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Abstract

A scheme is described for arranging a number of circular loops on a spherical surface to

produce magnetic dipole moments, while cancelling higher multipole moments. The ability

to arrange loops so as to behave as dipoles' then gives rise to the possibility of arranging a

set of such dipoles in space so that there is zero mutual inductance. The relative location of
parallel magnetic dipoles for zero mutual inductance is given by a particular angle between

% their dipole axes and a line between the dipoles, and so is valid regardless of the radius
- of magnetic dipoleﬂ..l An earlier paper investigated the feasibility of adding the magnetic
dipole moments of a number of dipdle loops to produce an electromagnetic fleld with
magnetic dipole moments covering a wide frequency range. The combined results of the

two associated papers indicate that it is possible to construct a log-periodic magnetic dipole

array to produce a controllable electromiagnetic field for some interaction measurement

purposes.
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1 Introduction

As part of the interwrtf i’n‘ 'i;rdduc’”ingfeleqt?omagnetic environments a local illuminator has
been proposed which is based on adding pai'allel magnetic dipole moments from an array
of loops. Models [1] have been developed’to describe the effective magnetic dipole moment
as a function of frequency for such an array of loops, whose self-inductance is included in
a cascaded constant-resistance network. Successful implementation of the concept for this
illuminator is dependent upon the ability to effectively produce magnetic dipole moments
while cancelling higher moments and as well there should be no mutual inductance between
dipoles. Methods for achieving such a controlled electromagnetic environment by loops
are described and a configuration of loops forming a log-periodic magnetic dipole array is
developed.

. The production of accurate magnetic fields inside a volume enclosed by a number of
loops has received considerable attention, particularly for generating very uniform magnetic
fields. The process usually involves accurately winding loops around symmetrical shapes
such as spheres m;d cylinders. Analysis of magnetic fields in this form involve terms
in a series expansion. It is generally possible to eliminate individual terms by virtue of
symmetry considerations. The analysis for parallel loops on a spherical shape can be
divided into two separate solutions corresponding respectively to an interior volume and
an exterior volume. Each of these contains, amongst other terms, a common Legendre
polynomial expansion term. Elimination of terms other than the initial term, (n = 1)
produces a uniform magnetic field within the volume, while for the exterior it eliminates
all higher moments and leaves only a dipole term.

In considering magnetic fields produced by loops and the interaction between loops, it

is useful to relate both fields and generating sources to a common origin. The analyses are

done in two sections: one for mutual induction between two parallel circular loops and the-




other for the fields produced by loops symmetrically wound on the surface of a sphere. In
both cases an angular dependence about the common origin is obtained. The angles can be
chosen to eliminate mutual induction between the dipole component of loops in one case,
and for the elimination of higher order components in the exterior magnetic field produced
by loops wound on the surface of ; sphere. Both analyses produce results that correspond

to some form of Legendre function in the angle measured from the parallel dipole axes.

2 Mutual Inductance of Circular Coils with Parallel
Axes

The mutual induction between two circular loops of unequal radius and I;arallel axes is
examined. In accordance with the stipulation that the origin of the field and generating
systems should be the same, the origin is chosen to be at the center of loop A (Fig. 2.1).
The two loops are separated by a distance D betwgen centers, and the angle between the

axis of loop A, and the line joining centers is . The radius of loop A is a, and the radius

of loop B is b. The mutual inductance Mz, of coil B due to a unit current on coil 4 can

be written as (2]
Mg =¢ XA-&B (2.1)
Cs
where 44 is the magnetic vector potential due to a unit current in loop A and dfg is an
incremental element of loop B. The magnetic vector potential can be expressed as
K dly

Ay=—¢ —4 2.2
A47rc,4r ()

where d[A is an incremental element of loop A and r is the distance from dZA to the
observer. On substituting this expression for A4 in (2.1), the expression for the mutual

inductance, Mg,4, becomes

| Mp, = £ é“‘ é}a dLArdlB . | (2.3)
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COIL A ) COIL B

Figure 2.1: Two Parallel Loops with Separatlion D between Centers



Due to symmetry considerations the magnetic vector potential has only a ¢ component,
hence (2.3) can be written in terms of angles ¢ and ¢'. It can be seen by referring to Fig. 2.2

that the angle between df,.dfg is ¢' — ¢, and so (2.3) can be rewritten as

Mps = 22 [ /o"ﬁ(‘#r—“?l_dw' (2.4)
ad¢ = |df,| and  bd¢' = |dlp]|,

dly.dly = |dl4||dep|cos(¢’ — 4)

and r is the magnitude of the distance between the incremental elements d[A and dfp.
The value r can be expressed in terms of D, ¢,4', and 8 with three components r.,r,, -

and r, as

r: = bcos(¢') — acos(¢) (2.5)
r, = Dsin(9) — asin(¢) + bsin(¢')

re = Decos(8)

I Qe

= D?+ a® +b* — 2abcos(¢’ — ¢) + 2D sin(f)(bsin(¢") — asin(¢)) (2.6)

or

_’1: _ 1 (1 + 2sin(9) (bsin(¢") — asin(¢)) + a? 4 0% — 2abcos(¢' — c;b))_é . (2.7)

D D?

1

Using the binomial expansion and limiting the analysis to the case where a + b < D this
expression can be written as a series with powers of D. The expansion is carried out
in detail in Appendix A, and when the result (A.4) is substituted into (2.4) the mutual

induction Mg, can be written as:




0,DsIn (6}),0

Figure 2.2: Angular Relationships Between Loop Elements
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Mpa = “ab{ / ) / 7 con(4' ~ ¢)do a4 | - G3
_sing /" / cos(" ~ $)(bsin(¢) - asin(¢))dg d¢'
+___[3sm / / os(¢' — 4)(bsin(4') — asin(¢))?de d¢'
[T [ cos(d! — 6)(a? +8 = 2abcos(é! ~ 4))db s |
+ 2—;4- [3 sin(6) j;h /;" cos(¢' — ¢)(a?® + b? — 2abcos(¢’ — ¢))
(bsin(¢') — asin(¢))ds dg'
~5sin®() [ [ cos(d' ~ ¢)(bsin(¢) — asin(4))*ds ds
+§_T3's'[ /" /2’ (¢' — 8)(a® + b* — 2abcos(¢' — ¢))2dp do’
—3o.~sin’(6/0 /0 cos(¢' — ¢)(bsin(¢') — asin(4))?
(a® + b* — 2abcos(¢' — ¢))dé d¢’
+35sia(9) [ [ cos(# — ¢)(bsin(#) ~ asin(¢))*ds &4
1

.{.36.

The evaluation of the integrals in (2.8) is described in Appendices B to E. Appendix B
has the integral evaluation for terms in D! and D~%. Appendices C, D, and E contain
the detailed evaluation of terms in D~3, D~%, and D~5, respectively. The results (B.1),
(B.2), (C.8), (D.7), (E.12) when substituted into (2.8) yield
aa = E22 { S5nab(3cos’(6) - 1) - L3t + #)(35 sin' () — 405in’(9) + 9 -
4 D3 D58 i

(2.9)

" The integrals related to 1/D and all even powers of 1/D are equal to zero. Collecting

variables and expressing the angle dependence of the second term as cos(#) we can write
2r 1 3 (a, + 2)
P {5(3 cos?(6) — 1) — ——(35 cos*(6) — 30cos?(6) + 3) - -

(2.10)

ua
Mps =




The factors of the terms in cos{d) corr&sponé to those for Legendre polynomials for
P (cos ) and P{(cos 6). The mutual inductance between the loops is then given for the
first two terms corresponding to the dipole and quadrupole components. For no mutual

inductance for the dipole component the result of § = g, can be obtained where

cos(fy,) = 2 , G0, = 54.74° . (2.11)

V3

For no quadrupole mutual inductance there are two angles of 6y, and o, where

6
442 -5-
sin’(fo,,) = y o, = T0.12°

4-2 g
sin’(fo,,) = , 6. = 30.56°.

”

(2.12)

From (2.11) it can be seen that zero mutual inductance occurs at the nulls for the
Legendre coefficients for each individual dipole, quadrupole, etc., and can be achieved by
placing the loops at the appropriate angle 4, independent of D provided a + 4 < D.

Mutual induct;.nce between loops can be eliminated on an individual multipole basis,
at least for magnetic dipoles and quadrupoles. The angles of zero mutual inductance for
these cases cannot be met simultaneously, and hence the need exists for eliminating the
production of higher moments at the source, when the loops are to be placed close together.
On the assumption that this can be done, a satisfactory distribution of loops in space is
possible which produces zero mutual inductance for magnetic dipoles and possibly keeping
multipole interaction to a minimum. The aim is to keep, at least for neighboring loops,
the angle 90 , between the line between the central points of each loop and the parallel
magnetic-dipole vectors.

The simplest array of such nonmutually inducting loops is a linear array, all with their
centt;.rs situated on a line chosen through an arbitrary origin at an angle 6,, with their

magnetic dipole axes. This fulfills the angle requirement but may not be practical from the




point of view of efficient use of space. A more compact array may be made, where the angle
criterion is released for loops other than the nearest neighbors. In this case the greater
rate of falloff in intensity for higher moment magnetic field components with distance (as

evident in (2.10)) can be utilized to reduce these contributions of mutual induction.

3 Magnetic Fields From Currents

?

3.1 Magnetic Fields Due to Parallel Loops on the Surface of a

Sphere

If parallel loops carrying a current are constrained to lie on the surface of a sphere, then
an analysis in spherical coordinates can readily be carried out. Consider a sphere, radius
r, with current limited to the ¢ direction as in Fig. 3.1. The magnetic field intensity His

related to the scalar magnetic potential ¢ as

H=V%. - . (3.1)

Also
V.-B=uV.H=0. ' (3.2)

Hence
V-H=V.V®=V®=0. (3.3)

A solution for this equation, ignoring the ¢ component because of symmetry produced
by constraining currents to constant values of 8, can be written in terms of Legendre

polynomials as




Figure 3.1:

& {(r,0)

=i

r1

Sphere with Loops Wound in $ Direction. Scalar
magnesic field is described for two regions, with ¢4
for the region inside the sphere, and ¢y for the
region outside the sphere.
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) rA\D r n+1 .
0= [on (2)" 400 (2) | 2O eoste. (3.4
Since the scalar magnetic potential must be finite at the origin, and tend to zero for r equal
to infinity the solution must be in two parts. One corresponds to @, for which r < r, and
the other corresponds to &, for which r > r;. Thus normalizing coordinates by putting &

for r/ry (3.4) can be expressed as two separate equations

d, = ianR"P,So)(cos(ﬂ)) ' (3.5)

n=0

o0
&, = > b RN PO (cos(f))
n=0

The magnetic field intensity H for the external case with r > r, can be found using
(3.1) together with the vector relation in spherical coordinates, i.e.,

V§=@i,+laﬁf‘ 1 92 ¢

or t 96 + r sin(6) —8;1" ) (3-6)

Thus we can write for the two non-zero magnetic field intensity components outside the
sphere

H, = —=3 bu(n+1)R""*) PO (cos(0)) (3.7)
1

ri n=

1 [>~]
Hy = =3 bR PM(cos(e))
n=1

where

d™P,(z)
dxz™

POE) =~z

Pi(z) = (-1)™(1-z?)i™ (3.8)

In a similar way expression for the magnetic field intensity inside the sphere become

[=+]
Ho = =3 ne.R"1PO)(cos(8)) (3.9)
Tl n=t
1 & .
H, = 13 ar1P(cos(0)) .

Tl n=t
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There is no ¢ component for either the internal or external case.
At the boundary of the sphere (R = 1) the surface current density is constrained to

have only a ¢ component and is related to the magnetic field intensities A, and H;, so

using
VxH=J | (3.10)
and
H, =H, at the boundary (3.11)
we can write
J,‘ = Hp‘ - Hp‘ . (312)

Consider that the surface current is not allowed to vary continuously with 8 over the

surface of the sphere but is contained in an infinitesimally narrow band at 6,, as a current .
Iv. A Dirac delta function can relate the current h surface current density J, . ' as
fo T, d(rd) = fo T Lub(ri8 ~ r18,)d(r16) (3.13)
and as df = dry(8) for this case
J"ﬁ,..: = I n6(r 9 — rifm) = Im:é[rl(a - Gm:)] . (3.14)
From (3.9) and (3.12) this can be written as
I (1)
J,‘ , = -r—l- ch,m'Pﬂ (008(8)) . (315)
= n=1

A solution for the ¢, » can be formed by multiplying (3.13) and (3.14) by P{Y(cos §) sin(9)

and integrating over the fespective arcs. Thus

[ 81ra(0 = 0 P (s (8) sn(0) )  (3.16)
= ir"ic,‘,,,,' [ B cos(0)) P cos(@)) sin(8) d(r16)

S 12




1 4

®

where the orthogonality of the Legendre functions leaves only the nth term in the sum.

But

[ 1(@)8(z - 2)dz = /(=) | (3.17)
and from (3] .
/ II[P,S"‘)(z)]zd:z: = (n + %)'1 (n+ m)! / (n—m)!. (3.18)
Hence !
et = E’:’("T”;ll—)a?) (cos(8m)) sin(8m) -  (3.19)

Substituting (3.19) into (3.15) gives

It 5 20 H 1 p)(cos(d,)) sin (@) P (cos 6) - (3.20)

ot 1y 2n(n+1)""

n=1
A new quantity can be defined which relates the accumulated effect of a number of

loops M', at discrete values of 8., as

n+1 M
! —— (1) 8..)) sin(8 1) Pt 3.21
A= mmry o P eos(Om)) sin(m)pn (3.21)
N S Iopml-
Then
M! Io ) ' p(1) ' .
Ja, =’§_:1 Jo, =+ ;;Anﬂ, (cos(8)) . (3.22)

The boundary conditions at r; (i.e. (3.11)) are known for the r components of magnetic

field, hence the r components of (3.7) and (3.9) can be equated to give
—ba(n+1) =na,. : (3.23)

And from (3.12) and (3.22)

. 0 [= -]
J,, = Hp—Hia=3 b.PM(cos(8)) = > a P (cos(6))
n=1 n=1

- b 3 AL PMW(cos(8)) (3.24)

Tl n=t
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giving
bn —an = — AL . © (8.25)
Eliminating a, in (3.23) and (3.25) gives'

.
"T(@en+1)n

Al ( (3.26)
The magnetic field H outside the sphere is obtained by substituting (3.26) into (3.7)
giving

H, = - 3" ba(n+ )R~ PO (cos(6))

n=1

_ Io hasd n(n+1) ! p={n+2) p(0) R
T oon ,,2 2n+1 AnRt Pn_ (cos(8)) (3.27)

H,, = anR'("”’z)P,Sl)(cos(ﬁ))

n=1
_ Db m e p)
__' r1§2n+1A"R P} (cos(6)) .

These equations describe the fields external to the sphere on which the parallel loops
are w;m.nd, with a common origin for both field and generating source. Furthermore, the
field can be calculated for each position R,# for any combination of loops at angles 8.
with contribution Pm for m! =1 to M’ using (3.27).

The magnetic field H inside the sphere can be expressed in the form of a similar set of
equations using a,, which is obtained from (3.23) and (3.25) as

_IQAL_"’___}__]‘..
T 2n+1

any =

(3.28)

On substituting (3.28) into (3.9) the magnetic field can be expressed fully. Writing in

terms of its two components in spherical coordinates

H, = f:nanR““lP,Eo)(cos(ﬁ)) (3.29)

n=1
Lo hnlntl) g1 cos(s)

iamp 2n+1

14
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H, = 3 a.R"'P{"(cos(6))
n=1
[ <]
= Do rAl g peeip®cos(s)

rL o1 2n+1

3.2 Use of Loop Symmetry for Eliminating Magnetic Moments
with Even Values of n

Examination of (3.27) and (3.29) shows that the field components are determined by A,
which is itself a function of P{!(cos(f)). In seeking to eliminate various components
c;f the field, nulls and symmetry associated with each degree (n) of P{"(cos(8)) can be
utilized. Symmetrical considerations can be utilized by choosing the dist‘ribution of 8
in a way such that the field is composed of pairs of contributions with magnitudes that
are equal in r_nagnitude, but vary in sign dependent upon degree. The definition of an
associated Legendre function with real variable on examination shows that its parity is

de_termined by n and m, i.e.

FiM(e) = (- - in ) (3.30)
and

As ¢ is changed to (—¢) the sign will be exactly dependent on the m-fold differentiation

of P,(&) whose sign is dependent on the power of n, and so
PIM(~€) = (=1)~™P{™(8) . (3.31)

This results in P{!(cos(¢)) being an odd function for n even and an even function for n
odd, i.e.!

PV (= cos(8p1)) = =P (cos(8,)) for n even

15




and
P (—cos(8m)) = P {cos(dm)) for n odd ‘ | (3.32)
pm = cos(fmw) .

An even arrangement for loops on a unit sphere is shown in Fig. 3.2. An evenly spaced
set of loops from m'equals 1 to M’ is symmetrically placed about cos(f,,/) equals 0 with
M' even. This means that there is no loop at cos{#) equals 0. For such a configuration,
the relationship (3.32) applies. Further, the function is also odd when forming a product
with sin(d), i.e.,

sin(8) P{ (cos(8)) = (1 —cos?(8))Y2PM(cos(8)) (3.33)
= —(1—(—cos?(8))*PM(~cos(d)) for n even .

Setting cos(fm) = pm and setting the constraints

T ' (3.34)
'and¥
Bm! = —[MI—m41 - (3.35)
Then from (3.21)
by = e S PO 1= ) Vi (3.3
= 0 for M' even and n ‘even.

Thus only odd values of n need be considered for the magnetic fields represented by

(3.27) and (3.29) in such an arrangement of loops. A/, exists only for odd values of n.

3.3 Relationship Between Spherical Harmonics and Multipoles

The potential or field due to circulating currents can be expressed in series of two distinct

forms, which are essentially relatable term by term. The concept of dipoles, quadrupoles

16
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Figure 3.2: An Arrangement of an Even Number of Loops on a Unit
: Sphere for which cos(8y) = - cos(8ylpf)). The current

in each loop is constrained by the relationship

I = IMi-mfi-.l :




and multipoles follow directly from one of these which is based on a Taylor’s series. It
applies to both magnetic and electric poles, although easier to understand in terms of the
electric field and point charges [4]. The electric potential from an arbitrary distribution of

charge density contained within the volume of a sphere can be expressed as

/Lf&.%f—’-@dzgdy;)dzo (3.37)

where p(zo, Yo, 29) is the distribution of charge density and

Y=

47ep

= (z—zo)’+(y—_yo)’+(z—zo)’. (3.38)

The expansion of this becomes (outside the sphere)

n n-L

= ~i—k
v = 4ws° “Z_:O 2 :L_:O ykl(n z )l {/ / /onozc')' (0, Yo, 20) dzo dyo dzo}
an .
Oztdy*dzn-t-* [r] ) (3.39)

r. = z2+y"'+zz.

'Ar series of mult_ip_oles with appropriate coefficients can be postulated that can produce
a potential distribution outside the sphere equal to that from the arbitrary cﬂarge density.
The multipoles are visualized as a number of equal and opposite point charges separated
by some distance and each term is related in the series by an order n. The numerical value
of charges, and the associated value of the multipole is 2" in the expansion of (3.40). This
series contains some redundant terms, i.e., ones which do not contribute to the external
potential. When these are removed the remaining terms are equal to the series expression

for potential based on spherical harmonics, again with n terms, as

Y = Z‘, Z[An mYmne{0,9) (3.40)

4"'50 n=0 m=0

+Bn, Ymno(a ¢)] Fntl

An,m =’ ( —lom)%—_*_—:{g—:

18



r *
[ cos(meo) dso /0 P{™ (cos ) sin foddo
o .
'/;p(70380a¢0)78+2d70

Ymne = P{™(cos(d))cos(me) (even form)

Ymno = P{™(cos(8))sin(mé)  (odd form)

e * 2 _ 4r (n + m)!
-/(; dgé/; Yoo (8, 9)[ sin 00 = (2—-1om)(2n+ 1) (n —m)!
{ 1 fm=m"
lm,m” =,
‘ 0 otherwise

The coefficient B, is a similar volume integral to ‘A,,‘m with sin(méyo) substituted for
cos(mey) in the integrand. The magnetic case can be developed by analogy with the elec-
tric case by replacing the electric multipole by a magnetic multipole. A similar expansion
results, with terms exhibiting the same behavior with n. In the case of magnetic moments,
the magnetic monopole (n = 0) equals zero. Nomenclature for the individual terms and
their relationship to n for the static case are shown in Table 3.1. The traditional schemes
do not cater readily for higher terms as is shown. A’'scheme 'based on the index n, as the
term 2"-pole was used in [5] Others avoid the problem altogether, and simply state the
relations in terms of n, If a scheme is desired to refer to the poles for larger values of n,
it could be based on the fact that they correspond to the integer values of the pow}}er of
two, or the integer binary orders. One scheme might be to call them n-binary order poles.
In this case the first binary order pole would correspond to the dipole, the second binary

order pole the quadrupole, etc.
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Multipole Expansion for Static
Electric and Magnetic Case

Index n Usual Name 2" | Relation to Distance Morse & Feshbach

Potential Field
0 Monopole 1 ot r=2 Monopole
1 Dipole 2 r=3 r-3 Dipole
2 Quadrupole 4 r3 rt Dipole of Dipoles
3 Octupole 8 r—4 r=5 Dipole of Quadrupoles?
4 Hexadecimapole? | 16 r-8 r=8 —
5 — 32 r—8 R —_

Table 3.1. Relationship of Terms in Multipole Expansion .

4 Spherical Coils

4.1 Helmholtz Coil—Two Loops Wound Symmetrically on Sphere

Two loops can be wound on the surface of a sphere in such a way that they are symmet-
rically located with respect to § = x/2, thus complying with (3.35) and (3.36). Thus a
particular form of (3.37) can be written as

@R 1) by (1 — ud)2py (4.1)

v
A”—n(n+1)

with A}, = 0 for all n even.

The individual components of Al can be expanded for values of n = 1,3,5 as

3
A = LRO) - )
3 ’ 3.
= —>(1=p)p = —Zsin’(01)py
7
A = PP (1 - ) Vo, (42

7 .
= ~T(sul - D)1 - i

!

20




1

‘} If we want A} to be zero (to maximize uniformity near the origin)

5u2—-1 = 0 , 68, =~ 6343°
(4.4)
].L1=COS(01) = &g ’ 93 = 180°—61.‘2‘.116.57°
11 i
A = PO ) - s (4.5)

11
= —T5(2lu - 14l + 1) (1 - s)pr

It can be seen that A} can be made zero by locating the loops on the sphere at angles
in (4.4). This corresponds to the conﬁéura.tion of a Helmholtz coil where the radius of
its two constituent loops is equal to their separation. By setting A equal to zero, the
octupole term in the expansion for the magnetic field intensity is cancelled and the field
is fully described by the dipole term and the odd multipole terms from the 5-binary order

‘3 pole to infinty. The mé@etic field intensity components for points outside the spherical
volume, from (3.27) and (4.1) are

B, = -5 PO~ PRI on(0) (4)
1 n=1
= Ion ~3 1) -(n+2) p(0)
= . { -R cos(0 ZP \/_ R P\ (cos(9))

) |
B, = 21-u )‘/’Z—ﬁP“’m R~ PO (cos(6))

I -3 1 n+2) p(1
_ 3_11’1{53 in(0) + 2 znﬂ,s)(\/g)fe( )P”(cosw))}-

For inside the volume of the sphere, the magnetic field intensity for the Helmholtz coil

pair can be written from (3.29) and (4.1) as

o0
H, = I°"‘(1 W)V2 S PO () B P (cos(6)) (4.7)
n=1
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n odd

1:;1:1 { 0s(8) — —‘/—g 5. P® (_}g) R"-1P£°>(cos(8))}

n=5§

I

T =1 n—
H, = —-E?u-pi)lﬂz—zzs”(mm PO (cos(9))

- IoP1 2 pln) n=1p(1)( og
- { i) + 2 5 Lo (L) o9 o)

The magnetic field intensity inside the volume due to the n = 1 term, is independent of
distance from the origin, and has a direction that is parallel to the axis of rotation. This
can be appreciated readily from the relation that converts a unit vector 1, parallel to the

z axis in Cartesian coordinates to spherical coordinates, i.e.,

—

1, = I, cos(8) — I, sin(9) . : (4.8)

4.2 Uniform Field and Magnetic Dipole Fields from Loops on a
Sphere

It w:as shown in (4.6) and (4.7) that the first terms in the magnetic fleld expansions
corf;spond to a magnetic dipole outside the sphere and a uniform field inside the sphere.
By use of symmetry it is possible to eliminate all values of Al for even values of n. By
choosing the location of two loops it is possible to eliminate one odd order, in this case
corresponding to the octupole or 3-binary order pole {4.4). By adding extra pairs of
symmetrical loops more A}, terms, for n odd, can be eliminated. By eliminating all terms
from 3 to infinity for A}, in (3.37), there results a uniform magnetic field for the interior
case and a dipole magnetic field for the éxterio-r case.

Most interest in symx'netrical loops has been in producing uniform magnetic fields in the
interior region. Schemes have been repo;ted for eliminating various of the higher moments
using up to eight loops, which can eliminate Al from n = 2 up to 14 [6]. All moments

higher than 1 can be eliminated using an infinite number of evenly spaced loops wound on

22




~J

the surface of a sphere with the current ¢,y in each loop equalling Josin(6m) {7] and [2].
The solutions in both these cases involve irrational ratios between the currents in each loop
and so can limit the practicability of the various solutions found. A systemé.tic discussion

of axially symmetric magnetic fields is given in [8].

5 Log-Periodic Magnetic Dipole Array

The preceding analyses have succeeded in describing completely the magnetic field inten-
sity due to currents in a series of loops wound symmetrically on the surface of a sphere.
The magnetic field intensity is described as a sum of elements in a series expansion of mul-
tipole terms. Furthermore, all of the terms higher than one in the series can be cancelled,
so it is theoretically possible by manipulations of loop position and fractional currents to
generate the desired dipole only. An approximation to this condition can be obtained for

small numbers of loop pairs, and if the cancellation of the quadrupole, octupole, a.nd'hex-

~ adecimapole terms is sufficient then a Helmholtz coil will suffice. In general, loops wound

on the surface of a sphere provide a method wﬁereby 5 predominantly dipole magnetic
field can be generated. .

The possibility of generating pure dipole magnetic fields can be combined with the
result for mutual induction between loops, which also resolves into a multipole series. For
parallel magnetic dipoles the mutual inductance is zero, so long as their centers lie on a
line making the angle 6,, with the dipole axes. The value of f;, is equal to 54.74°, from
(2.11). A minimum separation can be set for pure dipoles, based on the non-intersection
of their forming spheres. This is based on the fact that the magnetic dipole-moment field
exists outside the sphere only, and the angle of zero mutual inductance applies only for
dipoles. For the situation that some higher order terms are still remaining, the separation

between spheres will need to be extended to meet the desired accuracy requirements.

'
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A scheme for utilizing a series of parallel magnetic dipoles to produce a combined
dipole-moment field has been established in an associated paper [1]. An analysis in that
paper developed a network model for producing a controllable electromagnetic field made
up of composite magnetic dipole moments which cover a wide frequency range. A successful
configuration of magnetic dipoles was a series of loops which is increased successively by a
factor A2 in area and associatedly by a factor 8 in inductance in the network. Successful
implementation of this model was dependent upon two conditions, addressed in this paper,
being met. These conditions are firstly that an efficient means of producing magnetic dipole
moments be found, and secondly a means for locating these dipoles with zero mutual
inductance be configured.

Implementation of the Ioop-geometry' conditions developed in this pal;t;r can be used
in conjunction with the model in the associated paper to produce a suitable magnitude
of magnetic dipole moment over a wide freql;ency range. The spatial arrangement of the
loops is shown in Fig. 5.1, and can pe visuglized as a set of spheres located with their
centers on a line xﬁaking angle 6;‘ with ;&B'prect to .the z axis when Cartesian coordinates
are used, as with the axis of rotation in spherical coordinates. In the case of pure dipole
generation it is sufficient that the separations of the spheres are such that their surfaces
do not overlap or touch. When this condition is approximated by a few loops, such as for
a Helmholtz coil, a greater wavelength dependent separation may be required depending
on the accuracy required. The locations for two coils on the surface of each appropriate
sphere are shown in Fig. 5.1 as two parallel lines above and below the sphere center and
parallel to the z,y plane. The pac];:ing illustrated shows the spheres associated with each
dipole touching, which is a limit for no interaction between perfect dipoles. It can be

seen that the spheres fit into a circular cone, whose apex half-angle a, can, after a little
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analytical geometry, be expressed as

i

@

sin(a;) = m . ‘(5.1)
Note for our example (here and [1})
f =2, sin(a,) = % , Qg2 1947, (5.2)

The relationship between the area of successive loops is based on a constant ratio
(8?), which simultaneously influences the related inductance in the associated constant-
resistance network by a ratio §. When the conditions of efficient dipole generation and zero
mutual inductance are complied with, a large magnitude of magneﬁc dipole moment can
be achieved over a wide frequency range. The configuration shown in Fig. 5.1 is consistent
with that for 8 = 2, and the characteristic curves for such an array of dipole loops for this
" yalue can be found in {1] for 1, 2 and 5 dipole arrays. The general performance of this type
of array and the relationship between the successive loop elements is consistent with the
principles of tﬁe log-periodic class of antennas [9). ;I'he network/loop combination then -
can be considered to be a magnetic dipole log-periodic array. |

This new type of magnetic-dipole antenna can be referred to in brief as SCYLLA (scaled

constant-resistance Z_ef. log-pe'riodic loop array).

6 Summary

A relationship was derived which describes the field produced by a series of parallel loops
wound on the surface of a sphere. The relationship has a common origin for the field
generating systems and the resultant field, and this provides a convenient form to show
their natural symmetries. The symmetries are manipulated to eliminate the contributions
of higher order multipoles. Another relationship was derived to determine the mutual in-

ductance between two parallel circular loops. It is shown, that at least for the dipole and
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quadrupole static case, mutual inductance can be eliminated separately, but not simul-
taneously. A configuration of loops based on these two concepts gave rise to a proposed
scheme which is effectively a log-periodic magnetic dipole array antenna.

The log-periodic magnetic dipole array "13 associated with a cascaded constant-resistance
network model described in a previous paper investigating networks for producing com-

.

posite magnetic dipole moments from a number of loops {1]. The resultant system, with
proper choice of a proportional factor 3 '(a. recurrence relation between successive stages)
can produce a constant magnitude magnetic dipole moment over a wide frequency range.
The response for this type of antenna has been given in the previous pa.ber for selected
values of 8 and number of dipoles. This new class of antenna can find application in
providing accurately known ele¢tromagnetic environments over limited volumes. One such

application is to provide the electromagnetic field, in a confined space say, to measure

interaction behavior in accordance with the concept of PARTES [10].

Appendix A. Binomial Expansion of Ti—l

From (2.8) we can use the binomial expansion in the form

322 525 35z
1 -2 12 -
(1+2) 2t % T 16 T 1z

(A1)

where
' 2sin(6) (bsin(¢') — asin(¢)) a2 + b? — 2abceos(d’ — ¢)
z= 5 + B :

Substituting the expanded forms of z from (A.2) into (A.1) we get the expansion for the

(A.2)

first five terms

(1+z)"V2 = 1} term 1 K . | (A.3)

- b sin(0) (bsin(¢) — asin(¢) } termm 2
— 51z (a? + b — 2abcos(¢' — ¢))
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+ 3% pr sin’ (6) (bsin(¢) — asin(¢))®

+ 32 Ay sin(0) (bsin(¢') — asin(4))(a? + b2 — 2abcos(¢' — ¢)) ¢ term 3

+ 3c(a? + 5% — 2abcos(¢' — ¢))? ‘

- ;5311'1-,}; sin®(8)(bsin(¢') — asin(¢))® )
-;%%355. sin?(6) (bsin(¢) — asin(¢))*(a? + b — 2abcos(¢! ~ 4)) | erm 4
~ 1613 v sin(0) (bsin(¢') — asin(¢))(a? + b* — 2abcos(¢' — ¢))°

= f5Be(a’ + b — 2abos(d! - 9))° )

+ 2 3 Dlsm‘(ﬁ)(bsm(c;&’) ~ asin(g$))* ' )

+ 153 oo sin®(8) (bsin(4) — asin(¢))*(a? + b2 — 2abcos(¢’ — 4))

+ {551 T pe sin’ (6) (bsin(¢) — asin(4))*(a? + b — 2abcos(4' — ¢))? | term 5.
+ 5513 prsin(8){bsin(¢') — asin(¢))(a® + b — 2abcos(¢’ — ¢))°

+ 35 B (a? + 87 ~ 2abcos(¢' — ¢))* )

The terms of equal powers of D can be collected giving

l—}l = _5(1-1—::)“/’
= £ - ysin(6)(bsin($) ~ asin(g))
+ e 5[35in%(0) (bsin(#) ~ asin(#))? — (a* + 8 ~ 2abcos(# ~ 4))]
+ T 3185i(0)(bsin(#) — asin(4))(a? + b* — 2abcos(' — #)

— 5sin’(6){bsin(4") — asin(¢))?]
+ b—sg[s(a + b — 2abeos(¢’ — ¢))?
— 30sin?(8)(bsin(¢') — asin(¢))?(a® + b* — 2abcos(d’ — 4))

+ 35sin*(6) (bsin(¢') — asin(¢))]

1
+9(5) -
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Appendix B. Evaluation of Integrals for Terms in D!
and D~

From (2.7) the first term can be evaluated as

S [ os(s - d1apas = 5[ [T con(s) con(s) + sin(g) sin(4)a0 &5

1, o y
= -D-[sm(<i>)]o [Sm(¢)]° + [~ cos(¢)]
_ o (B.1)

k4

[ cos(¢')]

[¢]

ir

Q

The second term of (2.7) evaluates as

sm(ﬂ)

/ / cos(d' — @) (bsin(¢") — asin(g))dp d¢' | (B.2)

Sm(g) / ./ [bcos(¢) cos(¢)3m(¢) + bsin®(¢') sin(¢)

- acos(¢) cos(¢') sin(¢4) — asin? (¢>) sin(¢')|d¢ d¢'
O ) a2 sm(zw]
e [é’m’(m} .

2

]

cos(@))|

i’}

[sin(¢' )

R

Appendix C. Evaluation of Integrals in D~®
The third term of (2.7) can be evaluated in terms of two integrals A, A; as

.51135[3 sin’(6) [0,, /:f cos(¢' — ¢)(bsin(¢') — asin(¢))’dé d¢/
2x T
~ [ [7 cos(# ~ 8)(a" + 5 — 2abeos(s’ ~ ¢))dp do

1
= ﬁ@sm (6)A; — Aj) . (C.1)
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A, can be evaluated as

/27[ cos(¢' (bsm(¢1) asm(¢))2d¢d¢' |
= [ [ 5 cos() cos()sint(@)apad + [ [T sin(g)sin®(¢)ds 49
w7 [ 4 cost) cos(@)sin(@apas + [ [ a?sin®(g) in(4)dp d#
- fok f:’ 2abcos(4') cos(¢) sin(¢) sin(¢)dg d¢'
- ‘/; " fo ™ 9absin?(4) sin®(¢') dg dg
- o =AY [sin(¢]|°' |l cos(qs']l"[ cos@l|
rarfeos@l|| [k oo contel || [HE - conte) |
ot

g
o R o - ' (C.2)

A, can be evaluated as

2x 2x
A= /0 fo cos(4' — $)(a® + b* — 2abcos(¢' — §)dd dg’ - (C.3)
But from (B.1)
ixr ix
[ [7 coste - a)as s = 0. (C.4)
Hence
o f:’ /:' cos(¢' — $)de dg' = b '[:’ /:fcos(qb' _$)dpds =0. (C.5)
Thus

Ay = —2ab fo ” [o " (cos* (@' — §)de dg (C.6)
—2ab /0" /:x(cosz(d)') cos?(¢) + sin’*(¢) sin®(¢')

30




+ 2sin(¢) sin(4') cos(¢) cos(¢'))dé d¢
_ _2ab{ [«#’ '(¢) (¢')] ” [¢ +ssinws)cos(«b)}

2 2
[’ s1n(¢’ cos(¢ } [ coS(¢)]
e ell)

)

= —2ab{n® + x%] = —4abr’ . (C.7)
Thus referring to (C.1) we can write

3sin®(0)A; — A;) = 203( —6sin?(f)abn? + 4abn?)

abx?

1
2D3

(3 cos®(8) — 3+ 2)
abﬂ"

I

(3 cos?(8) — 1) . (C.8)

Appendix D. Evaluation of Integral in Terms of D~*

The fourth term of (2.7) can"be written as
Lo asin(@) [ [ cos( ~ 8)(a" + 5" — 2abeos(s' ~ 4) (D.1)
2D‘ S 0 o a cOos .
(bsin() — asin(4))dé ¢
2r 2x
—5sin*(6) [ [ cos(¢' - ¢) (bsin(¢) — asin(¢))*deds’] .
This can be rewritten in terms of two integrals Ay and A4 as

1 3
Yol ——[3sin(f)As — 5sin”(0)A4] . (D.2)

The first integral can be evaluated as

As = / ” / " cos(' — 8)(a® + b — 2abcos(d — 4))(bsin(¢") — asin(¢))dé d¢' (D.3)
= /2' /2‘ #){bsin(¢') — asin())(a® + b* — 2abcos(d’ — ¢))do do’ .
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Thus, remembering (B.2)

Ay =

i

~20b [ [ cos?(¢' ~ §)(bsin(#') ~ asin(4))ds i

~20b [ [ {cos?(4) cos'(#) + 2cos(d) cos(#') sin(4) sin(s)

+ sin’(¢) sin® (¢')) (bsin(¢") — asin(g))d¢ d¢’

~20b [ [ beos(8) cos®(¢) sin(4) + 2bcos($) cos(§) sin(g) sin®(¢)

+ bsin®(9) sin®(#') — & cos*(g) cos?(#') sin(4) — Zacos($) cos(#) sin’(#) sin(4
— asin’(g) sin*(¢')dg d¢’

g ] [ =

+b

- a

- a

" B [ [

o[ -]
=0 (g2 o ) [

- =l

4
[ cos®(¢')
3

| 2 4 3
=0 (D4)
The "Véecond inteéial A4 can be evaluated as
ir 2x
Ao= /(; fo cos(4' — 4)(bsin(4') — asin(4))*dg d¢’ . (D.5)

Using

(u—v)°

u® — v® — 3uly 4+ Jus?

L7 [7718° cos(9) cos(#) sin®(4')  a® cos(4) cos() sin’ ()

— 3ab? cos(4) cos(¢) sin*(¢') sin(4)

+ 3a%b cos($) cos(4') sin(4') sin®(4) + b° sin(4) sin* (¢) — a® sin* (¢) sin()
— 3ab? sin*(¢) sin®(#') + 3a?bsin’(¢) sin® (¢")]do d

[sin(4)] l - [E‘Bfli(—‘ﬁl] [sin(4")] ‘
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k14

— 3ab? [5’-":31—‘#1]

+ 3a%b [Sm;(¢)]

” [sin;(¢)]
S 2]

* [3¢' _sin(2¢') + sin(4¢')

. 18 4 32
3¢ sm(2¢') + sin(4¢')]
8 4 32 |

¢ sxn(2¢>)
~ 3at’ [5_ 4 ]o

+ 3a%b [io%ﬂ - cos(qs)]

= 0.

]
ir

2r

+ 6% [— cos(¢>)]

- a[— cos(¢’

3r s 9

[Coss(qy) — COS(¢')
ar ?i _ Sin(2¢')q ar
.12 4

Substituting (D.4] and (D.7) into (D.2) evaluate the fourth term as

2;:74[3sm(0)A3—58m3(0) AJ=0. (D.7)

Appendix E. Evalﬁation of Integrals in D~°

The fifth term from (2.7) can be written as

g pela [ [ cos(# - 8)(a + 8 ~ 2abeos(s' — 4))%ds 8
~30sin(9) [ [ (bsin(#) ~ asin(4))?
(a® + b — 2abcos(¢' — ¢)) cos(¢' — ¢)d¢p dg’
+35sin(0) [ [ (bsin(g) ~ asin(¢))*cos(¢' — 6)de de'

= 22-(3As — 30sin*(6) A + 35 sin*(6) A7)

. 825 2x
Asg = /; /; cos(¢' — ¢)(a® + b* — 2abcos(¢' — ¢))2dp d¢' (E.1)

= [ [Tl + 8 - tab(a + 8 cos(8' — 9)
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+ 4a®b? cos?(¢' — ¢)] cos(d' — ¢)dpdd’ .
This can be broken down into three separate integrals as
Ay = A5y — As 3+ 4Ass .

The first of these becomes

toa= [ [T 8 con(s! ~ 9)dsasl = (4477 [T [ con(s’ — g)ds s

This is similar in form to (B.1) and reduces to

(a?+53)(0) = O

ir prix
Mog = [ [ dab(a? +5%) cos?(' — g)dsds .
0
This is similar in form to (C.6) and can be rewritten

Asa = dab(a® + b%)(~A, / 2ab)
= 4ab(a® + b*)(27*) = 8x’ab(a® + b?)
r p2x
Ass = 4a?b? [Q [o cos’(¢' — ¢)d d¢’
2x p2x¢ : ’
= 212 ! : : "ny3 '
= 4a’} fo /; (cos(4) cos(¢') + sin(¢) sin(¢'))*dp d¢' .

Expand using

(v+v)® = u®+v®+3uv® + 3y
u = cos(g) cos(¢)
v = sin(¢)sin()
hos = 40 [ [V(cor’(¢) cost(4) + sin®(4) ein*(9)
+3cos(4) cos(#) sin?(4) sin’ (¢)
+Bcas?(g) cos’(¢") sin(¢) sin(¢))ds &

’
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é o { [sm(¢) B sin;(¢)] [ [sin(¢') - im’%ﬂ] r

[0 - o] [ [ - cos)| ||
)

sin®(@) ] [ [sin®(¢)] [, [_cos®(@) ] [ [_cos’(@)] ") _
+3[ 3 ]o [ 3 ]los[— 3 ]’o[ 3 jlo}_o'
From (E.2)
As = Asy— Asz + Ass =0 —8r’ab(a® +b%) +0

As = —8x%ab(a® + %)
he = [ [7 cos(s' — 9)bsin(¢)) - asin($))*(a" +5° ~ 2abeos(d' ~ $))ds &8
= [ [7 (bsin(#) - asin(¢))?((a? + b¥) cos(¢' — ¢) — 2abeos’($' - 4))d6 &8
= [ [T sin?(8) - 2absin(9) sin(#) + a?sin*())(a" + ) cos(4’ ~ ¢)
~ 2abcos?(¢' — ¢))dé 4o
.Q = Ae;i-ie,z+A6,s+A6,4+Ae,5+Ae,s
Box = [ [T 86 + 8 cou(@ — 4) sin®(4)dg a8
= B8 [ [ cosld - ¢)sin'(#)dd s
= 5t 48 [ [T (cos(d) cos(8) sin’(#) + sin($) sin’(4") do 4o
= 8@+ ) [+sin(@)] r [%] [
+-eos(@)l] [—3(*‘5—)- - cos(¢')} "}=o
Ches = [ [T sint(#)(~20bcos™($ - ¢))db a8 | (E.7)
Moy = 208 [ /oz'si#’(é')cos’(qs'—cﬁ)dw#
— 2o [ [ (aint(¢) cos® () cos®(#) + 2 cos(#) cos(9) sin’(¢) sin(4)

+sin’(¢) sin*(4')) dg d¢’
- o {[f ][ [ oo el ]
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&
W
i

+ [g _ sin(9) cos(¢)]

* [3¢' _sin(24) N sin(4¢')
8 4 32

.}

2 2

0

2t {(37) v+ (5) ()}
—2ab*x?

L7 [ @ sin?(8)(a* + 8) cos(# - $)dp 8
o'+ 8 [ o [  cos(¢' — @) sin?(¢)dd dd' .

This integral has the same form as (E.8) which equals zero thus

Ags = O
2x 2z ’
Moo = [ [ a%sin*(¢)(~2abcos’(4 — ¢))de do’ (E.8)
= 20 [ [ sin?($) cost (4 — 4))dpdd

This has an equivalent form in (E.7) by virtue of symmetry of ¢ and ¢'. Hence

Ag
Ags

Age

—2a%bn? .

[ [ ~2absin(4) sin(¢)(~2abeos’(# ~ 8))d

1078 [ [ cos?(4! - 4)sin(9) sin(#) ds a4

10387 [ [ (cos?(#) cos?(#) in(8) sin(#) + 2cos($) cos(#) sin’(¢) sin*(¢)
+ sin®(¢) sin®(¢))dg 44
==

4a’*’? {0}

[ el

0
3
0}

- cos(d)|

‘[) - [o " (—2absin(¢) sin(@)) (a? + 8% cos(¢' — ¢)dgs g’
—2ab(a® + b) fo > fo " cos(¢' — @) sin(4) sin(4')de dg’
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~2ab(a® + b?%) /02* /oz, cos(¢) cos(4') sin(4) sin(¢') + sin?(4) sin’(¢f)d¢ ”
—2ab(a +b=){ {S‘nz )] * [sm (¢')] o
+ [f sin(¢) c08(¢)] [_2'_ sin(¢') 2Cos(¢')] }

v

(E.9)

2
—2ab(a® + b%)(x?)

—2n%ab(a? + b%)

Agy + Agz2+ Ags+ Agq + Ags + Agp

0 — 2ab®x? + 0 — 2a°b7? — 2ab(a? + b?)x?

—27%ab(b® + a® + a® + b*) = —4x?ab(b? + a?)

L7 [7 (bsin(#) - asin9))* cos(#’ ~ $)d s .

uj — dujvy — duyv} + 6ujv] + v}

L7 [7 (84 i (#) ~ 105 sin(#) sin(9) ~ 4% sin®(4) sin(9)
+ 6a’b? sin’(8) sin’(¢') + a*sin*(g))

(cos($) cos(#) + sin(4) sin(#))ds d

This can be separated into 10 individual integrals as

Ay

A7y

A7z

= ArptArst+Ars+Arg+---+A7p0

_ /ozx /:fb4sin4(q5’)COS((}S)COS((ﬁ')d(ﬁd(ﬁ’

= sn)| =] <o

4]

_ /0”' /o " — 4a8® sin®(¢) sin(¢) cos(4) cos(¢)dé d¢’
= o | ” [ " sin®(#") cos(¢) sin(¢) cos(¢) g 4

o _ags® [sin’z(qs)} " [sin;(«:s')] "0

[

[

= —d4a% [0 o /0 " sin® (9) cos(8) sin(@') cos(¢') d g (E.10)
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A7y

Azs

A7g

A7z

A7s

Az10

4

~4a% [s_in, ’2(¢')]

=0 .

6a?h? f / " sin? ) sin?(¢') cos(¢) cos(¢')d¢ do'

] ]

oot [S18)] [sm;(qb')] =
o [ [ sint(6) cos(d) cos( ) g
ot fsin(@))| [—“—‘3@] "o

b /' f sin®(¢') sin(¢)d¢ dg’

* [ 5cos(¢') . 5cos(34') cos(5¢i)
[_ 8 48 80 ]

—4ab? ‘/;27 -/;2: sin4(¢') sinz(tﬁ)qu d¢' ‘
—4ab® [ﬁﬂ _ Sin(2¢) 4 5i11(4¢)] 2 [2 B M] 20
o L2

b4 [ cos(9)] T o

0

o

4 32 2
67 27 }

-1a8* () (3)

~3abdx? ) . . ) .

- r r ’ '

—4a%b j; /(; sin®(¢) sin(¢') sin(¢) sin(¢')d¢ d¢’

—4a% /0 ” /; ™ sin(¢) sin?(¢') dé dg'

g% |38 _ sin(29) | sin(49)] " [¢' _ sin(¢') cos(¢')
8 ry 32 2 2

—3a3br?

6a%b? /0 ” /0 ™ <in®(¢) sin’(¢') dos do'

8a’b* [____cos;(qS) - cos(d))] - [_cos_;(gS’) _ cos(q&')]

a* fe i jo " sin®(¢) sin(4')dé dg'

‘ nl- [ 5cos(¢) 5cos(3p) cos(5¢)] [
a[—cos(e:s)lo[— T —‘80]

Ari+AiatArs+Ars+Ars+ A7+ A7+ A7a+ Az + Az

0

2x

o o

ig
=0

[+]

=0

]
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¥

®

0+0+0+0+0+0—3ab’x® —3a’x? +0+0

= —37r’ab(a® + b?)

The desired term in D~% in the expansion then becomes from (E.1)

%-%‘-(3115 — 305in?(6)As + 35sin*(6) A7) .
As = —8xab(a® + b?)
As = —4rtab(b? + a?) (E.11)
Ar = —3x%ab(a® + %)

and substituting these into the integral for the term in D~° we get

5 prebla? + 57 {~24 + 120sin’ (6) — 105 sin*(6)} (E.12)
= —Sygeb(a® + 8)x*(35sint(6) — 40sin®(6) + 8} .
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