bre versus 6 for three pairs --

surface-integral method.
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(b) R - 0.2

Figure 8. Relative error versus radius, in the test volume,

for either volume-integral or surface-integral

method; R = 0.1 and R = 0.2 (two pairs of 100PS),
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w
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ah

r/a

(b) R=O.A

Figure 9. Relative error versus radius for
voluxe-integral method;R = 0.3
ant!R = 0.4 (~~~o]~airs of 10C)pS).
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Figure 10. Relative error versus radius for
volume-integral metho~ R = 0.5
and R = 0.6 (two pairs of loops).
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e = 0°
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c11+c1
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(5) R- 0.8

Figure 11. Rclati\’e error versus radius for
volume-integral me’thod;R = 0.7
and R = 0.8 (two pairs of loops),
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10-3

10-4

10-5

10-6

10-7

10-8

e - 45°

0 0.1 0.2 0.3

r/a

(a)?l- 0.3

0

Lah

Figure 12. Relative error versus radius for
surface-integral method:R = 0.3
and R = 0.4 (t~!’opairs of loops).
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Figure 13. Relative error versus radius for
surface-integral methocl;R = 0.5
and R = 0.6 (two pairs of loops).
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(b) R= 0.8

Figure 14. Relative error versus radius for
surface-integral method;R = 0.7
and R = 0.8 (two pairs of’ loops).
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radial component of ~ orthogonal to Bz) were plotted and contours

of constant Bze = (B - Bzl)/Bzl were plotted, These are shownz

as overlays in Figures 15 through 26.

3. OPTIMUM LOOP POSITIONS FOR FIXED CURRENT RATIOS

It would be difficult to design a practical simulator with

the ratio of currents in the various loops equal to or approxi-

mating an irrational number. The most reasonable approach would

be to wire the loops (at least a symmetrical half of the loops)

in series and adjust the number of turns in each loop to attain

the appropriate ratios. For an accurate approximation to an ir-

rational number, a large number of turns would generally be re-

quired. This would result in a large inductance and a difficulty

in achieving sufficiently fast rise times. Therefore, a practical

design will. have a small number of turns in each loop. In this

a
case, the ratio of currents can be represented by a fraction

given by the turns ratio.

To explore the implications of fixing the current ratio to

such fractions for the two-pair case, optimum loop positions were

found for Iz/ll = 1/2, 2/3, 3/4, 4/5, 5/6, 6/7, 7/8, and 1. These

values bracket. the optimum values given in Table 2. The results

are given in Tables 5 through 12. It was found that, because of

the peculiar behavior of x as a function of the parameters, loop

positions could be found for several of the current ratios that

result in x not much larger than its optimum value. This behavior

gives the designer much more latitude than one might have orig-

inally expected.

e
,
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TABLE 5. OPTIMUM LOOP LOCATIONS FOR FIXED CURRENT RATIOS
(TWO PAIRS OF LOOPS), R = 0.1

Volume-Integral Method Surface-Integral Metho~~
I a (Dcg) x a (Deg) ~..—

69.70 2,43 X 10-6
30.60

69.70
30.60

5.16 X 10-61
1/2

3.67 x 10-673.19 1.46 X 10-8
39.65

73.19
39.65

1.34 x 10-774.42 5.38 X 10-8
41.70

74,42
41,70

1

3/4

2,17 x 10-775.12 8.66 x 10-8
42.65

75.12
42,65

1
4/5

2,66 X 10-775.58 1.06 X 10-7
43*2o

75.58
43.20

1

5/6

2.99 x 10-775.90 1.19 x 10-7 75.90
43.57

1

6/7 43.57

76.14 1.29 X 10-7
43.83

3.22 X 10-776.14
43.83

1

7/8

4.66 X 10-777.84 1,86 x 1-0-–7
45.36

77.84
45.36

1

1

.

-.

57



TABLE 6. OPTINUN LOOP -LOCATIONS FOR FIXED CURRENT RATIOS
(TWO PAIRS OF LOOPS) , R = 0.2

I

1
2/3

1
3/4

1
4/5

1
5/6

1
6/7

1

7/8

1
1

Volume-Integral Nethod
a (DeK) x

69.75 4,28 X 10-5
30.82

73.19 1.22 x 10-6
39.65

74.42 3.49 x 10-6
41.70

75.12 -65.56 x 10
42.65

75,58 6.81 x 10-6
43.21

75.90 7.65 X 1O-G
43.57

76.14 8.25 x 10-6
43.s3

77.84 1.19 x 10-5
45.36

69.77 9.37 x 10-5
30.91

73.19 3.22 x 10-6
39.65

74.42 8.7G x 10-6
41.70

75.12 1.39 x 10-5
42.65

75.58 1.7(3>:@
43.21

75.90 1.91 Y 10-~
43.57

76.14 2.(IGX 10-5
43.83

77.83 2.98 ~ 10-5
45.37



TABLE 7, OPTIMUN LOOP LOCATIONS FOR FIXED CURRENT RATIOS
(TWO ‘PAIRS OF LOOPS), R = 0.3

I

1

1/2

1

2/3

1

3/4

1

4/5

1

1
7/8

1

1

Volume-Integral Method
a (Deg) x

69.91 2.82 X 10-4
31.64

7s.19 2.32 X 10-5
39.65

74.42 4.20 X 10-5
41,70

75.12 6.43 X 10-5
42.66

75.57 7.81 X 10-5
43.22

75.90 8.74 x 10-5
43.58

76.14 9.41 x 10-5
43.85

77.82 1.36 X 10-4
45.39

Surface-Integral Method
a (Deg) x

69.97 6.48 X 10-4
31.98

73.19 6.42 x 10-5
39.65

74.42 1.07 x 10-4
41.70

75.12 1.61 X 10-4
42.66

75,57 1.96 X 10-4
43.22

75.90 2.19 x 10-4
43.59

76.14 2.35 X 10-4
43.85

77.81 3.38 x 10-4
45.41

“-59



TABLE 8. OPTIMUh! LOOP LOCATIONS FOR FIXED CURRENT RATIOS
(TWO PAIRS OF LOOPS), R = 0.4

Volume-integral h!ethod
a (Deg) x

Surface-Integrsl Method

LL-@!31 .___X___
I

70.16
33.03

1.24 x 10-3 70.27 2.94 x 10-3
33.58

73.19 2.17 x 10-4
39.67

73.19 6.10 X 10-4
39.69

74.42 2.70 X 10-4
41.71

74.42 7.07 x 10-4
41.72

1
3/4

75.11 3.76 X 10-4
42.68

75.11 9.55 x 10-4
42.69

1

4/5

75.56 4.47 x 10-4
43.24

75.56 1.13 x 10-3
43.26

1.25 x 10-3 *75.88 4.96 x 10-4
43.62

75.88
43.64

76,12 5.32 X 10-4

43.89
76.11 1.33 x 10-3
43.91

77.78 7.37 x 10-4
45.47

77.76 1.89 X 10-3
45.51

1

1

60



TABLE 9. OPTIMUh! LOOP LOCATIONS FOR FIXED CURRENT RATIOS
(TWO PAIRS OF LOOPS), R = 0.5

Volume-integral h!eth~d

~ ~.

Surface-Integral Methoq

LL@Q ~.I

70.46 4.21 x 10-3
34.57

70.64 1.01 x lo-~~
35.30

1

1/2

73.20 1.28 x 10-3 73.22 3.64 X la-~]
39.85

1

2/3 39.76

74.41 1.28 x 10-3
41.75

74.40 3.49 x lo-f)
41.78

1
3/4

75.09 1.56 x 10-3
42.73

75.08 4.07 x 10-:]
42.76

1

4/5

75.54 1.79 x 10-3
43.31

75.51 4.56 x 10-:)
43.35

75.85 1.95 x 10-3
43,69

75.82 4.93 x 10-:3
43.74

1
6/7

76.08 2.07 x 10-3
43.97

76.05 5.22 X 10-:3
7;8 44.c)2

77.69 2.86 x 10-3 77.62 7.11 x lo-:?
45.71

1
1 45.62
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TABLE 10. OPTIMUh! LOOP LOCATIONS FOR FIXED CURRENT RATIOS
(TWO PAIRS OF LOOPS) ; R = 0.6

I

1
1/2

1

2/3

1
3/4

1

4/5

5;6

1
6/7

1
7/8

1
1

Volume-Integral Method
a (Deg) x

70.84 1.21 x 10-2
36.24

73.26 5.61 x 10-3
40.10

74.40 5.10 x 10-3
41.91

75,06 5.49 x 10-3
42.87

75.48 5.91 x 10-3
43.46

75.78 6.25 x 10-3
43.85

76.00 6.52 x 10-3
44.14

77.51 8.50 x 10-3
45.87

Surface-InteRral Method

~ .___&___

71.20 2.94 X 10-2
37.33

73.36 1.58 X 10-2
40.49

74.42 1,43 x 10-2
42.12

75.04 1.49 x 10-2
43.03

75.44 1.56 x 10-2
43.60

75.7’3 1.63 X 10-2
43.99

75.94 1.68 x 10-2
44.27

77.36 2.12 x 10-2
46.04
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TABLE

I

1;2

1
2/3

1
3/4

1
4/5

1
5/6

1
6/7

7;8

1
1

11. OPTIMUI! LOOP LOCATIC)NS FOR FIXED CURRENT
(TWO PAIRS OF LOOPS

Volume-Integral–Method
a (Dcg) - ~

71.45 3.11 x 10-2
38.34

73.48 1.96 x 10-2
41.09

74.48 1.77 x 10-2
42.55

75.07 1.77 x 10-2
43.39

75.45 1.81 X 10-2
43.93

75.71 1.84 X 10-2
44.30

75.91 1.88 x 10-2
44.57

77.25 2.21 x 10-2
46.31

R 0.7

Surface-

~

72.20
40.21

73.87
42.28

74.71
43.44

75,20
44.14

75,53
44.60

75.76
44.93

75.93
45.17

77.11
46.79

RATI0s

Int=

7.74

5.47

5.02

4.95

4.98

5.03

5.08

5.65

!flethod
Y

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

x 10-2

.63



TABLE 12. OPTIhlUJ!LOOP LOCATIONS FOR FIXED CURRENT RATIOS
(TWO PAIRS OF LOOPS), R = 0.8

Volume-Integral Method

EQE&l~

72.49 7.56 x 10-2
41.44

74.01 1.92 x 10-1
45.09

74.12 5.84 x 10-2
43.34

75.20 1.60 x 10-1
46.362;3

74.92 5.44 x 10-2
44.38

75.79 1.52 x 10-1
47.083;4

75.38 5.32 x 10-2
45.01

76.13 1.50 x 10-1
47.534;5

75.69 5.30 x 10-2
45.43

76.36 1.49 x 10-1
47.835}6

75.91 5.30 x 10-2
45.72

76.52 1.4s x 10-1
48.056;7

76.07 5.31 x 10-2
45.95

76.64 1.48 x 10-1
48.217;8

77.15 5.59 x 10-2 77.46 1.51 x 10-i
49.37

1
1 47.44

64



4. SENSITIVITY ANALYSIS

The extreme sensitivity of x to changes in the parameters

(near a minimum) has already been pointed out in Sections II-4

and III-1 of this report. In this section, the sensitivity is

quantified. The sensitivity is needed to determine the fabrica-

tion tolerances required to achieve a given field uniformity.

The field uniformity achievable using the type of simulator clis-

cussed in this report may well be determined by the minimum

achievable engineering tolerances.

To quantify the change in x from its minimum value Xm clue

to small changes in the parameters, one can use the first f-ew

terms of a Taylor expansion about the minimum point in parameter

space. Since the first derivatives are zero at–the minimum, the

first two non-zero terms in the e-xpansion of X/Xm are

x/xm ; 1 -t-~ (2-6
ij) Cij ‘pi 6pj

i)j

(31)

where

c 1 22X
ij ‘~api ap.

and 6..lJ
is the Kronecker delta,,

J

Using Equation

Newton-Raphson

formula

49 (found in the Appendix and evaluated in the

code), the values of C. . were calculated with the
lJ

(32)

To simplify application of Equation 31, the coefficients involving

the angles (a+) have been transformed from radians to degrees.
A

IIence, in Equation 31, a ~pi s lou]d be in degrees if it—is an



angle coordinate. Since 12 and 13 can be correctly considered as

dimensionless ratios to the current 11, ~pi is dimensionless if

it is a current coordinate. The coefficients Cij are given in

Tables 13 through 15 for all the optimized parameter values given

in Tables 1, 2, and 3. The index of the parameters corresponds

to their order in Tables 2 and 3. That is, LYl> CY2> as and

11 ‘ 12 s 13 (11 = 1, a constant; hence, partial derivatives witl~

respect to 11 are zero and are not shown in the tables). To

clearly identify the C. they are listed in the tables w’ithsub-lj‘

scripts CYi or Ii. For instance,

The tables clearIy demonstrate the extreme sensitivity of

x to parameter variations for small vxlues of R. For inst:lncc,

ifR= 0.1 and there are two pairs, using the volume–integral

method one finds Ca ~ = 3.057 x 109. This coefficient impliec
71

that ~ is approxima~eiy doubled if al is ch~n~ed from its optimum

value by 1.8 x 10–5 degrees while holding the other parameters

constant. Such tolerances cannot be attained; hence, it is not

sensible to attempt to attain such a small x (%3 x 10‘g) with this

type of device. The corresponding coefficient for R = 0.8 is

6.077 x 10-2, This coefficient implies that.a variation of about

four degrees in al will about double x (xm = 0.053). A four-de~ree

tolerance is probably attainable. The design of a simulztor

using these techniques must balance attainable tolerances against

test volume size and expcctecl field uniformity.



@)

R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TABLE 13. VALUES OF C. . FOR ONE PAIR OF LOOPS
lJ

Volume-Int-egral Method

4.432

2.766

5.431

1.691

6.688

3.023

1.460

7.119

x

x

x

x

x

x

x

x

101

10°

10-1

10-1

10-2

10-2

10-2

10-3

Surf-ace-Integral Method

2.692

1.679

3.290

1.018

3,983

1.771

8.415

4.100

x

x

x

x

x

x

x

x

101

10°

10-1

10-1

10-2

10-2

10-3

10-3

67



TABLE 14. VALUES OF C,. FOR TWO PAIRS OF LOOPS

CD
03

R

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

c
alal

3.057 x 109

7.475 x 105

5.799 x 103

1.870 X 102

1.334 x 101

1.598 x 10°

2.760 X 10-1

6.077 X 10-2

n

I0.1 1.037 x 109

0.2 2.541 X 105

0.3 1.986 x 103

0.4 6.531 X 101

0.5 4.849 X 10°

0.6 6.203 X 10-1

0.7 1.170 x 10-1

0.8 2.830 X 10-2

c
ala2

—.

1.062 X 108

2.508 X 104

1.652 X 102

2.872 X 10°

-1.3a9 x 10-~

-7.874 x 10-2

-2.682 x 10-2

-8.621 X 10-3

J-J

a. Volume-Integral Method

3.912 x 106

1.712 X 103

3.873 X 101

3.462 x 10°

5.776 X 10-1

1.381 x 10-1

4.105 x 10-2

1.348 x 10-2

c
a112

-4.934 x 1010

-1.203 x 107

-9.216 x 104

-2.872 X 103

-1.905 x 102

-1.996 x 101

-2.768 X 10°

-4.434 x 10-1

c
ala2

3.597 x 107

8.255 X 103

4.612 X 101

-1.118 x 10-2

-2.073 X 10-1

-6.263 X 10-2

-1.871 X 10-2

-5,744 x 10-3

b. Surface-Integral Method

c
a2a2

1.372 x 106

7.542 x 102

1,999 x 101

1.882 x 10°

3,20!3 x 10-1

7.733 x 10-2

2.274 x 10-2

7.241 x 10-3
—

c
a112

-1.674 X ~O1°

-4.080 x 106

-3.123 x 104

-9,702 x 102

-6.391 x 101

-6.600 X 10°

-8.922 X 10-1

-1.369 x 10-1

‘a212

-1.720 X 109

-4.274 X 105

-3.541 x 103

-1.326 X 102

-1.187 X 101

-1.816 X 10°

-3.782 X 10-1

-9.006 X 10-2

c
a2*2

-5.838 x 108

-1.458 X 105

-1.231 X 103

-4.772 X 101

-4,401 x 10°

-6.717 x 10-1

-1.326 X 10-1

-2.821 X 10
-2

f-)
NOTE: Cu.a in Deg-&; Ca ~ in Deg‘~; and CI 12

dimensionless.

o
~j i2

d

‘1212

7.964 X 1011

1.942 X 108

1.490 x 106

4.657 x 104

3.109 x 103

3.298 x 102

4.689 x 101

7.922 x 10°

‘1212

2.702 X 1011

6.589 X 107

5.050 x 105

1.575 x 104

1.048 x 103

1.105 x 102

1.570 x 101

2.719 X 10°
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LOOPSTABLE 15. VALUES c FOR
ij

PAIRS OF

-a. Vo; om-Iot~gral Method

‘1

T

“1.JJu21J2LkL c’””’1.J21JL
! 2.1 ~ 1.651.101;! 1..t29.1017/ 1.551.1016/ 1.238.1017 -4302<10’’bMk!3!!l!~;~,.,,,.,oHi,.35S.,0 “i=m==--4.,66.,0)01 ,.d,d”l -,.935.,0]2 “3’’’0bGMGM-2302”10’”‘g’’”’o’i8135”10”2373”’0’3’3256”10’3~4’9619’3

2.438R108 -4.979.108 l-6.978”08b+=3*ll.359.loloI?’ I c$?21@7 ~ ~066.107 44C6106 35~5Mlo7,—...-.T L

1
1,! 1’.: 1.570.105
;, —..———.——.

l--

~ -1
“b?:’EIMK 2!5

I
0.5 I 1.?35. 103 1.3!2.103 I 1.722.10* _pQo3.lo3

..—— —

=!z-kEo”47”’Og.
-3.971”104 I ,.43,.,C4 I -,,077.,06

-4.591 ”102 I 1.7?2.1O* I -2.216.1C4 8.4~8.103 I -1.691.104 I -2.61MM,04 \ 6.5t8.103 I 8.458103 \2.587.105 I 3.154.105 I 5.065.195

‘IC.6; 5.715.101 3.262.10’ 1 5.154.10°
—--i ——— 1- L——-4—---- -— 40~-:’:’-- .--––bM$i-23!u!--1.233.10’ 2.030.10*

I -“13-102 iI!YXIH.E!_t-Mll?!UOl_kEAIEw_—.— —.— -——‘3’3
‘to

1:
l_L17~3.233.100 I 1.151.1c’o I 3.4s4.10-1 12.1 S5.10°

.— ——-
-6.310.10-1 I 3.366.10-1 I -2.838,01

,,.
I 0s!3 !,=, <,~-l ‘~_ll ..- ,3.4,0.10-21 5.20cA0-2jl.919 .}0-1

-.. — —-——
-5.608 .10-2 ]

_--l
14.320 .10-2 -1.935.100

———
3.331.10-’

I
-7.851 .10-’

.- — 1-228’”00 I ‘4.wx-kw!!k.vxk5.
b. Surface-Integral Method

~ 3,34.,,lf5!%LsL=’ldz3sE-3.362.1015 3.64! x10’5 2.912 x10’6 2.013.1017 \ -4.127.}017/ -5.688.,017/ ,.461 .1(317 2.013x1017 5.853,10188.061x10181.111.1019

5.592.1012 7.649 ”10’2 1.05;.10”

1.689< 199 2.262.109 3.20:.109
—

5.424x106 6.824.106 1.02>.107
——— ——- —

6.429A 104 7.038. !04 1.215.105
——

1.766.103 1 .454X103 3.28 CX103 I

,,

1.912PlO11 I -3.911%,011 \ -5.4,5.,(311 I ,394.,o~l 1.912.10”
— .—

5.718.107
—-—

1.772.155

1.931.103

“10,1-1.1:5.10 7 i 9.518.106..-
L._— -1L–.—-.U’N!6 R1.v:OL

I

-2.94%105
!-

1.0!5.106 -1.389.108
—.. .——

5.718x107 -1.1 L6.108 I -1.646=108 I 4.213.107

I

L-10: 1.Sjt. lo4 2.~25.104 3.C35.103
-1

2.765w10C
.—

~ 0.! ~5.040.102 I 3.103.102 ~ 4.3&l.10] 13.416.102
—.L

-,.0f19m,02 I 4.344.,01 I -5.586.,03

~~.f !!.653.,.1
—...-——..

I

/ !3.7 : l.c?l.lcl”
:—-— —__ .

4.433.101 i -8.824.10] I -1 .732N102 4.481 K101 4.433.10’

‘- ::#-H:+=%-1.516.10’3

5.115 .10-* .“

1.516.10°

5.115 .10-’b4E2.!Q

1’



5. DRIVING Ih{PEDANCE CONSIDERATIONS

In the low-frequency approximation, the driving-point

impedance is an inductance. To calculate the driving-point

inductance, the self-inductance of each loop and the mutual in-

ductances between the loops must be known. For the single-pair

geometry connected in series,

L
[

= 2aN2 (L1/a) + (M12/a)1 (33)

where

N= number of turns in each loop

a = radius of the sphere containing the loops (meters)

L1/a = self-inductance of each loop (calculated as if it
had only one turn) divided by a

~12/a = mutual inductance of the loops (calculated as if
thej~had only one turn) divided by a

The quantity M~2/a was calculated for each of the one-pair

optimized geometries using the formula given by Smythe [Ref. 2,

p. 313, Equation 8.06(3)]. These values are given in Table 16.

The self-inductance, however, is dependent on the wire diameter and

the permeability of the loop material. The self-inductance of a

loop is given by Smythe (Ref. 2, p. 318) as

’11 [( )1
=bv!Ln$-2+$

where

b= a sins = the radius of the loop (meters)

IJ= ]to = the permit.t.ivityof the mxterial the loop
is embedded in (lI/m)

(34)

a’ = the radius of the wire the loop is made of (meters) o
P’ = the permittif’ity of the material of the wire loop
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TABLE 16, SELF AND MUTUAL INDUCTANCE--ONE-PAIR CASE

a (Deg)

L/a - f(a’,p’)
(= 3 B. sinao) (H/m)

Volume-Integral IIethodParameters:

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

63,44

63.45

63.51

63.67

64.01

64.63

65.65

67.28

3.372 x 10-6

3.372 x 10-6

3.374 x 10-6

3.379 x 10-6

3.389 x 10-6

3.406 x 10-6

3.435 x 10-6

3.477 x 10-6

Surface-Integral Method Parameters:

0.1
0.2

0.3

0.4

0.5

0.6

0.7 ,

0.8

63.44

63.46

63.56

63.82

64.39

55.42

6’i.17

70.02

3.372 x 10-6

3.373 x 10-6

3.376 X 10-6

3.383 X 10-6

3.399 x 10-6

3.428 x 10-6

3.474 x 10-6

3.543 x 10-6

Jf12/a (H/m)

4.419 x 10-7

4.424 x 10-7

4.443 x 10-7

4.495 x 10-7

4.606 X 10-7

4.815 x 10-7

5.181 x 10-7

5.814 X 10-7

4.420 x 10-7

4.427 X 1.0-7

4.458 x 10-7

4.544 x 10-7

4.732 X 10-7

5.095 x 10-7

5.768 X 10-’~

7.054 x 10-7
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This formula can be written

L1l/FL = Si.na

for any value of X (X is a dummy). The value of X is arbitrarily

chosen as X = 5; then Equation 35 can be written

L1l/a = 3U0 sina +-f(a’l u’]

where f is given by
. .

f(a’, p’)

= ‘ina[”~nt:~:’a)++l

(36)

(37)

Suppose p’ = V. and f(a’, p’) is set to zero. Then , it is easy

to show that

4.75”
a sins = e

at 8
~ 14.448

Or, the radius of the wire is

a sinaa’ =
14.448

Ifs= 1 m and a = 64°, a’ = 6.2 cm = 2.4 in. (a reasonable value?.

Hence, 3V0 sins yields a “reasonable” estimate of L1l/a; Ior the

correct value, one need merely add f(a’ , p’) evaluated with the

proposed parameters a, a’, a, and p’. The value of f may be posi-

tive or negative depending on the parameters. The values of 3p.

sina are tabulated in Table 16 for the various optimized one-pair

geometries.

For the two-pair geometry, assuming series connection, the

inductance can be written

*Such ~ f~t ~Vire is considered l-easonahle for low self inductance
and dimensional stability under impulse loadin~ during use,
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L=2a

+ (38)

In Equation 38, the subscripts refer t-othe current-loop lfibcls

shown in Figure 27. Also, the symmetry of the M. . has been usedlJ

to simplify the expression, and the geometrical symmetry condi-

tions L1 = L4, L2 = L3, N1 = N4, N2 = N3, and }!13= M2,1h:~vcbeen

assumed, If the loops of each symmetrical half arc connected ir~

series, but the two halves are connected in parallel, then the

inductance is one–fourth that—gi~ren by Equztjon 38. The values

of 3110sins are tabulated for each op-timized two-pair geometry in

Tables 17 and 18. In the same tables the values of (M’~2/:1),

(~r13/a), (Jj14/a)) and (i!23/a)are given. Again, the formula given

by Smythe (Ref. 2, p. 313) was used.

L
I

“ \/
I

------ . ..-

1

2

- -- - - - -- -

4

Fi8ure 27. Current.-loc)plabels for two-pair geometry.



1?

0.1

0.2

0.3

0.4
+
&

0.5

0.6

0.7

0.8

Q-.!@LL
40.09
73.43

40.10
73.44

40.17
73.47

40.36
73.57

40.76
73.78

41.54
74.16

42.98
74.78

45.54
75.77

TABLE 17. SEJJFAND MUTUAL INDUCTANCE--TWO PAIRS,
VOLUNE-INTEGRAL-METHOD PflRAYETERS

‘“- ‘(%F3 UO slncf
—.—.

2.428 x 10::
3.613 x 10

2.429 X 10::
3.613 x 10

2.432 x 10::
3.614 x 10

2.441 x 10::
3.616 x 10

2.461 x 10::
3.620 x 10

2.500 x 10::
3.627 x 10

.

2.570 x 10::
3.638 x 10

2.691 x 10::
3.654 x 10

M12/a (H/m)

5.870 X 10-7

5.873 X 10-7

5.890 X 10-7

5.935 x 10-7

6.035 X 10 -7

6.238 x 10-7

6.629 X 10-7

7.380 x 10-7

M~3/a (H/m)

2.265 X 10-7

2.268 X 10-7

2.278 X 10-7

2.307 X 10-7

2.371 X 10-7

2.498 X 10-7

2.738 x 10-7

3.196 x 10-7

M14/a (H/m)

6.215 x 10-8

6.225 X 10-8

6.268 X 10-8

6.387 X 10-8

6.654 x 10-8

7.199 x 10-8

8.287 x 10-8

1.054 x 10-7

M23/a (H/m)

8.986 x 10-7

8.991 x 10-7

9.015 x 10-7

9,079 x 10-7

9.2i5 x Io-’

9.468 X 10-7

9.903 x 10-7

1.064 X 10-6



G’

R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LLQ!xiL
40.09
73.43

40.11
73.44

40.20
73.49

40.43
73.61

40.97
73.88

42.05
74.37

44.14
75.21

48.22
76.65

@o

TABLE 18. SELF AND MUTUAL INDUCTANCE--TWO PAIRS,
SURFACE-INTEGRAL-METHOD PARAMETERS

L/a - f(a’,p’)
T= 3 BO sins) (H/m)

2.428 x 10::
3.613 x 10

2.429 x 10::
3.614 x 10

2.433 x 10::
3.614 x 10

2.472 x 10::
3.622 x 10

2.525 x 10::
3.630 x 10

2.625 x 10::
3.645 x 10

2.811 x 10::
3.668 x 10

MIZ/a (H/m)

5.870 X 10-7

5.875 X 10-7

5.896 x 10-7

5,954 x 10-7

6.090 x 10-7

6.375 x 10-7

6.970 x lC-7

8.253 x 10-7

M13/a (H/m)

2.265 x 10-7

2.268 x 10-7

2.282 X 10-7

2.320 X 10-7

2.405 x 10-7

2.580 x 10-7

2.937 X 10-7

3.719 x 10-7

M14/a (H/m)

6.215 X 10-8

6.228 X 10-8

6.234 x 10-8

6.439 x 10-8

6.797 x 10-8

7.567 X 10-8

9.257 x 10-8

1.340 x 10-7

M23/a (H/m)

8.986 x 10-7

8.993 x 10-7

9.023 x 10-7

9+~~6 X 10-7

9.282 x 10-7

9.614 x 10-7

1.021 x 10-6

1.135 x 10-6

I



6. CURRENT REQUIRED TO AC1lIEVE PEAK FIELD

Equation 5 yields the uniform part of the field; .i,e.,

(5)

For one pair of loops (L = 1), let a = 63.43° (Helmholtz vti]ue)

and the desired Bzl = 5 x 10‘3 teslas, then

I
B
ZI—=

a
= 4.97 x 103 A/m

p sinza
(39)

Hence, the required current is about 5,000 A for a current-loop

geometry 1 m in radius. The required current increases linearly

with the radius of the simulator.

For a series-connected simulator with multi-turn current

loops, one can write

)11 L
B=+
Z1

~ NL sinz al
!2.=1

where Iw is the current through each turn or wire of the series

circuit. Hence, the current requirement can be written

a Bzl
Iw =

p ~ Iigsinz ag
!I.=1

Note that, again, the required current increases linearly wit.11~;

also, the required current is inversely proportional to t.hunum-

ber of turns. However, the inductance increzscs with the number

of turns squared, motivating the designer to minimize the number
*

of turns.
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7. FIGURE OF MERIT IINDEFFICII;SCY

—

J

Chen and 13aum (Rcf . 4) define two figures of merit for mag-

netic-field simulators. The first is a dimensionless measure of

the ma~~nitu[icof the m[lgnet.icfield in the working volume divided

hy the I’cquirc’dci~i.ving cu~~ent-. In scalar form, it is given by

b = aR/9.c (42)

(43)

Assumjng. finj(icalsimlll:~torwhe]-e (11/1) have the optimum values

given in Section III-1,
b.

were calc~llat.ecias a function of’R.

The )’csultsale sho~vn ~raphical]y in FiCure 28 for 1, 2, and 3

p:ljrsof 100])sfor both ~hc volume- and surface-integral methods.

Ticks on the curtres inciicate x values expressed as a percent.

Note th:itthe figure of merit ~i is proportional to the

number of tul’l]sin a ~il’enconfiguration. That is, if the nllmher

of turns is i]lcreaseclfrom 1 to ??,then gi = aR1lzl/I is increased

by tllc?factor N. Ilence it is not sul’prising that c1 for 3 p?+irs

is greater tilflnCR for 2 pairs, ~vhich in turn is great-er than ~~
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f-or1 pair (for any R),
(@)

simply because of the number of current

‘. loops in the three cases. To compensate for this effect, a turns

factor was included. Equatjon 43 was modified to include the

turns factor NL to become

where

(44)

‘1=6

‘2=3

N3=2

Thus , all three ideal simulat-ors are assumed t-o–have 6 turn-pairs

since L c N = 6.
L

The results of evaluating Equat-ion 44 are shown

(Q

J

in Figure 29. Now , for a given R,~~.: the order of the values of ~R
+:

are reversed. This is explained by noting that the effectiveness

of the additional loops in the 3-pair al~d2-pair configurations in

producing a magnetic-field magnitude is less than that of the

larger loops carrying a proportionately larger current. This

apparent detrimental effect of the additional loops is more than

offset by the increased field homogeneity. Note that, f-ora given

X’value, Cg (Eqo 44) is largest for the 3-pair configuration and

smallest for the l-pair configuration. The fact that-this occurs

at--different R values is of little consequence since the effect of

the size of the working \rolume has been included in the definition

of F
‘k”

The second figure of merit. defined by Chen and Baum is the
—

)
energy efficiency; it is the—ratio of magnetic-field energy in the

k
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5.0

4.0

3.0

Ue

2.0

1.0

0

.

~s.* 1 pair

Jo.o
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0.]
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(a) Volume-Integral Method

5.0

4.0

3.0

s

2.0

1.0

I

pair

pairs

p~irs

o 0.2 0.4 0.6 0.6 1.0
R

(b) Surface-Integral Hethod

Figure 29. Figure of merit 51 vs. R for 1-, 2-, and 3-pair
configurations for both volume-integral and
surface-inte~ral methocls including the turns @

factor (see text). Ticks indicate values of x
expressed as a percent.of the central field.

_,-
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test volume divided by the

It can be written (Ref. 4,

total stored magnetic-field energy.

p, 15)

(45)

where

Vw = : lrz3= working volume

Substituting ic from below Equation 42 and letting R = ;/a, one

obtains

[

L

1
2

Po4TrR3 ~ (Ii/I) sin2a1
t.=1

&h = 3(L/a)
(46) “

Equat-ion 46 was evaluat-cd for 1 pair of loops \vith (L/a) given

by Equation 33 (N = 1) and 11/1 = 1; the inductances of Table 16

were used. l?orthe 2-pair configuration (L/a) was obtained f-rem

Equation 38 with N2 = 1 and N1 = 12/1 (a hypothetical turns ratio

that yields t:~copt-imized current in loops 1 and 4, Figure 27,

with the simulator series connected); the inductances of Tables

17 and 18 were used. Optimum (Table 2) current ratios were useci.

(The parameter ~h was not calculated for the 3-pair configuration

since the large number of required mutual inductances have not

been calculated. ) The results ‘are shown in Figure 30. For the

same value of error (~), the 2-pair configuration is far superior

to the l-pair configuration as measured by the efficiency parame-

tcr Eh.
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Figure 30. Efficiency pmrameter :h ~’s.R for 1- and 2-Pfiir
configurations for both \’olumc-inte.graland
surface-integral methods. Ticks indicate values
of x expressed as a pcrccnt of the central field. I
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APPENDIX

where

@

‘.- )

DERIVATIVES FOR NEWTON-RAP1lSON METHOD

For either Equation 18 or 22

X2=:

2)(2 1 ( au av

)

—= —— -—
api

v’
v api u api

32X2

(

2
a2v av au au av

apjapi = + v ap~~p ‘Llapjapi+~~-~~
i )

2

-(

au

)-

av a“—-

V’
— v api ‘~ ap.

J

~[n) 1
= lfLRn‘inai ‘n(cosal)

3 t
Volume-Integral Methodn(2n + 1) ‘

Dn =
~2n+l

\
3 n(n + 1) ‘ Surface-Integral Method

R= Z/a

(47)

(48)

(51)
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where

(52) o

where

where

au(~)
u(n) = a:~ = I.Rn ~

[
sina 1jP~(cosaj)

aaj
j

J da;

and

1I,i_fk=j

6kj =
O,ifkfj

the Kronccker delta. #
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@

.$

.[ 1
2

v .~vk
L=l

2V
Ij

3V .

‘Ij=~=
R-sin2 ~

j

v = & = IjR 2sina. cosa. = IjR sin2ai
aj

j
J J J

#\,

alkalj
= 2V

Ij ‘m

a2v

[

+6V
= 2 ‘Ij ‘~k kj !

aukalj aIj ~=1

i’
aIj

avIj =
= aai

.1

R sin2a.
J

v Vak +-6
aj kj v iaaj ~=1

.85.

(56 )

(57)

(59)

(60)

1(61)



where

3V
v oj— = 21jR cos2a.
aaj = ~a.

J
J

Using formulas from Reference 3, p. 334, the fol]owing

quantities can be obtained:

[

+- sins P~(cosa)
1 [

= (n + 1) COSCYP~(cOsa)

- P:_l(coscY)
1

&
[
sins P~(cosa)

da2 ] = ‘::l:\[(n + ‘)co<a - ‘l’+cosa~

- 2n cosa P~_l(cosa) + nP~_2(cosfi)
1

(63)

These are required for evaluation of Equations 52, 54 :Lnd55.

i


