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Abstract

A scheme is described for arranging a number of circular loops on a spherical surface to

produce magnet ic dipole moments, while canceling higher mult ipole momenk. The ability

to arrange loops so as to behave as dipoles then gives rise to the possibility-of arranging a

set of such dipoles “mspace so that there is zero mutual inductance. The relative location of

parallel magnetic dipoles for zero mutual inductance is given by a particular angle between

their dipole axes and a liie between the dipoles, and m is valid regardless of the radius

of magnetic dipoles. An earlier paper investigated the feasibility of adding the magnetic.,

dipole moments

magnetic dipole

of k number of dlpoIe loops to produce an electromagnetic fieId with

moments covering a wide frequency range. The combined results of the

two =sociated papers indicate that it is possible to construct a log-periodic magnetic dipole

array to produce a controllable electrotiagnetic field for some interaction me=urement

purposes.

dipole antennas, loop antennas
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1 Introduction

As part of the inter-~~ & prdudng ~elecj~omagnetic environments a local illuminator has

been proposed which is based on adding parallel ma~etic &lpole moments from an array

of loops. Models [1] have been developed’to describe the effective magnetic &lpole moment

as a function of frequency for such an array of loops, whose self-inductance is included in

a cascaded constant-resistace network. Successful implementation of the concept for this

illuminator is dependent upon the ability to effectively produce magnetic dipole moments

while cancelliig higher moments and x well there should be no mutual inductmce between

dipoles. Methods for achieving such a controlled electromagnetic environment by loops

are described and a configuration of loops forming a log-periodic magnetic dipole array is

developed.

The production of accurate magnetic fields inside a volume enclosed by a number of.-

loops has received considerable attention, particularly for generating very uniform magnetic
o )

fiel+. The process usually involves accurately windiig loops around symmetrical shapes

such as spheres and cylk”ders. Analysis of magnetic fields in this form “revolve terms

in a series expansion. It is generally possible to eliminate individual terms by virtue of

symmetry considerations. The analysis for parallel loops on a spherical shape can be

divided into two separate solutions correspondkig respectively to an interior volume and

an exterior volume. Each of these contains, among+ other terms, a common Legendre

polynomial expansion term. Elimination of terms other than the initial term, (n = 1)

produces a uniform magrietic field within the volume, while for the exterior it eliminates

all higher moments and leaves only a dipole term.

In considering magnetic fields produced by loops and the interaction

is useful to relate both fields and generating sources to a common origin.

between loops, it

The amalyses are

done in two sections: one for mutual induction ,between two parallel circular loops and the”

@
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other for the fields produced by loops symmetrically wound on the surface of a sphere. In

both cases an angular dependence about the common origin is obtained. The angles can be

chosen to eliminate mutual induction between the dipole component of loops in one case,

and for the elimination of higher order components in the exterior magnetic field produced

by loops wound on the surface of a sphere. Both analyses pioduce results that correspond

to some form of Legendre function in the angle measured from the parallel dipole axes.

2 Mutual Inductance of Circular Coils with Parallel

Axes

The mutual induction between two circular loops of unequal

exam.bed. In accordance with the stipulation that the origin

. .

radius and parallel axes is

of the field and generating

systems should be the same, the origin is chosen to be at the center of loop A (Fig. 2.1).

The two loops are septiated by a distance D between cente&, and the angle between the .
.

ads. of loop A, and

of loop B is b. The

be written u [2]

the line joining centers is /3. The radius of loop A is a, &d the radius

mutual inductance lUBA of coil B due to a unit current on coil A can

(2.1)

where AA is the magnetic vector potential due to a unit current in loop A and dtB is an

incremental element of loop B. The magnetic vector potential can be expressed as

(2.2)

where ti”A is an incremental eIement of loop A, and r is the distance from d“A to the

observer. On substituting this expression for A-A in (2.1), the expression for the mutual

inductance, A4BA, becomes

—

d
—

(2.3)



COIL A
COIL B .
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Figure 2,1: Two Parallel Loops with Separation D between Centers
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Due to symmetry considerations the magnetic vector potential h= only a 4 component,

hence (2.3) can be written in terms of angles # and #. It can be seen by referring to Fig. 2.2

that the angle between &??.~”B is # – ~, and so (2.3) can be rewritten as

(2.4)

and r is the magnitude of the distance between the incremental elements d-A and d&.

The value r can be expressed in terms of D, ~, #’, and d with three components r=, ry,

and r= as .

r= = bcos(#) – a cos(q$) (2/5)

= Dsin(6) – a sin(q5) + bsin(~’)
.

rv

r= = Dcois(d,)

= D2+-a2+-b2– 2abcos(# – ~) + 2Dsin(6)(bsin(g5’) – a sin(+)) (2.6)

or

1 (–; 1+_—

r
2 sin(d) (bsin(qY) – a sin(q$)) + a2 + b2– 2ab cos(qS – q5) ‘:

D D2
)

. (2.7)

Using the b“inomial expansion

expression can be written as

“mdetail in Appendix A, and

f

and limiting the analys”b to the case where a + b < D this

a series with powers of D. The expansion is carried out

when the result (A.4) is substituted into (2.4) the mutual

induction lkfBA can be written as:

.

●
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Figure 2.2; Angular Relationships Between I.oop Elements
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Qa

(hi+’) - (2Sin(l$))dqtdfb’

- 5,h’(6) ~“ ~“ cos(f# - #)(bSin(#’) - asin(+))w 4$’]

+;+~~’” ~2rcM(4’-+)(a’+ b’-2dcos(+))+d#d4d# d4’

- 30sin2(6) ~’x ~’” cos(# - q$)(bsin(q$’) - a sin(fb))’

(a’ + b’ – 2abcos(# – #))d#@’

+35 sh’(6)J2= ~’= CO,(I$ - @)(bsin(#) - asi4#))4@W’]

.+ +”””.

The evaluation of the integrals in (2.8) is described in Appendices B to E. Appendix B

has the integral evaluation for terms in D-l and D-2. Appendices C, D, and E contain

the detailed evaluation of terms in D- ‘, D-4, and D-s, respectively. The results (B.1),

(B.2), (C.8), (D.7), (E.12) when substituted into (2.8) yield

M*A =
pub

{
~ &ab(3cos’(o) – 1) – ~~mzab(a’ + b2)(35sin4(13) – 40sin2(0) + 8) oQ,} .

(2.9)

The integrals related to l/D and all even powers of l/D are equal to zero. Collecting

variables and expressing the angle dependence of the second term as cos (0) we can write

pa’b’x
MBA = ~

{ }
+(3 co,’(e) - 1) -: (U’;, b’)(35 Cosye) - 3ocos2(q + 3) ● ● . .

(2.10)
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The factors of the terms incos(6) correspond to those for Legendre polynomials for

P(0)(cos O)and Py](cos O). Themutual inductance between theloops isthengi+en for the1

first two terms corresponding to the dipole and quadruple components. For no mutual

inductance for the dipole component the resdt of 0 = 004cm be obtained where

Cm(go’)=$ ‘ ‘0’=54”740.“
For no quadruple mutual inductance there are two angles of O.,, and O.,, where

.J4+2 ;
si112(00,, ) = , 00,, = 70.12°

J

4–2 ;
sin2(#om) = , Oom = 30.56°. ““

(2.11)

(2.12)

From (2.11] it cm be seen that zero mutual inductance occurs at the nulls for the

Legendre coefficients for each individual dipole, quadmpole, etc., and can be acKleved by

placing the loops at the appropriate angle 6, independent of D provided a + b < D. o

Mptual inductance between loops can be eliminated on an indkidual multipole buis,

at least for magnetic dipoles and quadruples. The angles of zero mutual inductance for

these cases cannot be met simultaneously, and hence the need exists for eliminating the

production of Nigher moments at the source, when the loops are to be placed close together.

On the ~umption that this can be done, a satisfactory distribution of loops in space is

possible which produces zero mutual indfictance for magnetic dipoles and possibly keeping

multipole “interaction to a minimum. The aim is to keep, at least -for neighboring Ioops,

the angle t?oi between the line between the central points of each loop and the parallel

magnetic-dipole vectors.

The simplest array of such nonmutually inducting loops is a liiear array, all with their

centers situated on a line chosen through an arbitrary origin at an angle (?Oiwith their

magnetic dipole axes. This fulfills the angle requirement but may not be practical from the

9
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Q3 point of view of efficient use of space. A more compact array may be made, where the angle.

criterion is released for loops other than the nearest neighbors. In this c=e ‘the greater

rate of falloff in intensity for higher moment magnetic field components with distance (as

evident in (2.10)) can be utilized to reduce

S Magnetic Fields From
,

these contributions of mutual induction.

Currents

3.1 Magnetic Fields Due to Parallel Loops on the Surface of a

Sphere

If parallel loops carrying a current are constrained to lie on the surface OEa sphere, then

an analysis in spherical coordinates czm readily be carried out. Consider a sphere, radius

r, with current limited to the @ direction = “mFig. 3.1. The magnetic field “intensity ~ is

related to the scalar magnetic potential * = .

E=V@. “(3.1)

Also

V. fi=)lv. iko. (3.2)

Hence

v. I?=v. vG=v2@=o. (3.3)

A solution for this equation, ignoring the # component because of symmetry produced

by constraining currents to constant values of 0, can be written in terms of Legendre

●
d

polynomials a9

9
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Sphere with Loops Wound in $ Direction.
Scalar

Figure 3.1:
rnagnezfc field is described for two regions, with 0=
for the region inside the sphere, and I$b for the
region outside the sphere.
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(3.4)

Since the scalar magnetic potential must be finite at the origin, and tend to zero for r equal

to infinity the solution must be in two parts. One corresponds to Q. for which r < rl and

the other corresponds to @b for which r > rl. Thus normalizing coordinates by putting R

for r/rl (3.4) can be expressed as two separate equations

C)a =

@b =

The magnetic field intensity 1?

~ U#’ly(cos(q) (3.5)
n-Q

n==

for the external c=e with r > rl can, be found using

(3.I) together with the vector relation in spherical coordinates,

t3@+ lam
VQ = -@+--

1 a+-

+ ad 1’+ rsin(6) ~14

i.e.,

. (3.6) “

Thus we can write for the two non-zero magnetic field intensity components outside the.
.

sphere

Hbr = -~ S /)n(n+ I)lr(”+’bp(cos(o)) (3.7)
rl n= 1

Hb, = : g, bnR-(”+’)PJ1)(cM(6))
where

Pp (z) = (-l)m(l - Z’)imm:”z)

‘ . d(Pn(z))
P!)(Z) = –(l–z )’ ~z .

In a similar way expression for the magnetic field intensity inside the sphere become

Ha, = *:, !U%J2”-1PWCOS(8))

(3,8)

(3.9)
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There is no @ component for either the internal or external case.

At the boundary of the sphere (R = 1) the surface current density is constrained to

have only a # component and is related to the magnetic field intensities 1?. and HA, so

using

(3.10)

and

H,a = H% at the boundary (3,11)

we can write

J~+F H@, – H.. . (3.12)

Consider that the surface current is not allowed to vary continuously with 0 over the

surface of the sphere but is contained in an infinitesimally narrow band at d~l as a current .

Imj. A Dirac delta function can rela~e the current h surface current density J, “ as#m:

(3.13)

From (3.9) and (3.12) this can be written as

J*+mt= * fj c.,@ycos(fl)) . (3,15)

A solution for the cm,~can be formed by multiplying (3.13] and (3.14) by P~ll (COS6) sin(d)

and integrating over the respective arcs. Thus

12
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where the orthogonality of the Legendre functions leav- only the nth term in the sum.

But

(3.17)

and from [3]

~ywz)l’dz= (n+y(n+m)!/(n-m)! . (3,18)

Hence
!

‘n+ 1 P:)(COS(6J) sin(k) “
Cn’m’= 2n(n + 1)

Substituting (3.19) into (3.15) gives

Imt =
J z ‘n+ 1 pJl~(cos(6ml)) sin(&)P~l)(cos d) .

*+ml . .= ~pl 2n(n + 1)

(3.19)

(3.20)

A new quantity can be defined which relates the accumulated effect of a number of

loops M’, at discrete values of d~r, as

%
..-

Then

,, = f J,+ , = + $~A@)(co6(6)) .J
~t=l =

(3.21)

(3.22)

The boundary conditions at rl (i.e. (3.11)) are known

field, hence the r components of (3.7) and (3.9) can be

–bn(n+l)=nq.

And from (3.12) and (3.22)

for the r components of magnetic

equated to give

(3.23)

. J*+ = H~b“– H~. = ~ bnPy(ms(e)) - ~ anPy(cos(q)
n=l n=l

o
“&$

(3.24)

13



.

giving
10 ,

b.–~=–An.
rl

Eliin.inating G in (3.23) and (3.25) gives’

The magnetic field ~ outside the sphere is obtained

giving

‘ (3,25)

(3.26)

by substituting (3.26) into (3.7)

These equations describe the fields external to the sphere on wh~ch

are wound, with a common origin for both field and generating source.

●

(3.27)

the parallel loops *

Furthermore, the ,

field can be calculated for each position R, 0 for any combination of loops at angles 6~t

with contribution p~~ for ml = 1 to M’ using (3.27).

The magnetic field 1? inside the sphere can be expressed in the form of a similar set of

equations using an, which is obtained from (3.23) and (3.25) as

Ii) ,n+l
an = ——An

rl 2?3 +1”
(3.28)

On substituting (3.28) into (3.9) the magnetic field can be expressed fully. Writing in

terms of its two components in spherical coordinates

Ha, = ~ nu@”-’Py(cos@)) (3.29)
n=1

14
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e’%$

n= 1

10 m
x

n+l 4
=—— —AnRn-’Pf)(cos(d)) ~

rlK12n+l

3.2 Use of Loop Symmetry for Eliminating Magnetic Moments

with Even Values of n

Examination of (3.27) and (3.29) shows that the field components are determined by An,

which is itself a function of P~l) (cos(dmt)). In seeking to eliminate various components

of the field, nulls and symmetry smociated with each degree (n) of P~l) (COS(OmJ))can be

utilized. Symmetrical considerations can be utilized by choosing the distribution of em,
. .

in a way such that the field is composed of pairs of contributions with magnitudes that

are equal in magnitude, but vary in sign dependent upon degree. The definition of an

associated Legendre function with real variable on examination shows that its pwity is

detern@ed by n and m,.i.e.

(3.30)

and

As < is changed to (– ~) the sign will be exactly dependent on the m-fold differential ion

of P~(~) whose sign “Bdependent on the power of n, and so

Pp(-f) : (–l)”+vy (f) . (3.31)

This results in P~l)(cos(&)) being an odd function for n even and an even function for n

odd, i.e.;

Pp(- COs(eml)) = .- Pp(cos(emt)) for n even



I
.

and

P:)(– Cos(emt)) = qqcos(b)) for n odd (3,32)

pm, = Cos(dml) .

An even arrangement for loops on a unit sphere is shown in Fig. 3.2. An evenly spaced

set of loops from m’ equals 1 to M’ is symmetrically placed about cos(~ml) equals o with

M’ even. This means that there is no loop at cos(d~r) equals O. For such a configurateion,

the relationship (3.32) applies. Further, the function is also odd when forming a product

with sin(d), i.e.,

sin(o) PJl)(cos(o)) = (1 - COS’(8))’12P:)(COS(0))

= -(1 - (-cm’[o))’/’P:) cw(o)))) for n even .

Setting cos(6~~) = y~t and setting the constraints

(3.33)

and

imt= i~-m+l (3.34)
* _~

.-

/J=, = ‘PAd-mi-l s (3,35)

Then from (3.21)

(3.36)

= o for M’ even and n “even.

Thus only odd values of n need be c’omidered for the magnetic fields represented by

(3.27) and (3.29] in such

3.3 Relationship

an arrangement of loops. A: &sts only for odd values of n.

Between Spherical Harmonics and Multiples

The potential or field due to circulating currents c= be expressed in series of two distinct

forms, which are essentially relatable term by term. The concept of dipoles, quadruples
o

16
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Figure 3.2: An Arrangement of an Even Number of Loops on a Unit
Sphere for which cos(e~) = - cos(8’+&l) . The current
in each loop is constrained by the relationship

‘d

lm’= lM%%J “
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and rnultipoks follow directly from one of these whk.h is based on a Taylor’s series. It

applies to both magnetic and electric poles, although easier to undemtand in tefms of the

electric field and point charges [4]. The electric pot ential from an arbitrary distribution of

charge density contained within the vol~e of a sphere can be expressed as

(3.37)

where P(%, yo, ~) is the diitribut ion of charge density and

R:=(z–q)2+ (y–yo)*+(z–a)’. (3.38)

The expansion of thii becomes (outside the sphere)

an 1

[1A@jWzn-t-k ;
“ (3.39)

.
r= z2+y2+z2.

“A series of multiples with appropriate coefficients can be postulated that can produce

a potential diitributioxr outside the sphere equal to that flom the arbitrary charge density,

The multipoks are visualized as a number of equal and opposite po”mt charges separated

by some distance and each term is related in the series by an order n. The numerical value

of charges, and the associated value of the znultipole is 2n in the expansion of (3.40). This

series contains some redundant terms, i.e., ones which do not contribute to the external

potential. When these are removed the remaining terms are equal to the series expression

for potential based on spherical harmonics, again with n terms, as

# = & ~ fJLjmYmm,.w)
+Bn,mY;,n,o(o, #)]-&

A (a-hm)(:-m]!n,m =
I ‘ (72+77%)!

(3.40)

18
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Ymp,c =

Y=m,n,o

1m,m” = ,

The coefficient Bn,m is a similar volume

cos (m~) in the “mtegrand. The magnetic

~aP(.o,eo,@O)r;+’dro ‘

(even form)pJm)(cos(6)) cos(rnf$)

Pim)(cos(e)) Sin(r%b) (odd form)

(n+m)!

(2 - lo,l~(2n + 1) (n - m)!

{

1 ifm=m”
.

0 otherwise

integral to An,m with Sk(TT@O) substituted- for’

case can be developed by analogy with the elec-

tric case by replacing the electric multipole by a magnetic multipole. A similar expansion

remits, with terms exhibiting the same behavior with n. Lnthe cue of magnetic moments,

the magnetic monopole (n = O) equals zero. Nomenclature for the individual terms and

their relationship to n for the static c= are shown in Table 3.1. The traditional schemes

do not cater readily” for higher terms as is shoivn. A“scheme based on the ind~ n, as the

term 2n-pole WM used in [5]. Others avoid the problem altogether, and simply state the

relations in terms of n: If a scheme is desired to refer to the poles for larger values of n,

it could be based on the fact that they correspond to the integer values of the power of

two, or the integer binary orders. One scheme might be to call them n-binary order poles.

In this case the first binary order pole would correspond to the dipole, the second binary

order pole the quadruple, etc.

19
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3ndex n

o
1
2
3
4
5

Multipole Ex ansion for Static
fElectric an Magnetic Case I

Usual Name

Monopole
Dipole

Quadruple
Octupole

Hexadecirnapole?
—

2“

;
4
8
16
32

Relation to Distance

Potential Field

r-l r-z
r-2 r-s
r-s r-’
;:: r-s

r-’
r-” r-’

Morse 4Z Feshbach

Monopole
Dipole

Dipole of Dipoles
Dipole of Quadruples?

—
— I

Table 3.1. Relationship of Terms in Multipole Expansion

Spherical Coils

4.1 IIelmholtz Coil-Two Loops Wound SymmetricdIy on Sphere

Two loop can be wound on the surface of a sphere “msuch a way that they are symmet-

rically located witli respect to 6 = %/2, thus complying with (3.35) and (3.36). Thus a

particular form of (3.37) can be written as
.

with AL = O for all n even.

The “individual components of AL can be expanded for values of n = 1,3,5 as

A; =

(4.1)

(4.2)

(4.3)

.

0

.

0
.



If we want A: to be zero (to maximize uniformity near the origin)

Sp; –1 = o > e~ = 63.43°

(4.4)

P1
+

= COS(81) = ~ , 82 = 180” – 41 = 116”570

A; =
11 (1)
@j (h) (1 – API (4.5)

= -;(21P: - 14p: + 1)(1 – I.L:)P1 .

It can be seen that A~ c- be made zero by locating the loops on the sphere at angles

in (4.4). This correspon~ to the configuration of a Helmholtz coil where the radius of

its two constituent loops “wequal to their separation. By setting A: equal to zero, the

octupole term in the expansion for the magnetic field intensity is cancelled and the field

is filly described by the dipole term and the odd multipole terms from the S-b”mary order

pole to infinty. The m~gnetic field intensity component for points outside the spherical

volume, from (3.27). and (4.1) are
. .

Hb, = -- ~ Pf@)(l - H;)l/2R-(”+2)P$) (cM(e))
rl xl

-{

= I~pl 4
#i-s CoS(d) –

rl

(4.6)

For inside the volume of the sphere, the magnetic field intensity for the Helm.holtz coil

pair can be written from (3.29) and (4.1~ as

21
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The magnetic field intensity inside the volume due to then = 1 term, is independent of

distance from the origin, and hes a direction that is parallel to the axis of rotation. This

can be appreciated readily fkom the relation that converts a unit vector 1. parallel to the

z axis in Cartesian coordinates to spherical coordinates, i.e.,

i. = 1, COS(0) – i, sk(o) . (4.8)

4.2 Uniform Field and Magnetic Dipole Fields from Loops on a

Sphere
o )

shown in (4.6) and (4.7) that the fit terms in the magnetic field expansionsIt w=

correspond to a magnetic dipole outside the sphere and a uniform fieId inside the sphere.

By use of symmetry it is possible to eliminate all values of A: for even values of n. By

choosing the location of two loops it “Bpossible to eliminate one odd order, in this case

corresponding to the octupole or 3-binary order pole (4.4). By adding extra pairs of

symmetrical loops more A; terms, for n odd, can be eliiated. By eliminating all terms

from 3 to infinity for A; in (3.37), there results a uniform magnetic field for the interior

case and a dipole magnetic field for the t%xteriorcase.

Most interest in symmetrical 100PShas been in producing uniform magnetic fields in the

interior region. Schemes have been reported for eliiating various of the higher moments

using up to eight loops, which can eliiinate AL from n = 2 up to 14 [6]. All moments

higher than 1 can be eliminated using an infinite number of evenly spaced loops wound on

22
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the surface of a sphere with the current iml in each loop equalling 10sin(d~t) [7] and [2].

The solutions in both these cases involve irrational ratios between the currents in each loop

and so can limit the practicability of the mious solutions found. A systematic discussion

of dally symmetric magnetic fields is gi~en “m[8].

5 Log-Periodic Magnetic Dipole Array

The preceding analyses have succeeded in describing completely the magnetic field inten-

sity due to currents in a series of loops woind synirnetrically on the surface of a sphere.

The magnetic field intensity is described u a sum of elements in a series expansion of mul-

tipole terms. Furthermore, all of the terms higher than one in the series cah be cancelled,

so it is theoretically possible by manipulations of loop position and fractional currents to

generate the desired dipole only. An approximation to this condition can be obtained for

small numbers of loop pairs, and if the cancellation of the quadruple, octupole, and hex-

adecimapole terms _ii sticient then a Helmh~ltz coii will suffice. In general, loops wound

on the surface of a sphere provide a method whereby a predominantly dipole magnetic

field can be generated.

The possibility of generating pure dipole magnetic fields

result for mutual “reduction between loops, which also resolves

.,

can be comb”med with the

into a multipole series. For

parallel magnetic dipoles the mutual inductance is zero, so long as their centers lie on a

line making the angle OOAwith the dipole axes. The tiue of 60i is equal to 54.74°, from

(2.11). A minimum separation can be set for pure dipoles, based on the non-intersection

of their forming spheres. ThH is based on the fact that the magnetic dipole-moment field

exists outside the sphere only, and the angle of zero mutual inductance applies only for

dipoles. For the situation that some higher order terms are still remaining, the separation

between spheres will need to be ~scdendedto meet the desired accuracy requirements.

1
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A scheme for utilizing a series of parallel magnetic dipoles to produce a combined

dipole-moment field has been established in an associated paper [i]. h analysis in that

paper developed a network model for producing a controllable electromagnetic field made

up of composite magnetic dipole moments which cover a wide frequency range. A successful

cmiiguration of magnetic dipoles was a series of loops which is increased successively by a

factor /32 in =ea and associatedly by a factor ~ in inductance in the network. Successful

implementation of this model was dependent upon two conditions, addressed in this paper,

being met. These conditions are firstly that an efficient means of producing magnetic dipole

moments be found, and secondly a means for locating these dipoles with zero mutual

“inductance be cofigured.
. .

Implementation of the loop-geomet~ conditions developed in this paper can be used

in conjunction with the rnodeI in the associated paper to produce a suitable magnitude

of magnetic tlpole moment over a wide frequency range. The spatial arrangement of the

loops is shown in Fig. !5.1, and can be visualii as a set of spher~ located with their.- 0. .“
centem on a line makiig tingle 004 with respect to the z axis when Cartesian coorclkates

are used, as with the axis of rotation “mspherical coordinates. In the case of pure &lpole

generation it is sufficient that the separations of the spheres are such that their surfaces

do not overlap or touch. When thii condition is approximated by a few loops, such u for

a Helmholtz coil, a greater wavelength dependent separation may be required depending

on the accuracy required. The locations for two coils on the surface of each appropriate

sphere are shown in Fig. 5.1 as two parallel Iiies above and below the sphere center and

parallel to the x, y plane. The packing illustrated shows the spheres associated with each

dipole touching, which is a liit for no interaction between perfect dipoles. It can be

seen that the spheres fit into a circular cone, whose apex half-angle al can, after a little
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analytical geometry, be expressed as

/3-1
sin(aJ = — .

b+l
(5.1)

Note for our example (here and [1])

@=2, sin(aL) =~, a~=19.4T.

The relationship between the area of successive loops is

(p’), which s“mmltaneously “tiuences the related inductance

(5.2)

based on a constant ratio

in the associated constant-

resistance network by a ratio ~. When the conditions of efficient dipole generation and zero

mutual inductance are complied with, a l=ge magnitude of magnetic dipole moment can

be achieved over a wide frequency range. The configuration shown in Fig. 5.1 is consistent

with that for /3 = 2, and the characteristic curves for such m array of dipole loops for this

value cm be found in [1] for 1, 2 and 5 dipole arrays. The general performance of this type

of array and the relationship between the successive loop elements is consistent with the

principles of the log-periodic class of antenn= [9]. The network/loop combination then -
. .

C= be considered t-o be a magnetic dipole log-periodic array.

This new type of magnetic-dipole antenna can be referred to in brief as SCYLLA (scaled

~onstan%resistance ~et ~og-pe”riodic loop ‘-y).

6 Summary

A relationship wss derived which describes the field produced by a series of parallel loops

wound on the surface of a sphere. The relationship has a common origin for the field

generating syste~ and the resultant field, and thii provides a convenient form to show

their natural symmetries. The symmetries are manipulated to eliminate the contributions

of higher order nmltipoles. Another relationship was derived to determine the mutual in-

ductance between two parallel circular loops. It is shown, that at least for the tlpole and

o
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a

Q!Bquadruple static case, mutual inductance can be eliminated separately, but not simul-

taneously. A configuration of loops based on these two concepts gave rise to a proposed

scheme which is effectively a log-periodic magnetic dipole array antenna. ‘

The log-periodic magnetic dipole array is associated with a cascaded constant-resistance

network model described in a previous paper investigating networks for producing com-
. .

posite magnetic dipole moments from a number of loops [I.]. The resultant system, with

proper choice of a proportional factor /3 (a recurrence relation betieen successive stages)

can produce a constant magnitude magnetic dipole moment over a wide frequency range. -

The response for this type of antenna has been given “in”the previous paper for selected

values of ~ and number of dipoles. This new class of antenna can find application in

providing accurately known el~tromagnetic environments over liited volumes. One such

application is to provide the electromagnetic field, “m a confined space say, to measure

interaction behavior in accordance with the concept of PARTES [10].

e~

Apperidix A. Biriomial ~xpansion of A

From (2.6) we can use the b“momial expansion in the form

(Liz)-’/’: +=:=+ g=+g...
2816

(Al)

where.
z 2 sin(d) (bsin(#’) – a sin(+))

=
D

a2 + b2 – 2abcos(qS – #)
+ D2 . (A.2)

Substituting the exp=ded forms of z from (A.2) into (Al) we get the expansion for the

firstfive terms

—

.

-k.)

(I+ ~j-llz = 1} termi ,

– * sin(8) (bsin(qY) – a sin(f#))

}
term 2

-FHa’+b’ – 2abcos(@ – ~))

(A.3)
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0
term 3“

The terms of equal powers of D can be collected giving

term 5.

(A.4)

~~~3sin2(6)(bdn(c$’)- a.in(q5))2- (a2 + b2 - 2abcos(#’ - ~))]‘DS2

~~[3 sin(d) (bsin(~’) - asin(t$))(a2 + b’ - 2ab cos(qY - ~))
%42 -

– 5 s@?)(bsirl(#’) – asin(#))s]

~~[3(a2 + b’‘D~8 - 2abcos(g%’ – #))2

- 30sin2(d)(bsin( q$’)– asin(q$))2(a2 + b2 – 2ab COS(+’– ~))

+35 sin’ (d)(bsin(q$’) – USill(#))4]

()
+0 +.”

.

I

28



.

4 t

*
Appendix B. Evaluation of Integrals for Terms in D-l

and D–2

From (2.7) the first term can be evaluated =

+~’r~2rms(#-wfw’= ,+~2r/2=cosmw) +SWWWW4’
2r 2*

+ [– Cos f#)]
2“\_~o~(~q

o 0 0
= +r@)] ‘=[sin(gs)

o

= o.

The second term of (2.7) evaluates as

Appendix C. Evaluation of Integrals in D-3

The third term of (2.7) can be evaluated in terms of two integrals Al, A2 as
I

.*[3sin2(6) ~2” ~2”cos(#’ - #)(bsin(#’) - asin(@))2d#d#

(3.1)

(B.2)

(Cl)
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Al can be evaluated as

Al =

=

=

.

Al =
[ 1 [

_ Zab g _ Sin(qs) cos(#) 2“ g _ sin(d) C-(4) ‘r ‘

2 2 02 2 1 0
(C.2)

A2 can be evaluat~ = ‘

A2 = /2” ~2rCOS(#’-@)(a2 +b2 -2a~cos(~’ - @)d@d@’ . (C.3)
00

Hence

a2~2% ~2rcos(q5’ - #)@d@’ = b’~’= ~2riXYS(#’ -#)&#&$’ = 0. (C.5) ‘

Thus
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+ 2 sin(~) sin(#) cos(#) cm(+’))d+ O’

_2=b # Sin(#’) Cos($$’) ‘r ~ + sin(d) cos(~) 2= ‘=
{[

~+
2 1 [.2 2 1 0

[

+4, - sin(#) cos(q$’)

1 [ 1

2’ # Sin(qqcos(+) 2’

+2;iyq~ [sy~
;If; 2 0

= –2ab[x2 + X2] = –4alm2 .

Thus referring to (Cl) we can write

~(3sin2(0)A1 - Az) = ~(-6sin2(0)ah2 + 4ah2)
. .

~ 3COS2(6)–3+2)==; (

●d A. ppendix

e.
d

The fourth term

1

= %(3 CoS’(o) – 1)

(C.7)

(C.8)

D. Evaluation of Integral in Terms of D-4
.,

of (2.7) can be written as

2w-[3hl(e)~zr 12= COS(4’- +)(=2 + b2 - 2ubcos(# - 4) (D.1)

(bsixl(($) - Usin(#))d@ dqY

– 5Sins(q ~z% J’” cos(# –+) (b sin(f’) – asin(#))’d# d~’] .

This can be rewritten in terms of two integrals AS and 4 u

~[3sk@)A, - 5sin3(0)&] . (D.2)

The first integral C= be evaluated as

As = ~’=J’%+’- W2 +~z– 2abcos(#– #))(bsin(#)– asin(d))d$@’ (D.3)



. *

Thus, remembering (B.2)

= -2ub ~2r ~2r(cos2(#) COS2(#’)+ 2 COS(4)cos(q$’) ~in(#) sin(d)

+ sin2(q$)8in2(gY))(bsin(#’) – asin(q5))d#d#’

+ bsin’(~)sin3(#) – u cos2(#) cos2(#) sin(#)– 2acos(@] cos(qS) sin2(#)~in(#’)

= o. . (D.4).,

The ‘second integd & can be evaluated as

(D.5)

using

(u - v)’ = u’ -.3- 3?.L2V+ 3U.’

– 3ab2 cos(~) cos(~’) sin2(#’) sin(~)

+ 3uzb cos(d) cos(d’) sin(q$’)sin2(#) + bssin(~) sin4(#;) – us sin4(#) sin(#’)

- 3ah2sin2(#) sins(~’) + 3a2bsin3(#) sin2(#’)]d~ d~’
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-3’’2HWVH :

‘3a2b[*l :Wl :

[

+ /)s[– COS(t#)]2“ !$!!!9$?!

o 1

+ sin(44’) 2“

32 0

[

“ 34 sin(2qY)
- a [– cos(fb’)] ~– ~

1

+ sin(4qV) 2“

o 32 0

-’d*[:-*] :[cm$d)-cm(d :

[

+ ‘=2’ Coss(#)

1 [ 1

2“ C$ Sin(z#’) ‘r

3
– Cos(+) .~–4

o 0

= o. f

Substituting (D.4) and (D.7) into (D.2) evaluate the fourth term as

~[3sin(0)A, –5sin3(6)&] =0 .

*.
, . .

Appendix E. Evaluation of Integrals in D-5

The fifth term from (2.7) can be written as

112X*X
—— [3/ /

‘8D5 o 0
cos(#’ – ~) (a2 + b2 - 2ab cos(~’ - q$))2d@d~’

– 30 Sh2(6) ~2” ~’”(b SiIl(~’) – Usin(#))z

(a’ + b’ – 2abcos(#’ – ~)) cos(q$’ – ~)d~ dqY

+35 Sti4(6)12= ~2%(bSill(#:) – asin(#))4 cos(~’ – ~)d+d~’

= ~;(3A, - 30sin2(0)& + 35sin4(4)A7)

(D.6)

‘A,= ~’”~’rcww- +)(”2+’2 --+bcco’ - 4))2+W’

= ~’”~2r[(”’+’’)*-4d(”*+’*).os(i-#)

(D.7)

(El)
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+ 4a2b2Cosz(qf – #)] cos(~’ – ~)d# &$’ .

This can be broken down into three separate integrals as

AB= A5,1– ~,2 i- A5,s . (13.2)

This is similar in form to (B.1) ~d reduces to

(a2 + b2)(Cl)= O

‘W = ~zr~2=4uh(a2+b2)cm2(+’- +)@d#’. -

Thii is similar in form to (C.6) and can be rewritten

A~,z = 4ab(u2 + b2)(–A2/2ub)

- 4ab(a2 + b2)(2x2) = 8F2ab(a2 + bz).—

Expand using

(u+ v)’ = us + Vs + 3UV2+ 3U2U

u = Cos(+) Cos(f$’) ,

v = sin(#) sin(q5’) “

+ 3 cos(#] Cos(+’) sin’(j) sin2(#’)

(E.4)

(E,5)

(E,6)

+ 3 C032(#) C0S2(~’) Sin(d) sin(#’))d# d~’
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{[ II [ 1

sin3(q5) ‘r ~.(+,) sins(+’) “2’
= 4a2b2 sin(~) – ~ ——

30

[

+ Coss(f$) _ ~os(+)

1 [ 1

2“ :cd(r$’) _ ~M(#) ‘r

3 0 3 0

From (E.2)

AS = As,l – As,2+ @ = O – 8~2ab(a2 + 62) + O

AS = –8n2ab(u2 + b2)

– m.bcosa($b’–#))d&q5’

= b2(a2+b2)/2”/2rCOS(#’ - #)Sb12(f#)t@@’
00

{ .[ II

2“ Sins(+’) 2“
= b2(a2 + b2) i+ sin(~)] ~,

o 0

1[
+ [– cos(#)] 2“ .0s;(4’) ]1}

2*
– cos(q5’) = o

0 0

●
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This integral has the same form as (E.6) which equals zero thus

(E.8)

This has an equivalent form in (E.7) by virtue of symmetry of # and #’. Hence

A6,4 = –2a3bx2 .

+ Si.d(d)sin3(#’))d# d#’

= ‘a2’2{[-c@:(d’][[-cmY]r+2yY)]r[Siw]r
.[+Cosyc$) II [2“ mss(qY)

]11

as

3
– cos(~)

3
– c~ (q$’)

o 0

= 4a2b2{O}
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= –2#ab(Cz2 + bz)

&= A6,1 + 4,2+ A6,3 + 4,4 + A6,5 + A6,6

= O– 2ab3x2 + O– 2ash2 – 2ab(a2 + b2)z2

–2x2ab(b2+ a2 + a2 + b2) = –4~2ab(b2 + a2)

A, : 12= ~2”(W’) – a sin(+))’ cos(g$’ – #)@&$’ .

(u - V)4 = U; - 4U:V1- 4upJ;+ 6u:v:+ V;
t

A7 = J2” ~2r(~4sh4(4’) -,ab’’~s(wswd) -,as~sin’(mw’)

%
+ 6a2b2sin2(q5)sin’(~’) + a4sin4(#))

.

(co’(c)] Cos(gq + sin(#) Sin(r#’))@ *’ .

This can be separated into 10 individual integds as

●
‘J

A7 = Ar,l + A7,2+ A7J + A7,4+ “ ““ + AT,IO
2X ‘x

A7,1 =
11

b4Si114(i#*)CoS(#) COS(#’)df#d+’
00

U II
= b4@ll(#)l ‘“ ‘h;(~’) ‘r = o

0 0
2% 2x

A7,Z =
II

‘4Ubs Sh3(#) Sill(d)CoS(#)Co’(f#’)&j d~’

=
:4~~~2r~2’sh3(+’). a(@’)sh(@).m(#)4d@’

“ -4ds[stiNTH :=0

A7,3 = -4asbJ2’ ~2’s~3(#).@(4)sin(4’) .os(4’)@d4’ (E.1O)

37 ,



A7,7 =

=

=

=.

A7,8 =

=

=

A7 =

–4u3b [“ 1

sin2(gY) ‘*

2 ~ [1

sin’(+)

4

ar

o
o

6a’b’J2”J2r,~’(4)sb’(4’).o,(4).m(4’)@d4’
6a%’[s$@’qH5’’)]r=”
~’~2”~2=sb’(4)cti(4)cm(4’ld4d4’
U4[sin(d)]

[ II

2“ sin6[~) ‘= = ~

~4~2r J2=:W’L(;W4’

[ 1

b’ [_ ~M(~)] ‘= _5 C:(#’) + 5 COS%Y) _ Cos:g) ‘“=O

o

-’@J2” jrsw?vsw)w’ ~

[

34’ sin(2qt)

1 [

2“ # Sin(qq co,(+) 2“~ 9in(4+) _—–4ab3 — -
1

-443 (4 32 ‘2 2 0

–s~~zz

:4a’~~2”J2”sb’(41 sb(4’).h(+)sL(4’)wd4’ - “

-,asb~’r ~2rswmw)dw’

[

-4iz3b ~ - ‘*(’@)+ ‘h(’d) ‘* ~ - ‘b(d’~ Cm(@’) 2“
8 4 1 [32 02 2 1 0

–3asbn2

6u2b2~2=J2rs~’(4) .~’(4’)~4~4’

[

~a2b2 Coss(qq

1

‘“ COS2(4’)

[ II

2r
– co,(+) – cos[#’) = o

a4~2r ~’;sw)sw’) b’3 . 0
2W

[ 1

2s
a’ [– cos(~t) ] –sc;(~) + 5C;$+) – - =0

o 0

A7,1 + &,2 i- &P + ~7,4 + A7,5 i- &)U + ~7,7 + ~7,a + A7,9 + A7,10 ~

●

*,
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= 0+0+0 +0+0+ 0–3UW-3U%2 +0+0

= –37r2a6(a2 + b2)

The desired term in ~-s in the expansion then becomes from (El)

~~(3A6 - 30sin2(6)& + 35sin’(0)A,) .

AS = –8x2ab(u2 + 62)

A6 = –4x2ab(b2 + U*)

Al = –372ab(a2 + b2)

and substituting th=e into the integral for the term in D-5 we getf

~~ab(az + b2)x2{–24 + 120.sin2(8) – 105 sin4((?)}

(E.11)

. .

(E.12)

= –~~ab(a2 ~ b2)xz{35sin4(@) – 40sin2(0) +8} . ‘

o
d .

References - . . .

[1]

[2]

[3]

[4]

. [5]

—

‘d

J. D. Quinn and C. E. Baum, “Networks for Producing Composite Magnetic Dipole

Moments from Various Loops,” Sensor and Simulation Note 298, January 1987.

W. R. Smythe, Static and Dynamic Electricity, Third Edition, McGraw-Hill Book

Company (1968).

M. Abramowitz and I. E. Stegun, Handbook of Mathematical Functions, NBS (1964).

P. M. Morse and H. Feshbach, Methods of Thwretical Physics, Part II, McGraw-Hill

Book Company (1953).

H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Third Edition, Cam-

bridge Universi~ Press (1966).

39



.

[6] M. E. Pittman and D. L. Wardelich, ‘Three and Four Coil Systems for Homogeneous

Magnetic Fields: IEEE Trans. Aerospace, Vol. AS-2, February 1964, pp. 36-45.

(7] J. E. Everett and J. E. Osemeildhn, ‘Spherical Coils for Uniform Magnetic Fields:

J. Sci. Xnstrum., Vol. 42, 1966, pp. 470474.

[8] M. W. Garrett, “Axially Symmetric Systems for Generating and Measuring Magnetic

Fields,” Part 1, J. AppL Phys., Vol. 22, No. !3, September 1951, pp. 1091-1107.

[9] E. C. Jordan et al., ‘Developments in Broadband Antennas? IEEE Spectrum, April

1964, pp. 58-71.

.

[10] C. E. Baum, ‘The PARTES Concept in EMP Simulation? Sensor and Simulation

Note 260, December 1979, and Ekctromagnetics, Vol. 3, No. 1, 1983, pp. 1-19.

.

.

40


