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I. INTRODUCTION

Figure 1 shows the geometry of the antenna which is being analyzed. It

consists of tW wires in a configuration similar to a rhombus, with a CW

source at one vertex and a matched termination load at the other vertex. The

wires are supported by a dielectric cord stretched between two poles. The

mechanical design allows the wire separation at the poles, denoted by 2a, and

the wire height at the poles, denoted by b, to be varied. The CU source can

drive the illuminator in either a common mode or a differential mode. In the

common mode both wires are driven with the same voltage, and the electr~c

field produced in the region of interest between wires and ground, referred to

as the working volume, has predominantly vertical polarization with respect to

ground. In the differential mode the wires are driven with voltages of

opposite polarity, and the electric field in the working volume has a strong

horizontal polarization with respect to ground.

One of the main objectives of this analysis is to determine optimum wire

heights and wire separations, for both the common and differential modes, o

which produce the most uniform fields in the working volume of the antenna.

Such volume has a transverse section of size 2A x B, asshown in Fig.1.

Another objective is to determine the expected electromagnetic field

distributions, and the characteristic impedances at these optimum tire heights

and separations. To this end four different cases are investigated. These

are illustrated in Figure 2. Case 1 considers the common mode excitation with

a test object near the ground. Case 2 considers the common mode excitat~on

with a test object above the ground to better approximate in-flight

conditions. Case 3 considers the differential mode with the test object near

the ground, and Case 4 considers the differential mode with the test object

above the ground.

The analysis presented In the following sections builds on the analysis

originally performed by C. Baum (Ref. 1). Section 11 gives an overall

description of the mathematical model. Section 111 describes the optimization

study performed Co determine optimum values for wire heights and separations

for the four cases mentioned above. Section IV describes the impedance
e

calculations, and Section V presents field calculations.
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II. DESCRIPTION OF THE ANALYTICAL MODEL

Given the configurations presented in Figures 1 and 2 the problem of

determining the electromagnetic fields inside the working volume is

approximated by the ideal static problem(s) of finding the electric (magnetic)

field due to two parallel infinite line charges (currents) separated by a

distance 2a and located above a perfectly conducting and infinitely extended

plane at a height b. Such an approximation is adequate provided the

frequencies of interest are sufficiently low so that higher order modes can be

neglected. In addition, the reflections and scattering originating from bends

in transmission lines and load terminations are not described by this model.

The analysis simplifies the three dimensional problem by assuming a two-

dimensional, quasi-static, transverse electromagnetic (TEM) approximation.

The solution to this problem can be obtained by the method of images and is

well documented in the literature (see, for instance, Ref. 2). Figure 2 shows

the four cases being considered, two using common mode and two using

differential mode excitations, together with the Cartesian coordinate system

introduced to describe the two-dimensional analysis.

In the common mode excitation the configuration of the antenna i.e., a

and b, are chosen in such a way that the electric field in the working volume,

which is predominantly directed along y, is made to be as uniform as

‘possible. For the differential mode the electric field has a large component

directed along x. For this type of excitation, a and b are therefore chosen

to maximize the uniformity of the x-component. These relevant components of

the electric field are given by the following expressions obtainable from the

potential presented, for instance, in Ref. 3, in conjunction with the method

of images.

EY=.*{ y-b + y-b

o~ (x+a)2 + (y-b)2 -

y +b y+b

(x-a)* + (y+b)2 - (x+a)z + (y+b)z}
(common mode) (1)

an[l

7



.

.

Ex = H
X+a

o (x+-a)* + (y-b)* - (x-a) 2x+a(y-b)2 -

xi-a
+ x-a

‘(x+a)2+ (y+b)z (x-a)* + (y%)
z} (differential mode) (2)

where q is the charge per unit length of the line and so = 8.85 x 10’12 F/m is

the vacuum perrnittivity. The ratio q/(2n~o) can be related to the source

power W of the transmitter; the reader is referred to Section IV for this

detailed derivation.

In order to visualize the behavior of the fields in a cross section of

the working volume, equipotential and electric field lines can be plotted for

any given choice of a and b. The analytical expressions for such curves are

found by constructing conformal transformations in addition to app~ying the

method of images. According to”l?eferences 2 and 3, the expression used-to

generate the curves are:

(X + a)2+-(y + b)2 2
u =~{ln[ z] fln[ (x-a) +(y+b)

(x+a)2+ (y-b) (x-a) 2+ (y-b)
;1} (3)

= arctan[
2b(x + a) 2b(x - a)

v *I f arctan[ *I (4)
(x+a)2i-y2-b (x-a) 2+y2-b

where the variable u represents equipotentials and v represents electric field

lines. In this problem u may also represent magnetic field lines. The +

signs in Equations 3 and 4 apply to the common mode and the - signs apply to

the differential mode.

The above equations have been ~wrmalized to line charges of values

q = t2Tco .

8
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III. CONFIGURATION’S OPTIMIZATION

The purpose of this section is to investigate how fields vary in the

working volume depending on the choice of a and b, and identify ranges of

values for a and b over which the electric field is reasonably uniform within

this volume for the two identified excitation modes. For simplicity we

normalize all the linear quantities with respect to h, thus defining a’ = a/h,

b’ = blh.

To quantify the extent of uniformity we introduce a functional

F(E6,a’ ,b’,D) which gives the relative error, in the sense of the 2-norm, of

any of the relevant components of the field with respect to the average value

taken within a specified region. In its general form F(E6,a’,b’,D) is defined

as:

1/2
F(E6,a’,b’,D) = {+/ @(a’J%) - E;ve(a’$’))2d&} i E;ve

D .

where E is either x’ = x/h or y’ = y/h, depending on the excitat’

a’,b’) (5)

on region

being considered, and D may be any of the following one-dimensional domains:

-A/h ~ X’< A/h ; -C/h ~ y’< C/h. For the convenience of the reader these

domains are visualized in Figure 3. The variable E& is Ey for the common mode

or Ex for the differential mode. The integration in y is performed over a

domain 2C which is smaller than the maximum height B of the working volume.

Moreover, E~ve is defined as:

Explicit expressions for the 2-norm relative errors which have been

derived for the four cases being considered in this report are shown in

Appendix A.

As an alternative, or perhaps an addition, to the 2-norm error, an

infinity-norm error can be constructed. The m-norm error is given, in its

general form, by the expression

(6)

9
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E6(a’,b’,g) - E~ve(a’,b’)
P(E6, a’,b’, D) = max

D E~ve(a’,b’)
(7)

where the meaning of C, d and D is the same as in Equation 5. Starting with

Equations AZ, A4, A6 and A8 given in Appendix A, Equation 7 was used to

calculate the ~-norm for the four cases being considered. The ~-norm

functional were maximized within their domain of definition; the maximization

was done numerically. The calculations are presented in the following

sections. The ~-norm error provides a rougher estimate of field uniformity

than the 2-norm error in that it is a measure of the maximum deviation from

the average field, while the 2-norm error is a root-mean-square quantity.

For each case the following inequality is always true:

m-norm error > Z-norm error

As previously noted the relative error F or P, for any given D, is a

function of two independent parameters:. a’ and b’. Given a certain wrking

vol ume, and given a relationship between a and b based on some conditions

placed on the field or its derivatives at a given point, the uniformity errors

can be evaluated as a function of either a’ or b’ , only. This allows one to

choose a suitable range of values for a and b (for a given value of h) for

which the errors are at or close to their minimum and the degree of uniformity

of the field at the test object is contained within a few percent error.

Alternatively, a’ and b’ can be determined in such a way that one of the

errors is made minimum. In the following sections we describe how the field

uniformity may be optimized in terms of the minimization of one of the error

calculations based upon the parameters a’, b’, for the ‘four cases being

considered in this study.

1. CASE 1: COMMON MODE - TEST OBJECT NEAR THE GROUND

For the common mode excitation (see Figure 2) it turns out that, when the

relationship a/b = l/J3 holds, the first three derivatives of Ey with respect

to x and y at the point (x = O, y = O) are zero (calculations are provided in

Reference 1). According to Reference 1 this criterion was chosen to optimize

the field uniformity-in the local region near this point. Indeed the origin

of the coordinate system is a point of symmetry for this excitation mode, and

11
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the field is strong there relative to other points in the working volume.

Figures 4 and 5 illustrate the 2-norm errors computed along x and.y,

respectively, for this case. In Figure 4 the variable on the abscissa axis is

a/A, i.e., the ratio of a to the half-width A of the wrking volume (see “

Figure 2). In Figure 5 the variable on the abscissa axis is b/B, where B is

the height of the working volume. l-!ereA and R are normalization parameters;

the results for the uniformity errors do not change provided A/h, B/h, a/h and

b/h are kept constant. In the Figures presented in this section A/h was

chosen equal to 7 and B/h was 6.7.

Figures 6 and 7 give the ~-norm errors along x and y, respectively, and

they should be compared with Figures 4 and 5, respectively.

Once a and b have been determined, it might be interestingto see how the

2-norm errors vary when the dimensions of the vmrking volume are allowed to

change. Figure 8 and 9 illustrate the resulting 2-norm errors along the x and

y directions when b/h = 9, a/b =1/6,0<A/h<8,and0 <B/h<9.The

variab”

10 and

F“

val ues

b/a is

e on the abscissa axis is A/a in Figure 8 and B/b in Figure 9. Figure

11 plot the =-norm errors for the same case.

nally, we report in Figures 12 and 13 the 2-norm errors for different

of the ratio b/a, other than ~. The plots show that the choice of

not very critical within the range 1.5

uniformity error at 10 percent.

2. CASE 2: COMMON MODE - TEST 013JECT ABOVE

< b/a < 2 to limit the

THE GROUND

An, optimum field uniformity may be achieved in a small local region near

the center of the test object (i.e. x = O, y = h) by choosing a’ and b’ so

that the first derivative of Ey with respect “to y is zero at that point.’ By

imposing that aEy/ay = O at (x = O, y = h), the following relationship between

a’ and b’ is obtained from Equation 1

a’z = - ‘b’2 + ‘) ‘~(b~z + 1)2 + 8(1 - “2)2 (8)

Equivalently, solving for b’ gives:

b’2 =}+a’ 2
+ 2a ,2]> (8a) *

12
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Figure 14 and 15 represent the 2-norm errors along x and y, respectively,

for the case of the test object located on top of a stand at an average height

h. “From Figure 15 we see that the error along y can become small (a few

percent), provided b is made sufficiently large. For the plots in this

section A/h = 2. and BjtI = 1.8.

Figures 16 and 17 plot the m-norm errors calculated

directions, respectively.

Figures 8 through 11, mentioned before, plot 2-norm

functions of A/a and B/b for the present case also. The

were fixed at 2.5 and 1.6, respectively, whereas A and B

varying.

along the x and y

and ~-norm errors as

value of b/h and a/h

were actually

Before concluding this part we would like to include the analytical

expressions for the 2-norm error and the ~-norm error calculated along the

x-axis for an infinitesimal interval 2= about the point (x = O, y = h), in the

case when the test object is located above the ground. The 2-norm error is

given by

.

4(1 - b’)[3a’2 - (1 - b’)z] 4(1 + b’)[3ai2 - (1 + b’)2\

[a’2+ (1 -b’ )213 - [a’2 + (1 + b’)213 2
E

{ }— (9)
2(1 - b’) - 2(1 + b’) <m

a,2
+ (1 - b’)2

a,2 +(l+b’)2

The m-norm error is given by

4(1 - b’)[3a’2 - (1 - b’)21 - 4(1 - o’)[3a’2- (l+b’)2

[a’2 + (1 -b’2)13 [a’2 + (1 +b’)qs 2
&

2(1 - b’) 2(1 +b’) ‘2
a’2+(l_h’)2 - ~’2+ l+bl)2

23
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= ~ {Z-norm error)
E

(10)

3. CASE 3: DIFFERENTIAL MODE - TEST OJBECT NEAR THE GROUND

For the differential mode excitation the criterion used for obtaining an

optimum field distribution was to determine al and b’ so that the 2-norm error

In Equation A5 or, alternatively, Equation A7 beccmes minimum. To accomplish

this numerical minimization we plot a family of curves representing the 2-norm

error along x or y as a function of either a/A or b/B, Whjle holding the other

variable constant as a parameter. Figures 18 and 19 illustrate two such

families of curves when the error is computed along the x-axis, whereas

Figures 20 and 21 provide the error along y. Again, the ratio A/h was fixed

at 7 while B/h was assuned equal to 6.7. Figures 18 and 19 show that the

curves are very flat about their absolute minjma. This implies that the.

choice of the actual values of a and b is not very critical withjn a certain
a

range about their mjnjma, especially if one is interested in Tinding an upper

bound for the allowed uniformity error (for instance 10%). However, we notice

that the minimum error along y is fairly large (= 55 percent) . This can be

explained by the fact that this excitation mode produces an intrinsically

weaker and less uniform field than the cormnon mode does, because of the

presence of the perfectly conducting ground which tends to make the horizontal

E-field go to zero near the ground. Hence, since the horizontal electric

field varies from zero at the surface y = O to non-zero values along the y-

direction, this results in large 2-norm errors over the fuselage. Therefore,

the 2-norm error of Figures 20 and 21 should be taken as a worst-case result.

Figures 22 through 25 illustrate the m-norm errors calculated along x

(Figs. 22 and 23) and y (Figs. 24 and 25) and they should be compared with

Figures 18 thrc.;h 21. We point out that the same values of a and b which

minimize the 2-norm errors also minimize the ~-norm errors.

Finally, if it is desired to keep a/h and b/h fixed az 12 and 9,

respectively, and vary the dimensions of the working volum:J A/h and B/h,

families of curves showing the behavior of the 2-norm and !-norm errors along a

x and y are presented in Figures 26 through 29.

26
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As a final remark we point out that in this case the choice a = b gives a

small uniformity error and offers the advantage of a complete symmetry of the

structure about both the x and y axis.

4. CASE 4: DIFFERENTIAL MODE - TEST OBJECT ABOVE THE GROUND

When the test object is located on top of a stand, in analogy with what

was already stated for the common mode excitation, an optimum field uniformity

in the differential mode is obtained by choosing a’ and b’ so that the first

derivative of Ex with respect to y is zero at the point (x = O, y = h). From

Equation 2, by imposing that aEx/ay = O at (x = O, y = h) , the following

relationship between a’ and b’ is obtained:

or
b,2

= -(a’2 m+ 1) +2 a (ha)

We note that it results that b must always be less than h.

Figures 30 and 31 illustrate the 2-norm errors computed along x and y for

this case.

Figures 32 and 33 report the m-norm errors. Figures 34 through 37 plot

the behavior of 2-norm and m-norm errors along x and y when a/h and b/h are

fixed and A/h and B/h are varying. Figure 37 shows that the m-norm error is a

constant equal to 1. This stems from the fact that in this case Eq. 7 becomes

maximum when E = O for any value of B/b, in which case the field component Ex

is zero also, as can be seen from Eq. 2. A similar behavior, although on a

different range of values for B/b, can be observed in Figure 29, for the case

of the test object on the ground.

5. CONCLUSIONS

We have shown that in all four cases suitable ranges of values for a and

b can be determined where the uniformity error is made small. When the test

object is near the ground for the cormnon mode excitation the ration a/b =

l/J3 provides the most uniform field about the center of the antenna whereas

for the differential mode excitacioo the ratio a/b = 1 presents a small

uniformity error and provides a complete symmetry of the antenna.
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IV. IMPEDANCE CALCULATIONS

SO far our analysis has been concerned with a system of four line charges

of radius equal to zero. However, in practice we are dealing with wires of

finite radius which have equipotential surfaces (i.e., their cross sections

are equipotential lines). From Equations 3 and 4 one finds that the

equipotential lines associated with a system of four line charges, in the

immediate neighborhood of the charges themselves, can be approximated by

circles, not concentric with the (line) charges nor with one another.

Therefore the same field is obtained by replacing four line charges located at

(~a, ~b) with four wires of radius R located at (*a, t ]b~) for the

/-, )common mode, and at (f a tb for the differential mode, provided a/R

>> 1 and b/R >> 1. By integrating the electric field as given by Equation 1

or 2 along any contour starting on the surface of a wire at negative voltage

and ending on the surface of a wire at positive voltage, and by calling V the
.

potential difference, we found o

v=*{21rl[
Tb(l+l+(R/b))-R

] + In[b(l’ ~ ) - ‘J2 + 4a2} (12)
o b(l-_) +17 [b(l - j-+ R]2 + 4a2

for the common mode and

V=* f21n{
~a(l + 1 + (R/a) ) - RI _ In ca(l +-) - R]2+ 4b2 } (13)

o a(l - -) + R’ [a(l - ~-) + R]2 + 4b2

for the differential mode.

Me stress that up to this point our discussion was concerned with,

establishing an “equivalence” between a system of four lines of charge k q per

unit length and one of four wires of radius R containing currents fI. In

reality there are only two ~“res above a conduct ingp lane, the other two being

their images. Me now introduce the characteristic impedance (Z; for the

common mode and Z: for the differential mode) of two transmission lines ●
operating in the TEM mode. For the common mode excitation Z; is the ratio of

the voltage between each wire and ground (given by 1/2 of Eq. 12) to the total
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current 21 = 2qc (c is the speed of light) flowing along the wires. Starting

from Equation 12, approximating the second logarithm for R<<a and R<<b and

normalizing to the vacuum intrinsic impedance no, we find

f’=~ =~[ln(
1 + (1 + (R/b)2)1’2 - R/b) +~ln(l + (b/a)z)l

41no
(14)

9 1- (1 + (R/b) 2)1/2 + R/b

+ f’
= f:l g2

= Z:/no

where the nondimensional quantity f; is the characteristic impedance geometric

factor. We stress that this result is equivalent to that previously obtained

in Reference 2 and also to that presented in Reference 4. Equation 14 points

out that f; consists of two independent terms: one, f’ being a function of
gl’

R/b alone and the other, f’92, being a function of a/b. Figure 38 plots f: for

the two cases of the tst object near the ground and above it. The two

different curves for f~2 are shown.

For the differential mode Z: is the, ratio of the voltage between the two

wires (as given by Eq. 13) to the current I = qc flowing along one wire, the

current along the other wire being -I. From Equation 13, normalizing with

respect to no, we find:

f“=~= ~[ln(
1 + (1 + (R/a)2)1’2 - R/a ~

In. T
- ~ln(l + (a/b) 2)] (15)

9 1 - (1 + (R/a) 2)l/2 + R/a

= f;l - f;2 = Zylo

which is in agreement with the results presented in Reference 4.

Again f“ is the characteristic impedance geometric factor and it is
9

plotted in Figures 39 and 40 for the two cases of test object on the ground

and above it. Figure 39 shows two curves: f~l as a function of lo9 (a/R)

(lower scale) and f~2 as a function of a/b (upper scale). Figure 40 shows two

curves al so but now f“ is a function of a, while the value of a/b is
g2

recovered from Equation 11. From the examination of Figures 39 and 40 it
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appears that either f’
g2

or f“
g2

is a small quantity compared to f’
gl

or f“
gl’

respectively, for all the values of a and b of practical interest. Therefore,

the ratios a/R or b/R are the critical quantities to look at for estimating

the characteristic impedance.

Finally it is useful to relate the voltage to the source power W via the

characteristic impedance, in both cases. When both the voltage and the power

are r-m-s values, we have

“!2
~=w

for the common mode excitation, where V’ = 1/2 V of Equation 12. For the

differential mode it is

“,,2

~=w

(16)

(17)

where V“ is given by Equation 13. F~om these equations and from Equations 12

and 13 it is straightforward to show that:

IF
Ow

differential mode (18)

‘= &
common mode (19)
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v. FIELD DISTRIBUTION

Figures 41 through 44 show the field and equipotential lines for the four

cases considered in this study.

Figure 41 refers to the common mode excitation with the test object near

the ground: b is taken equal to 1 and a = b/fl , as required for optimum

fjeld configuration. Figure 42 is for the case of the test object above the

ground. By making b = 1 we find from Equation 8 that a is equal to 1.16.

Figure 43 deals with the differential mode excitation for the case of the test

object near the ground. From Figure 18 it was inferred that the

ratio a/b = 1.2 minimizes the 2-norm error (and the m-norm error) along x.

This ratio was used to plot Figure 43. Finally, when the test object is away

from the ground, from Equation 11 it turns out that if b = 1, the value of a

is 2.3. l%is value was used to plot Figure 44. From looking at the

equipotential plots one can immediately visualize the field distribution and

get a feeling for the relative intensity of the electric field at various

locations. The actual value of each tube of flux is recovered by multiplying

the difference AV between any two field curves by the appropriate ratio

of q/(21Tso). Similarly, the value of the voltage difference between

equipotentials is determined by multiplying the total voltage V by the

difference AU between any two potential lines and dividi,ng by 4 T.

When actual field strength values are required, one should use Equations

1 and 2 along with Equations 8, 11, 18 and 19. Figures 45 through 48 show the

electric field at (x = 0, y = h) for the four cases which have been discussed

above as functions of a and b. 14e stress that the field estimate is based on

a perfect impedance match and perfectly conducting ground. Nevertheless it

gives the reader a rough feeling for the overall f,ield strength and how it can

be expected to vary when the wire separation is changed. Since it might be

required that the field level be within a certain range, these plots permit

one to choose proper values of a and b within a specified range predetermined

by uniformity requirements.
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As an alternative, a nondimensional expression was derived, relating the

magnitude of the electric field to the voltage source. By observing that

lE1/lHl = no anywhere for the TEM mode and lV;l/1211 = Z; or

/v’’l/[I/ =Z: , we obtain from the equation for the magnetic field of four

line currents, at the point (x = O, y = h)

lL!lA=*f UQ=Q_ (b-h)/a +
(b + h)/a

I 9V
(20)

‘ma 1 + (b* -hz) /a 1 + (b2 + h2) /a

for the common mode and

lL1._E=fl@#=L 1 1

I 9 V am
(21)

1 + (b2 - h2) /a 1 + (b2 + h2) /a

for the differential mode. Figures 49 through 52 plot these tw functions.
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APPENDIX A

In this appendix explicit expressions are derived for the 2-norm error

for the four cases discussed in the

5, repeated below for convenience

F(a’,b’) =.{~ JD(E6(a’,b’,C) -

the four expressions are as follows:

1. CASE 1 AND CASE 2: COMMON MODE

NNl(a’,b’)
Fl(a’,b’) = ~D a, b,

1( ‘

body of the note. Starting with Equation

E~ve(a’,b’))2 dC}l/2 / E~ve(a’,b’) (5)

1
1/2

NNl(a’,b’) = {~j [Ey(a’,b’ ,x!) - DDl(..a’,b’)]2 dx’}
o

(NN1)2
1

r
Lm/2

{2
Lm + k;

+ +
Lm/2

L: + k;
+

L /2

L: + k2
P

+ (DD; ) L’

+ & [arctan(.#) + arctan(>)] + * [arctan(>) + arctan(>)l

m m m P P P

‘1 - ‘2
L2 + k2

‘3 - ‘1
L2 + k:

+(2 )ln(m2 m +( 2
+ k2)

) ln( ‘2
a’ a’ + k2)m m.

L: + k2 22
‘4 - ‘3

+(2 ) ln( ‘2-A4) ,n(L ‘k

a’2+k
P2) + ( 2

m)-i
P P

(Bl - Cl - B2 + a’(A1 - A2) - 2kmDDl)
+

km [arctan(~) + arctan(~)l
m m

(Al)
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(Bl - Cl - C4 - a’(A3 - Al) L- 2kmDDl) ~arctan(~)

+
k

- arctan (~)1
m m m

(B4 +Cl - B3 + a’(A4 -A3)+2k DD)
+ 1 [arctan (kp)

k
~ + arctan (~)]

P P

(B4 + Cl - C2 - a’(A2 - A4) + 2kpDD ) L
+ 1 {arctan ($)

k
- arctan (#-)11

P P

L’
L)DI = ~ ( E (a’,b’, x’)dx’ (A2)

~Y

Lm L
= fi (arctan(~) + arctan(~) - arctan(~) - arctan (#)1

m m P P

where we introduced

L’ =21/h, Lm=L’-a’, Lp=L’+a’ ,km=l-b’, kp=l+b’
.

‘l=-
k~/T 2a’ (a‘2 + k:)l, BI = k~/(a’2 + k;), Cl = kp km/2b’,

- kmkp/r2a’(a
,2

‘2 =
‘2 + k~)l - b’/~a’(a -I-k:)l X C2,

‘2 = kmkpla’2(9k~ - k;) + 4b’k~+ 8a’41/[8(a’2 + k~)(l + a’2)(a’2 + b’2)]

C2 = kmkp{2a’2 - h’)/[ 2(1 + a’2)(!3’2 + a’2)~, .

k k /[2a’(a’2
‘3=-,mp

+ k~)l + b’/[a’(a’2 + k~)l x C3,

‘3 = kmkp[a’2(9k2 - $) - 4k~b’ + 8a’41/(8(a’2 + k~)(l + a‘2)(a’2 +b ‘2)]
m

= kmkp(2a’
2

C3
2 + b’)/(2(a’ + b ‘2)(1 + a’2)] Y
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- k~/[2a’ (a’
2

‘4 = + k;)l, B4 = k~/(a’2 + k;).

NN2(a’,b’)
Fz(a’,b’) =

DD2(a’,b’)

M“ 1/2
NN2(a’,b’) = {M,,

~ M’ ~,[Ey(a’,b’ ,Y’) - DD2(a’,b’)]2 dy’}

2M~ 2M ‘ 2M~ 2M,{

(NN2)2 = ~11 ~Ml {a, z ~M,2+~- .~
alz + ~,z #2 + M(,2 ~,z + M,,z

m P m P

.

(A3)

2 - Q1 - b’pl M’ M’
+

a’
[at-ctan(#) + arctan($) - arctan(~) - arctan($)]

(DDj) (DD~)2 PI a’z + M~2 a’z + M~2
—-

+ M“ M’
-filn( z ~) ‘1n(a12+M2)l

a’ + M;
;

2DD”
,2 + ~,,2

2DD;
,2+M,2

Zln(az
m

ln(a z
m

M“ 2) + Ml #
a’ + M“ as + M’

P P

t

, M“

L

= M“ - M’
[DD; -

M“ 1

DD2 = Ml, 1 ~-j Ey(a ,b’,y’)dy’ = Mi,l- ~,, [J E dy’
~Y

- ~ Eydy ’]
M’

2
itl” + a’

2

DD~l =-+fln( m
Y1’2 + a’

z) -

P

M’2+a’2
ln( ‘2

M’ + a’
;)1

P

(A4)

* where we introduced
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N’ = either 1/3 or 9/11, M“ = either 5/3 or 13/11, M’ - h’ = M; ,

M’ + b’ = M’, PI” - b’ = M;, M’ + b’ = M“, M“ - M’ = either 4/3 or 4/11
P P

‘1 = 2(2b’2 + a’2 )/~b’(b’2 + a’z)l, QI = 4b’2/(b’2 + a’2)

2. CASE 3 ANDCASE 4: DIFFERENTIAL MODE

NN3(a’,b’)
F3(a’,b’) = DD ~, b,

3( ‘
(A5)

1/2
NN3(a’,b’) = {$;’ [Ex(a’,b’ ,x’) - DD3(a’,b’)1 2 dx’}

o

L /2 Lm/2
“ (NN3)2= ~ {- L~~2k2- p - - *2

m
L: i=k; L; + k2

m PPP

L L
+ * [arctan(#-) + arctan(~)] +* [arctan(j-) + arctan($l

m m P P

‘2
- U1 -1-2rlD3 L: i- kz

+ (DD3)2L’ + ln( * m
+ kz)

+U1-U; -2DD3 ‘z+k~ln( ‘2
a’ a’ + kz)

m m2

+ ‘4 - ‘5 - 2DD3
2

~2+ kz - 112 +- 2DD3 22

ln( ‘2
+ k2)

+“5 z =ln( z
a’ a’ + k2)

P P

+Vz-vl- v;-d’(uz-”l) [arctan(*) - arctan(~) ]
m m m
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?

e +

+

+

‘4-vl-v3- a’(Ul - U4)

km
[arctan(~) -’arctan(#-)1

m

‘4 - ‘5
- Z3 + a’(U4 - Us)

~arctan(~) + arctan(&)l
k
P P P

‘2- V5-Z3
- a’(L15 + ‘2) ~arctan (i)

k k
- arctan(~)l~

P P P

1 [Lq
r-2

Ex(a’,b’,x’)dx’

kz+Lz
n(-#+-j)

m m

9 where we introduced:

1

7

22

ln(~)]

pm

.

‘1
= (2a’2 + k#)/[2a’(a’2 + k~)l, VI = - a’2’/(a’2 + k;)

Z2

‘2

‘2

‘3

‘4

‘4

[(2a 2 + kg) b’ - 2a’4]/[2(a’2 +b’z)(l + a’z)],

- 2a’2/(a
,2

+ k;) - (a’z + k~)/(a ,2
+ k;) x Z2,

-b’/[a’(a’z + k;)] x Z2 + (2a ‘2 + k~)/[2a’(a’2 + k~)l, V3 = -k;/2b’,

k~/2b’, Z4 = (-(2a’2 + k~)b’ - 21/~2(1 + a’z)(a’z + b’2)1,

b’/~a’(a ,2 + k:)l X Z4 + (2a’L + k~)/~2a’(a
,2

+ k;)l,

-2a’2/(a
,2

+ k:) - (a’z + k~)/(a’ 2 + k:) X Z49
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‘5
= (2a’2 + k~)/r2a’(a’2 + k~)l, V5 = a’2/(a’2 + k;)”.

NN4(a’ ,b’)
F4(a’, b’) = DD4(a1,b[)

M“
NN4 = [M,, : ~ , ~,(Ex(a’,b’,y’) - DD4(a’,b’ )12 dy’11’2

(A7)

2M~
+~-

2M ‘

(NN4)2 = N)l ! M’ {a,2 ● ~,,2
a + M“ a’;”~ M’z ‘-

m P m P

2 - Elb’ - HI M’ M’
+( a’ ) [arctan($) + arctan($) - arctan(~) - arctan(~)]

M“2 + a’2
,,2 ,2

-> MMT2 ~ alJ !l_x
- ln(M,2 ~ a,2)’~

m P

M“ M“ M’
DD4 = pi,,! ~, j Ex(a’,b’,y ’) dy’ = M,,l M,[~ Exdy ’ - f’ Exdy’ ~ (A8)

M’ o 0

M“ M“ M; M’

= M’i -2 ~r ~arctan($) - arctan(f) - arctan(~) + arctan(f)l

,“

e
where we introduced

M“ = M“ - b’ , M“
m

= M“ + b’
P

,M~=M’+ b’, M~=M’+ b’,

= -2a’2/rb’(b
,2 + a,2

= 4a’2/(a
,2+b,2

‘1 )!, HI ).


