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Abstract

This paper concerns the design of lenses for TEM plane waves, such as might exist
ertain types of transmission lines. The medium (or transition region) can be used to
iify lenses for transitioning TEM waves, without reflection or distortion, between these
smission lines. The desired transmission is to be frequency independent and the lens
gn is based on frequency independent solutions of Maxwell’s equations. As such, these
regions are suitable for transitioning broad-band transient waves.
Th first approach to the design of transition.regions is a differential geometric one.
hod is a scaling method which creates an equivalence between two classes of
tromagnetic problems. The first EM problem has a simple geometry and medium and
ole wave. It is called the formal problem. The second EM problem, which is the real
ld or lens problem, consists of a more complicated geometry and medium and known
e. Thus the differential geometric scaling method transforms an EM problem by a
rdinate change, and it is a method that is well known in mechanics and fluid dynamics.
An alternative approach to transient lens design is one which might be termed a dif-
ntial impedance-matching and differential transit-time conservation approach. Firstly,
erential impedances must be matched at all lens-waveguide boundaries so that a TEM
‘e may be transmitted from one region to another without reflections. Secondly, in
‘er that a wave be transmitted undistorted, a plane wave front in one region should
into a plane wave front in another region and consequently the travel time for waves
owing different paths must be conserved. As a result a system of ordinary nonlinear
‘erential equations will usually arise, and solutions to this system will specify the lens
metry (shape) and physics (material). '
In this paper the relation between these two approaches is studied. In the case of
¢ differential geometric scaling method one finds that for a TEM wave propagating
One of the coordinate directions that both transit time conservation and differential
‘Pedance-matching is obtained at the boundaries of the lens. On the other hand, if one
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Abstract

This paper concerns the design of lenses for TEM plane waves, such as might exist
on certain types of transmission lines. The medium (or transition region) can be used to
specify lenses for transitioning TEM waves, without reflection or distortion, between these
transmission lines. The desired transmission is to be frequency independent and the lens
design is based on frequency independent solutions of Maxwell’s equations. As such, these
lens regions are suitable for transitioning broad-band transient waves.

The first approach to the design of transition regions is a differential geometric one.
This method is a scaling method which creates an equivalence between two classes of
electromagnetic problems. The first EM problem has a simple geometry and medium and
simple wave. It is called the formal problem. The second EM problem, which is the real
world or lens problem, consists of a more complicated geometry and medium and known
wave. Thus the differential geometric scaling method transforms an EM problem by a
coordinate change, and it-is a method that is well known in mechanics and fluid dynamics.

An alternative approach to transient lens design is one which might be termed a dif-
ferential impedance-matching and differential transit-time conservation approach. Firstly,
differential impedances must be matched at all lens-waveguide boundaries so that a TEM
wave may be transmitted from one region to another without reflections. Secondly, in
order that a wave be transmitted undistorted, a plane wave front in one region should
go into a plane wave front in another region and consequently the travel time for waves
following different paths must be conserved. As a result a system of ordinary nonlinear
differential equations will usually arise, and solutions to this system will specify the lens
geometry (shape) and physics (material).

In this paper the relation between these two approaches is studied. In the case of
the differential geometric scaling method one finds that for a TEM wave propagating
in one of the coordinate directions that both transit time conservation and differential
impedance-matching is obtained at the boundaries of the lens. On the other hand, if one



starts with the impedance-matching and transit-time requirements, then arriving at the
*dlfferentla,l geometric condxtlbﬁs r_equ'ges con51derab1e study. This involves first considering
‘the general case of transport ‘of ‘waves fhro‘ugh@, set of ducts connecting surfaces which
form the boundaries for a lens.

One then examines use of these ducts to reorder positions on a wavefront and then -
considers two possible ways of arriving at an EM lens design. In the first approach, all
magnetic walls of ducts are removed to form an electric hyperduct (E 2-lens) which is
called a jacket. The ensemble of jackets then leads to a hyperjacket (E 3-lens) and removal
of all intermediate electric walls then leads to an EM lens. The second approach is an
exact dual of the first in that one starts with the removal of all intermediate electric walls
to finally arrive at an EM lens.
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Foreword

To
The Inhabitants of SPACE IN GENERAL
And H. C. IN PARTICULAR
This Work is Dedicated
By a Humble Native of Flatland
In the Hope that
Even as he was Initiated into the Mysteries
Of THREE Dimensions
Having been previously conversant
With ONLY TWO
So the Citizens of that Celestial Region
May aspire yet higher and higher
To the Secrets of FOUR FIVE OR EVEN SIX Dimensions
Thereby contributing
To the Enlargement of THE IMAGINATION
And the possible Development
Of that most rare and excellent Gift of MODESTY
Among the Superior Races

Of SOLID HUMANITY

from Flatland (circa 1880)

by Edwin A. Abott
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1 Introduction

One approach to El\;Iﬁ;lens design, ;develrdped by Baum in [1], for transitioning TEM
waves between certain kinds of transmission lines involves a differential geometric scaling
technique. The basic idea in this approach is the creation of a class of electromagnetic
problems, each having a complicated geometry and medium, which are equivalent under
the scalin\g to an electromagnetic problem having a simple geometry and medium. The
latter problem we might term tﬁe forrrnra;lr préblérﬁ While the former problem is our lens
or real-world problem. Solutions to Maxwell’s equations can then be used in specifying
various types of EM lenses for transitioning TEM waves, without distortion or reflection,
between certain types of transmission lines. For example, in [1] Baum has given examples of
inhomogeneous lenses based on bispherical and toroidal coordinate systems. These lenges,
which can be thought of as converging and diverging lenses, may be used to transition
TEM waves between conical and/or cylindrical transmission lines. Further work by Stone
(see |2]) on this problem resulted in a general procedure for these types of lenses.

An alternative approach to transient lens design is one which might be termed a
differential-impedance-matching and transit-time-conservation approach. Firstly, differ-
ential impedances must be matched at all waveguide and lens boundaries so that a TEM
wave may be transmitted from one region to another without reflections. Secondly, in or-
der that a wave be transmitted undistorted, a wave in one region should go into a wave in
another region and consequently the travel times for waves following different paths must
be conserved. As a result a system of ordinary nonlinear differential equations will usually
arise. Solutions to this system will then specify the lens geometry (shape) and physics (ma-
terial). This approach has been described by Baum et al. (see [3]) in a problem in which
a lens is inserted between two cylindrica.l coaxial waveguides of different size. Another ex-

ample occurs in a paper by Baum and Stone ([4]) where the design of a certain anisotropic



lens suitable for launching TEM waves on a conducting circular conical system is speci-
fied. Still another example, of interest because no system of differential equations arises,
appears in another paper by Baum and Stone ([5]). In that paper, another anisotropic
lens for transitioning plane waves between media of different permittivities_ is specified.
Thus in c;nsidering these two approaches to EM lens design it is entirely natural to
ask such questions as (a) will similar results be obtained by these two approaches in a
particular design problem, (b) are the two methods equivalent in any sense, and (c) is it
possible to develop a set of axioms so that the two approaches are unified. In this paper we
address the equivalence problem. In Section 2 we show how the scaling technique leads to
the differential-impedance-matching and differential transit-time conservation approach.
The more difficult problem of arriving at the differential geometric scaling method from
the impedance matching and transit time approach is discussed in Sections 3 through 6. In
these sections we begin by considering the general case of transport of waves through a set
of ducts, and the use of these ducts to reorder positions on a wavefront. Restrictions to the
cases of no magnetic currents on magnetic boundaries and no additional electric bound-
aries are then considered and we are then led to the equations describing the differential

geometric scaling method. The paper concludes with a summary in Section 7.



2 Differential Geometry Approach Leading to Differential-
¢ Transit-Time and Differential-Impedance Matching

2.1 Formal Operators and Fields

Summarizing the results in [1] we consider an orthogonal curvilinear coordinate system
(u1, ug,us) with unit vectors 1y, 1y, 15, with line element

(de)? = h2(duy)? + h2(dus)® + hi(dus)® . (2.1)

The scale factors are given by

oz \* Ay 2 9z \*
t (3u,~) (3u,~> i 3u,~ ' b 7 ( )

where (z,y, z) are rectangular Cartesian coordinates, and the h; are taken as positive. We
define, as in [1], the following:

hl 0 0 h2h3 0 0
(euj) = 0 hy O (Bij) = 0 hhs 0O | (2.3)
\0 0 hs 0 0  hihe
) b o
h
@ (v5) = 0 E}E& hoh
\ O 0 _%QZ

= (i)™ (Bis) = (Big) - (i)™t

With respect to the u; coordinates, gradient, curl, and divergence are

v 3 19 vy % hz%s hlfg, g hl%Z o4
froed —_ X = _v_ .
f = 253 du;  Ju;  Bus (2:4)

. 1 3 3 3
V¥ = - 2
hyhahs {aul (hahs¥) + 5

The X; are called physical components of X which has the representation

X =Y X1;. (2.5)

¢ 9



" Formal vectors and operators may be defined as follows. These _gbjects are denoted by
attaching a prime to the usual symbols. Thus, for vectors (£ and H) which are subject to

curl we define

3 3

X = Y XT=Y kX1 (2.6)
=1 =1

X = mX;.

The X! are the covariant components of X. The contravariant components of a vector Y
(vectors such as D, B, J subject to diverence) are given by

Y= ZY:'L' = hohsVi1y + hihsY3ly + hiho Vsl . (2.7)

The formal operators are then defined by

3 aff -
V" ! — 11,
f E au,-
L, I, I
. 8 8 8
Vix X' = duy; Ouy; Jus (2-8)
xt xt Xx

- ay! aYy) a8Y]
—= 4+ + .
ou; Juy Ous

2.2 Maxwell’s Equations

Maxwell’s equations are given by

y o8
VXE = a5
, . 8D
\vj = J+ — )
x H 5 (2.9)
V.D P
V.-B =0

10
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V.D = 0
\Y

together with the constitutive relations

D = (i) - E
E (Mi,j) ﬁ
and continuity equation 7
= a
v.J= —a—’t’ :

The matrices (e:;) and (u;;), which describe permittivity and permeability, are as-
sumed frequency independent and thereby real valued and may be dependent on position.
The equations above can be expressed in terms of the u; coordinates. Formal electromag-

netic quantities are defined by

-, - —

() E = () E

H = (o4;)-H (2.10)

E' = hiE{,H!:hi-Hi’i:]"z"g'

1 1

Since B, D, and J arise in divergence equations, we define

B' = (B:;)-B

D' = (B;) D

J o= (8iy)J

B! = hli"f%Bi (2.11)
g D! = hlth3D,-
’ g = Tahahs g

1 h'i

.’ 11



If we require

D' = (g,)- B

bl (2.12)
B = (u)- B
then Maxwell’s equations and the above equations lead to definitions of the formal per- -
mittiv'ity and permeability. These are
E‘.. = f"Ei"ai'_l
( E,J) (15 11) ( -J) ( J) (2.13)
(i) = (Big) - (mig) - (e65)™
and hence if (&), (1 ;) are diagonal,
E' . = i . . E’- .
) = (ug) (6w 214

(ﬂi,g’) = (vig) - (wij) -

Maxwell’s equations can now be expressed in terms of formal fields and operators as:

~ 3B
v! S
x E T
- 8D
t 2
VixH = J + =
vV.D = (2.15)

V.B =0
D' = () E
B = (#:',j)'ﬁ'
= ap'

T
VJ—at.

12
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2.3 Restriction to Inhomogeneous Isotropic Media with Field

Components in all Three Coordinate Directions

If we restrict-our consideration to inhomogeneous isotropic media (in the real coordi-

nates), then the constitutive matrices assume the form

(2.16)
(ig) = n(lis)
where € and p are positive, real-valued scalar functions of pbsition. Hence
el = g

We may now consider some possible forms for the diagonal matrices (¢ ;) and (u ;).
These in general should be fairly simple so that the formal electromagnetic fields have
desired forms.

If both E' and H' have all three formal components and the constitutive parameters

have the form
(ei;) = €'(Liy)
(ni;) = w'(Lig)

where €', i’ are constants, then we have a formal homogeneous medium. Hence (2.18),

(2.18)

(2.17) and (2.3) yield o
7 hehs _ hihg _ hihy

= = .19
h]_ hz h3 (2 1 ‘.
and hence
hi=hy=hs=h (2.20)
and also
eh = ¢
(2.21]
ph =
13



Therefore €k and uph are constant. However, we do not have the freedom to pick any
function of the u; for our scale factor h since the k; must satisfy the Lamé equations [1].
The general result is that there are only two possible forms for k. In the first case A must
be a constant, which implies that the u; form a Cartesian system of coordinates and also
that the ¢ and e are constants. Hence in the first case we have a homogeneous medium.

In the second case an inhomogeneous medium is obtained with

€ U 1 a’
-rr_-_-__ * 2.22
g u h P4y 2t (222)

where a # 0 is a real constant. This type of & corresponds to 6-sphere coordinates (inver-
sion of Cartesian coordinates). The class of inhomogeneous media obtained is restricted

to spherically stratified media.

2.4 Waves With Field Components Only in the 1; and T, Direc-
tions (Inhomogeneous TEM Waves)
If we now restrict our attention to inhomogeneous TEM waves which propagate in the

+uz direction and which have no field components in this direction and if the formal

constitutive parameters have the form

e 0 0 W 0 0
(e0;))=|0 € O ,{mj)=10 4 O (2.23)
0 0 & 0 0 puf

then the dependence of €} and wf on the coordinates is irrelevant since Ef = 0 and Hy = 0.
If we choose €' and ' as constants, the medium is formally isotropic and homogeneous.

The formal fields have the form

Ei = E;O(yl,U2)f(t - Ug/cf) = h]_E]_

E; = E;O(ul,uz)f(t - ’U,3/C') = thz

14




E; =0 (2.24)
Hi = H{ (u;,us)f(t —us/c') = hiH,

H; = Héu(ul,U2)f(t - U3/C') = ]'Lsz .

H, = 0

u' = constant, ¢ = constant
Z) = \/g = constant

¢ = —— = constant

) ’/7'[1,161
and the choice of f(t — us/c') specifies the waveform. Since E' - H' = 0, we find

i é Zl

where 7
Zh == | (2.26)
is the formal wave impedance.

These results require that the conductors forming the transmission line intersect sur-
faces of constant ;,3 iﬁ éuch a f;shion that the surfaces are represented in terms of only
their u; and u; coordinates [1].

If we assume that (e;;) and (u; ;) correspond to isotropic but inhomogeneous media,
ie., |

(er5) = e(liy)

(1i5) = w(liy)

where € and p may be positive valued functicns of the coordinates, then (2.17) and (2.23)

(2.27)

yield

h2h3 ]’Lghl ¢ ,lL’
= = = — - 2.28
]’Ll ]’Lg £ J22 ( )

and

]’L3 &

hihy £} “_f's
©

5



Hence

and
chs = &
: (2.30)
phy = u

Therefore ehg and phg are constant and the formal wave impedance is the same as the

physical wave impedance since (2.30) implies

!
‘/%:\/g:z{;:zo_ (2.31)

Note that since €' and y' are arbitrary constants any orthogonal curvilinear coordinate

system for which h; = h; apparently determines our £ and p since

- g
(2.32)
]
— M
H = hs

However, a differential geometric fact [6] leads to a further restriction on our coordinate
system, namely, that if A; = hy, then surfaces of constant uz can only be spheres or planes.

Moreover, for rotational orthogonal curvilinear coordinate systems (vi,¢,vs) which
have been used to construct coordinates (u,us,u3) in our examples we must also have
surfaces of constant v; as spheres or planes which requires hg/h,, to be independent of vs

[1,6]. In our examples one method of construction of the u; relies on the equations

ur = A(v1)cos(¢)
up = A{vy)sin(g) (2.33)
Uz = f(vs)

for which hy/h,, is a function of v; alone and where there are choices which must be made

for A(v;) and ¢&(vs).

16




We can now verify, in this particular case of no field components in the u; direction,
that our scaling apprach leads to differential-transit-time conservation and differential-
impedance matching throughout the lens (as well as at lens-transmission-line boundaries).
For thei(ul,urz, us) coordinates in the lens transition regibﬂ, all waveforms contain factors:,

as in (2.24), of the form f(¢ ~”u3/cr')ﬁ; and hence we must have transit-time conservation.

Our equations (2.30) have also shown that

hs\/pe =1/ p'e' = constant (2.34)

which confirms the above observation concerning transit-time conservation.

A special case of the above has
Us =r , h3 =1 (235)

in the usual spherical (r, 0, ¢) coordinate system. In this case we can have

uw = up' = constant

(2.36)
e = €' = constant.
This leads to the case of a conical transmission line as in [7] which has a uniform propa-

gation medium (free space if one prefers).

If we next consider an impedance expression of the form

/ A e
Zo= it = Lu o —— (27
- / Hydt,
i, = hydu,
déy = hoduy

on surfaces of constant us, where F; is evaluated along curves of constant u; and Hj is

evaluated along curves of constant u,, then (2.37) is

_ ElhlAU/]_ . ,A’U,]_

L = = .
¢ Hz’th’U,z 0 A’U,z

(2.38)

17



Since Z is not a function of us then the differential impedance is matched all along us.
In the analysis leading up to (2.31)} we have actually found that \/;I is & constant. Thus
impedances can be matched at lens boundaries by choosing m the same as that of the
assumed uniform medium on the other side of a lens boundary of the form u; = constant.

Previous results have established examples of lenses with this type of inhomogeneous
TEM wave [1]. There is a converging lens using bispherical coordinates, a diverging lens
using toroidal lens, and a bending lens using cylindrical coordinates. In each case the
transmission-line conductors pass right through the lens on appropriate coordinate sur-
faces. At the two lens boundaries (surfaces of constant us in these examples) both E and
H match through the boundaries, in these cases the fields being tangential to the constant

u3 boundaries.

2.5 Waves With Electric Field Only in 1; Direction and Magnetic

Field Only in I, Direction (Homogeneous TEM Waves)

If we further restrict our TEM waves to the form

Ei = h1E1 = Eéf(t - ‘U,3/CI)

E, = E;=0
. E"
Hy, = hyHy,=22f(t —us/c) (2.39)
Zo
H, = H;=0
p' = constant, € = constant
!
Zy = i constant
' 1
¢ = e = constant



the formal permittivity and permeability must satisfy equations of the form

(E:‘,J') = (Bij) - (&5) - (ai,j)_l
T;(“:',j) = (Bij) - (peg) - (ai,j)_l

egr 0 O

(€:5) = | 0 & O (2.40)
0 0 &3
fp1 O 0O
(i) = | 0 pp O
0 0 us

With the only field components as F; and H; only €; and u2 in the above are significant,

the other permittivity and permeability components being unspecified. Thus we obtain

hqoh
g] = —fLT@El
(2.41)
hih
My = 7];3#2
Since €] and ) are constants we then obtain
T
zb = K2 — Fl ,g_z = constant
€] 2V &1 (2.42)
1 -
g o= \/ o€y = hay/p2€1 = constant—

as our basic constraints.
An interesting special case of this is if one coordinate is “straight” and “parallel”, i.e.
corresponds to a Cartesian coordinate. If this coordinate is taken as u; (in the E direction)

then we have

U=y, hl =1. (2.43)
If in addition we require a constant permeability (such as pg) then
te = constant”

19



hyy/e1 = constant (2.44)

hs+/e;1 = constant

implying
~% = constant . (2.45)
hs

If this last constant is taken as unity then the u;,us coordinates are expressible as a

conformal transformation (in the z, z plane) with

h2 = h3Eh

constant

h
An example of such a lens is given in [1 (Section IX)]. Assumptions other than constant

(2.46)

permeability are also possible but do not give so simple results as above.

Alternatively one might choose u, {in the H direction) as a Cartesian coordinate giving
Uy =1x, hg =1. (2.47)

If in addition we require a constant permittivity (such as &¢) then

€1 = constant
hi\/pzs = constant (2.48)

hs\/ts = constant

implying
hy
— = constant . (2.49)
hs
Again, taking this last constant as unity leads to the u;,us coordinates being expressible

as a conformal transformation (in the y, z plane} with

h]_ = h3 = h
(2.50)
_ constant
K2 = Tz

An example of such a lens is also given in [1 (Section IX)]. Again, other than constant

permittivities are also possible in the above.

20



2.6 Summary

In summary, then, if we start with generalized orthogonal curvilinear coordinates (uy,uz, us)
with scale factors hy, hs, hs given by (2.2}, and a TEM waveform propagating in one of
the coordinate directionis (for example, of the form (2.24)), then clearly a transit time
conservation condition is satisfied both globally and locally as waves follow different paths
through a lens meeting each us surface at the same time during the transit. Moreover,
in the cases we have considered we have noted that \/ﬂ(hi/hg) is a constant and hence
not a function of 7u3. Thus impedancesmarre matc'h?d 7d€fferentirally through the lens. That
is, “differential geometry implies differential-impedance-matching and differential-transit-
time conservation”. The progression of the differential geometric cases here is summarized

in Table 2.1.

@

¢ 2

]
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Case

Results

Inhomogeneous Isotropic Media:
General Case With All Three

Field Components

}Ll_—"hz:hg:h

only

. 2
6-sphere (h = ﬁ?%ii

Cartesian (h = 2)

a

coordinates eh = ¢,

and
2

)

ph =y,
- [
1/% = \/”:7 = constant
Inhomogeneous TEM Waves hi=hy=h

Propagation in 13 Direction

ith £ — &')
With T =\Vg

us surfaces spheres or planes

chy = €', phs = '

[
\/g = '\/’Z—, = constant

Homogeneous TEM Waves

(Propagation in I5 Direction

I []
With %,:W%

Ein fl direction
Hinl, direction)

A. U = Y, h'l =1
e = comnstant
(not necessary)

B.uy =z, hy=1
€; = constant

(not necessary)

%; \/% = constant

hs /€1 = constant

hz = h3 =h
_ constant

hi=hs="h
_ constant

M2 = TR

Table 2.1. Differential-Geometry Progression of Cases
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3 General Case of Transport of Waves Through a Set
of Ducts
In this section we consider the general case of transport of waves through a set of ducts.
Consider some inhomogeneous TEM plane wave such as that existing on a.two-conductor
transmission line (in a homogeneous isotropic medium). As indicated in Fig. 3.1 this might
be a finite-width conducting sheet over a ground plane (ideally infinitely wide) [8,9,10].

As is well known [10] such an inhomogeneous TEM wave can be described by a con-

formal transformation with a complex potential

w(s) = ur+u

¢ o=ty
~u; = electric potential
“u, = magnetic poiterntiarl ) . (3.1)
uz = 2
r = (z,y,2) = Cartesian coordinates .

Our coordinate system (ui,us,us) is thus based on a TEM mode in which u; and ug
correspond to electric and magnetic potentials, and uz is a generalized direction of prop-

agation. Thus, for example, if we consider a coaxial cylinder, then us; could be chosen as

the z-coordinate. We could, of course, have an FE-field with u;,u; components, and alsc

an H-field with components in u;, u; directions. However, in this event we would simply
redefine our coordinates so as to obtain only an E; component in a u; direction and an H,

component in a us direction. In any case we have

E2:E3:0,H1:H3:0, (3.2]
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and our wave propagates in the us direction and there is no dependence on uz except for

" a delay.

Now in the conformal transformation as indicated in Fig. 3.1 let us consider a small

portion (designated by indices (n,m)) given by

(n-1) (n)

W Y = Auy for n=1,2,...,N

u(zm_l) <uy < ul™

ugm)—ugm_l)zAuz for m=1,2,...,M .

Associated with this we have incremental voltages and currents as

AV = —EhilAu, = —-EjAu,
-~ Al = —HyhyAuy; = —H)Au, .
| This gives an associated impedance
" 7, — AV hE) Auy E_;Aulf

AI o h2H2 A'LL2 - Hé A’U;i '

‘The wave impedance is

, hlElz_@\ﬂ
et h2H2 }'Lz g

© = medium permeability
e = medium permittivity
giving
Aul
Zy=Zy—
d WAUZ

o | 25
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(3.7)



Note that
NAu; =V = potential between the

two conductors

MAwu, = Z,I = change in magnetic (3:8)
| potential on contour surrounding
A conducting strip .
The characteristic impedance of the transmission line is
Z. = Y =z.4R8
(3.9)

difference of u; between conductors
¥ change in u, around a conductor

Consider now a small region defined by Au; and Au, as in (3.3). On some surface of

constant us designated as S; let each such incremental region be the entrance to what we
shall call a duct. Such a duct shall be defined so as to have certain properties. We want the
wave incident on it at Sy to pass into each duct without reflection. With electromagnetic
waves in each duct considered to be propagating independently from those in other ducts,
then the input impedance of each duct must be Z;, so that the wave incident on S as in
Fig. 3.2 is completely transported into the set of N x M ducts.

This concept of a duct can be realized as illustrated in Fig. 3.3. It is a special kind of
transmission line for which we take u3 {for a given (u;,u,) appropriate to the particular
duct as defined at its beginning on Sy) as the longitudinal coordinate. Retaining Au; and

Auy as the cross section dimensions we have a local impedance

Zi— 7 (Auy)hy L E'Aulﬁ

= Fpy—t—— == 3.10
e (AU2) hz &€ A‘U.',z hg ( )

where p,e, Au; and Auy can now be functions of ug along the duct. As we desire waves

to propagate along a duct without reflection we require

oA\ by .
Z, =] (—)— 3.11
d . ) 7y # function of uj (3.11)
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constraining the u; dependence of these parameters. Thus the constraint given by (3.11) is
an impedance matching condition arising from the requirement that the input impedance

for each duct be equal to Zz.

However, suppose these ducts are to be of finite length and to be used to reconstruct a

wave on another transmission line at some constant us surface designated S; as in Fig. 3.2.

Then not only must the dticrtrirrﬁrpédarrlcre Zd match into an abbfobriate (Auy, Au,) on Sa,
but also the waves on all the ducts must arrive on S; at the same time to reconstruct a
TEM mode on the transmission line without generating other modes on the transmission

line and sending reflections back into the ducts. If us is arc length in meters, and

, L
- - S 3.12
L vles) = 7 (3.12)
is the propagation speed in a duct, and
- *7ugl) = Us gn:gl(indépeﬁdeﬁt*offui,uz)' (5.13)
u?) = wu3 on S3(independent of uy,us)
then the transit time for the (n,m)th duct is
L2
3
Tpr = /m v (uh) hgdul, (3.14)
. Uy

where now one should note that speed (or velocity) is interpreted with respect to the us
coordinate (as is 4 and €) which may or may not be in meters.
In a more general form we can interpret the speed in a duct in terms of an arc-length

parameter which we take as ¢ with speed taken on a wavefront with ¢ in meters as

) L (3.15)
V= —— .
Ve
allowing for some difference between uz and . Noting from (2.1) and (2.2) that
oY
2= |3, (3.16)

ui,up; constant
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this gives a transit time through a duct

T = [ W)= [ Jul)e)an

«”__dip ug” .
= L) ‘/,‘J/Ed—usdu;; = L0 ,/u€h3du3
3 3
d
for il >0. (3.17)
L%
Now let
Tom # function of (n,m) or (us,us) . (3.18)
This gives the constraint that
ul?
" VHeEhsdus # function of (n,m) or (ui,us) . (3.19)

Combined with (3.11) these two relations give the constraints for a duct. The condition
(3.19) is a transit-time constraint, while (3.11) is an impedance constraint.

As in Fig. 3.3, one can specify a duct by boundary conditions

fz E = Ey = 0 on surfaces of constant us
(3.20)

1,-H = H; =0 on surfaces of constant u; .

With these constraints and (Awu;, Auy) sufficiently small (both electrically, and by com-
parison to the path curvature {along ) of the duct), and with changes in Au; and Au,
small over a wavelength (at the highest frequencies of interest), and with small changes in
Avu; and Au, with respect to changes in uz, then a duct can be considered an ideal TEM

transmission line. Note that with the assumed boundary conditions in (3.20) then

uy constant surfaces = 1ideal electric boundaries
(perfectly electric conducting surfaces) .
(3.21)

u, constant surfaces = ideal magnetic boundaries

(perfectly magnetic conducting boundaries) .
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Viewed another way we have

[E X H] 1 =0 = Poyntmg vector normal to ul boundaries

, = e - e . (3.22)
[E X H] 1, = 0 = Poyntmg vector normal to u, boundarles

so that energy flow through duct boundaries is zero. Let us refer to these duct boundaries
as electrie ana m,agrne;cric Wells. 7 7 | o | 7

The reglon between Sl and Sz we call a duct space The cross section of a duct of
sides Au; and Auz is to move from Sl to :92 is such a way that the 1mpedance and total
transit time is preserved. However, within the constraint of (3.11) one can shrink both
Au; and Aug as ug increases, thereby separating the ducts from one another. Given tha_t
no electromagnetic energy Ncan flow through the electric and magnetic bouﬁdaries of each
duct, then consider the region between S; and S; as in Fig. 3.2 which we might call a duct
space. Part of this region (between the ducts) has no electromagnetic energy. A wave
in one duct does not affect a wave in another duct except via S; and S,. This allows a
considerable variation in the routing of ducts in the duct space without interfering one
with another.

In a more general sense S; and S; need not be surfaces of constant u;. What-is

important is that

(a) on S; and S, differential impedance be matched between external waves and

ducts, and
(b) the transit time from the wave before S; (say on some uj before the lens) be

matched to 'phe wave after S; (say on some ug after the lens.

This requires that one consider the possibility that S; and S; are not in general orthogonal
to 13 on the various sides of the two lens boundaries. Examples of this are found in [3], [4],

15]. From (a) above this requires that the differential voltage and current relationships in

31



(3.4) allow for the projection of 1, for the electric field and fz for the magnetic field on the
lens boundaries be matched across the boundaries since it is the tangential components of
E, and H, that must be matched through the lens boundaries.

For this purpose one can define a tangential dyad on S) and S; as

1:, = 1 —1g

-

]l e
I
b’i""l
*:—‘l

1,1, + 1.1, (3.23)

identity dyad .

If the u; are all defined so as to be continuous through the lens boundaries, then in general
the h; and h, are discontinuous through these boundaries. Basically the h; and h, are
discontinuous so that Ef and Hj are matched, but F; and H; are not matched (in general).

So basically we require that

E, f1 . It . 7 '

__ r are continuous through S; and S, . (3.24)
Hl,-1,

In a more general sense if the duct size is allowed to abruptly change at the lens boundaries

(with electric and/or magnetic boundaries on S; and S; as required), then one can interpret

(3.4} as requiring both AV and AT to be conserved so that

Eih i 1, , ,
__  are continuous through S; and S; . (3.25)
thzlz . It

The transit-time matching is a macroscopic requirement (except outside the lens being
“on a local or differential basis}). This must be considered in the overall geometry. In
particular, (3.17) through (3.19) can be modified so that ugl) and u{” can be considered as

functions of u;, u3, and T, ,, can be modified to allow for the required transit time through
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the lens as

Trm =t required departure — ¢ required arrival -
on Sy on S,
33
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4 TUse of Ducts to Reorder Position on Wavefront

If as in Figs. 3.2 and 3.3 we have a duct starting on S; and ending on S; there are certain
requirements which must be met. Impedances must be matched, transit times conserved,
and the wave must have the same polarization on the S; as on entering S; to synthesize
the wave at the S; end. There can moreover be no power flow through a duct boundary
(per (3.22)).

Are there other limitations which must be considered? Could we, for example, tie a
duct in a knot, or could we reorder positions on wave fronts as in Fig. 4.1. In this figure
we have ducts labelea A, B, C, D for entering waves on S; and a reordering in which A,
B, C, D are mapped to respectively positions C, A, B, D on S;. Thus within the limits
of our assumptions, what strange things can happen? Note that duct cross sections are
small compared to wavelength, that T}, ,, is the same for all ducts (or as in (3.26)), and Z4
is invariant to position along a duct. Furthermore the duct cross sections are shrunk for
positions in the duct space away from S) and S; so that each duct may pass between the
others.

This is a strange beast as can be seen by the following gedankenexperiment. Consider
sufliciently low frequencies that the fields are quasi-static. We start out as in Fig. 4.2 by
imagining a test electric charge (say an electron) starting out at a point P; with potential
up, and cross S; to travel down a particular duct. Say as in Fig. 4.1 this were duct C.
On crossing S; the test charge is at a new potential, say up,, appropriate to the sccond
transmission line. As in Fig. 4.2 this corresponds to an increase in potential u;. Now
go from P, to Ps (in a direction out of the page) to a position to enter duct A on S; in
Fig. 4.1. The potential here, up,, is the same as up,. Next enter duct A, crossing S;, and
leave crossing S; to P; with potential up, as appropriate to the first transmission line. As

in Fig. 4.2, back in the first transmission line the test charge has risen in potential. If the
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~ our path went around magnetic currents. Put otherwise,

test charge is moved directly from Py to P; energy will be given to or taken from the fleld.

To explam where thrs comes from we must reexamme our hypotheses and dec1de What":

constramts need to be 1mposed to avo1d th1s problem Clearly electr1c poten’ual was not

conserved, even quasl—stat,ically, in the (lens) region because of magnetic barriers. That is,

VXE"—g?—Jm#O- (4.1)

The resolution to our apparent contradiction lies in how we viewed the ducts:"We have
magnetic (andr also electric) currents induced in ;clre duct walls. Hence we must insist that
no path through the lens (i.e., the region between surfaces S; and S;) will allow one to
come back to a different pdl’eﬁtlal. That is,renergy must be cbrnserved. Hence ducts cannot

be switched “vertically”. These considerations will lead us in the next section to the 1dea

of removing magnetic boundar1es in ducts by removing the s1de Walls of ducts.

We could, of course, consider a dual problem in which we imagine a test magnetic
charge following a path from S; toS; (say via duct A as in Fig. 4.1) and back to S;
(say via duct D) again. As in the previous case, energy is gained or lost and there is ar |
difference in magnetic potential. In this case we will insist that ducts cannot be switched
“horizontally”. Thus in a later section we consider the removal of electric boundaries in

ducts by removing the tops and bottoms of ducts.
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5 Restriction to the Case of No Magnetic Currents
on Magnetic Bounda:ies

In order to keep waves confined to du:ts we have made the walls either electrically or
magnetically perfectly conducting (as in (3.22)}. Since magnetically perfectly conducting
boundaries are hard to come by, one nmay wish to do without them. As indicated in
Fig. 5.1, the presence of magnetic walls allows ducts to be separated by providing for a
discontinuity in the tangential electric ficld, the electric field being zero outside the duct

(but still in the duct space).

5.1 Removal of Magnetic Boundaries to Produce Jackets

Now if we wish to eliminate the magnetic currents there are various ways one can look
at this. As indicated in Fig. 5.1 one can consider one of the Maxwell equations in either

differential or integral forms as

Vx E = —a?—fm
B {5.1)
E.di = —/ 9B | j |.4§
sé.c;n s,'n[at4 }

where S, and its boundary contour C} are illustrated in Fig. 5.1 which shows the effect
of magnetic currents on walls in separating waves in ducts.

By hypothesis the magnetic field is zero outside of the ducts. Letting C;, be parallel to
the electric field just inside the two ducts illustrated, then the difference in the tangential

electric field between two adjacent ducts is just given by

— —+

By — Bo) - Ty = —[J,,,, — Jon,} - 15 (5.2)

where the unit vectors correspond to the (u1,us,us) coordinate system as in Fig. 5.1.
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Figure 5.1:

Effect of Magnetic Currents on Walls in

Separating Waves in Ducts”
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In this form let the distance between the two ducts shrink to zero with the walls
containing f;m and j;mz becoming coincident. Then (5.2} represents the discontinuity in
the tangential electric field between the two ducts across the common wall. If the surface

magnetic currents are made to be zero (effectively merging the two ducts) then we have

E} = Eg (53)
- and, of course, consequently (from (3.6))
f—j}_ = ﬁz (54)

noting the vanishingly small cross section of a duct.
Let us now consider the impedance-matching and transit-time-conservation require-

ments. Certainly within a duct we must have

hi1A
Z, = h:AZ:\/g # function of u; (5.5)

since we have propagation in the u; direction, and differential impedances are required to
be matched. The same condition should then hold in a jacket which we describe Eelow.
Moreover, starting at us = 0 and following a path in a duct to uz # 0, the transit time T
is |

T = /u;, Viehsdus # function of uy . (5.6)
0 ,

Thus transit time conservation in a duct, and hence a jacket also requires
peh? # function of ug . (5.7)

Thus, if magnetic boundaries (i.e., “side” boundaries of a duct) are removed, the duct
ensemble becomes a “jacket” (or E hyperduct). This may be thought of as something
resembling “parallel” (or curved) plates. The evolution is described as follows as in Fig. 5.2.

The jacket is referred to as an E 2-lens, which can be regarded as a two-dimensional space.
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The totality of jackets, which can be regarded as a composite E 3-lens (or hyperjacket)
is an E lens and is composed (in the limit) of an infinite number of such two-dimensional
spaces. Following the same convention as in Fig. 5.2 jacket n encloses jacket n + m, where
m > 1. The ensemble of these jackets is what we might term an E 3-lens or a hyperjacket.

Note the p.resence of perfectly conducting boundaries on surfaces of constant u; which
prevent propagation in the 1; direction. While these surfaces can be of zero thickness to
allow no space between one jacket and the next, the converse is also possible. Except on
S) and S; where the electric conductors from jacket n must connect to those from jackets
n — 1 and n + 1 to keep electromagnetic energy from the space between the jackets, these
surfaces can in principal be separate. By adjustment at h; in the jackets, this spacing can

be allowed for.

5.2 TEM Waves in a Jacket

If we now assume, as in Section 2.5, but now in some nth jacket, that we have field

components in the form

Ei = hlEl - Eéf (t - U3/C’)

E, = 0,E;=0

EI
H; - thz = —?f(t-—us/c') (58)
Zg
H, = H;=0
u' = constant in nthe jacket , € = constant in nth jacket
f
zy = — = constant in nth jacket
€
' 1 . .
c = — = constant in nth jacket
u'e
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so that our TEM wave propagates in the uz direction, then the Maxwell equations assume

the form S SH!
e 2 By T — at
B - R (5.9)
BII' o ,Qgi
o Oug ot

Moreover thé formai medlum is descrlbed, as in (2.41) by,

- - “ 1 2o “hahs
(5.10)
Now one jacket (the nth) is characterized by
(n~1) (n)
U <u; <u
' . (5.11)
u&") - uﬁ""” = Auy .

Essentially in (3.3) we have united all ducts for the same n and removed m from consid-

eration. We have an incremental voltage {jacket voltage)
AV = —E'Auy = —EjhiAuy (5.12)

as before. However, the jacket current is the sum of all the duct currents in the nth jacket

as M u(M) (M) . .
I=5A7 = —/ * Hldu, = —Hlu :-§[> it di
mz=1 p o Cr (5.13)
ugM) = total change in u, around jacket

where the limit as Aus — 0 (M — oo) is taken. Note as in Fig. 5.2 the contour Cy is
contained on a surface of constant us in the nth jacket. Here both I and AV are functions
of us, but not us. The convention here is that increasing potential is in the direction
of increasing wuj, and the current on the high-potential electrode is in the direction of

increasing us.
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With this we have the jacket impedance

AV E!Auy y Ay
AZ = = I — = Zy—5 MR - (5.14)

I u,
ay [, dus
Uz

Note that AZ is independent of us (as Z; is independent of u3) and also independent of

u, (over which (5.13) integrates and AV is independent). AZ is only a function of u;, or

better n concerning the nth jacket. So we have

Z, = \/ 2 _ constant in nth jacket . (5.15)
e’ \,/

In addition we have from the velocity
we' =77h3,//,¢251 = constant in nth jacket . (5.16)

Note that (5.15) and (5.16) correspond to {2.42) in Section 2.5, except that their status as

constants is only in each jacket separately.

5.3 Case of y and ¢ Singly or Both Independent of u; and u; in

a Jacket

In any jacket only the u; and uz coordinates are of importance, and consequently our

first fundamental form is

(d0)? = R (dua)® + RE(dus)® . (5.17)

We, of course, have the added geometrical property of closure in one dimension (u,).

If we now assume p; is a constant, then in any jacket we have

%f\/a = yJeufp' = constant
hs\/e1 = +/u'e'/us = constant

(5.18)
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from (5.15) and (5.16). Particular examples of the above situation appear in [1] and [5],

where hs is a constant.

Therefore if h; is a constant (corresponding to uniformly spaced electric boundaries)

we would have

>

s
and (5.17) assumes the form (i3 = constant times us)

2 :hl-#—f = constant (5.19)

(de)* = hy[(dua)” + (dils)”] (5.20)

with associated Gaussian curvature (rsee Appendix A, Section A.2)
Kf__ 1 lazﬁn(hz) N azﬁn(hz)] .

12| oul EIP

(5.21)':

Thus for constant curvature K, the sign of the Laplacian of ¢n(hs) determines whether or

‘not we are in a positively or negatively curved space. If K = 0, our space is Euclidean. In

any event, for constant h;, we have

1ue 1 e ug
NN NTY 5.22
TR R l Lo (5:22)
and the medium is nonuniform. See [1,5] for examples of such nonuniform media.
If, on the other hand, we assume ¢; is a constant, then (5.15) and (5.16) yield
[J
%«/Mz = 1 'LLE# = constant

(5.23)

(] '

hsy/th2 = 'Li_—f = constant
and the assumption that h; is a constant-would imply
' ' - g} e _ ,
hzhg = hl_ = constant . (5.24)
€1
Next;if both €; and u; are taken to be constant, then
hs = constant

o (5.25)

hy = |22 )4

2 ( e |
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and (5.17) assumes the form (A.31).
Finally, our surface is Euclidcan when €, 12, and h; are constant as in this case (5.17) .
assumes the form (A.17). Noting that Euclidean surfaces involve only planes, cylinders,

cones, and various combinations of these surfaces, particular examples of these lenses are

given in references [3] and [4]. In these examples, the jackets are cones.
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6 Restriction to Case of No Additional Electric Bound-
aries

If now electric boundaries of a duct (i.e., top and bottom faces of a duct) are removed
and continuity in u; enforced, objects which we refer to as “slices” are obtained. Slices
are in effect H 2-lenses. As in the case of E 2-lenses, an H 2-lens is a two-dimensional
Riemannian space and the totality of these slices yields a composite H-lens, or an infinite

set of Riemannian spaces.

6.1 Removal of Electric Boundaries to Produce Slices

Fig. 6.1 shows the effects of electric currents on surfaces in separating waves in ducts. The
presence of electric boundaries allows ducts to be separated by providing for a discontinuity
in the tangeﬁtial magnetlg ﬁ&l, thernilggrnretic field béihg zero outside of the duct space.

Thus, if we wish to eliminate electric currents we consider the equation

—

VxH = f+%—?

SISC,FI-(M - /‘S t)-dfi

where C‘!is the boﬁndafy curve for surface S! as shown in Fig. 6.1.

(6.1)

‘Ul

o8

’ (f +9

We assume the electric field vanishes outside of the ducts, and so if C! is parallel to
the maghetiq ﬁéﬁlcrljinsicfré the ducts shown in Fig. 6.1, then the difference of the tangential
components of magnetic fields between two adjacent ducts is clearly

— — - — —

(B Hy) To=[Jy, — J.,] 1 (6.2)

where, as usual, the unit vectors correspond to the (u1,uq,us) coordinate system of Fig. 6.1.
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Figure 6.1: Effect of Electric Currents on Walls in
Separating Waves in Ducts
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If now the distance between ducts shrinks down to zero with the walls containing J,, Js,

‘. becoming coincident, then (6.2) is just the discontinuity in the tangential magnetic fleld.

We then obtain

- o E - il—ﬁl = ﬁZ . | ; : (6.3]
- and hence
El = EZ ” (6 4)

if the currents are zero.
As with the jackets we now consider the impedance-matching and transit-time conser-

vation. Withiﬁ a duct we have

Zy = hlAul\/—E # function of uz (6.5)
hoAuy V e

matchiﬁg differential impedances. This same coriditrion holds in a slice which is an ensemble
of ducts. For transit times, starting at us = 0 and following a path in a duct to uz # 0 the
" transit time 7' is
T = /Oua Viehsdus # function of uy . (6.6)

So requiring this to be the case for all u; gives
uehi # function of uy (6.7)

as the differential transit-time matching requirement in a slice.
So refnoving electric boundaries (i.re., “top” and “b(r)ttoﬁl;’rbounidaries of a duct), except

for the ending elerzictri‘ch%boﬁndé,;ies (t};e transmission-line conduc‘;ors), the duct-ensemble

becomes aislice. Aﬁs in Figr.76.2 the evolution is deécribed. The srlice is referred to as an

H 2-lens (or H hyperduct), which is a kind of two-dimensional space. The totality of slices,

+ which can be referred to as an composite H 3-lens (or H hyperslice) which is an H lens

and is composed of an infinite number of such two-dimensional spaces. Now slices are not-

closed in the sense of jackets, beginning and ending as they do on electric conductors.
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Figure 6.2: Evolution of Duct by Removing Electric Boundaries
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Jackets, as noted earlier, have the additional geometrical property of being closed in one
dimension.

Note the presence of perfectly magnetically conducting boundaries on surfaces of con-
stant u; which prevent propagation in the I, direction. Again these surfaces can be of zero
thickness, buti space between them can also be allowed. Except on S; and S; where the
magnetic conductors from slice m must connect to those from slices m — 1 and m 4+ 1 to
keep the electrom;aﬁgﬁnetiﬁcr energy from ‘Ehe space between the slices, these surfaces can in

principle be separate. By adjustment of h, in the jackets this spacing can be allowed for.

6.2 TEM Waves in a Slice

We now assume, as in Section 2.5, but now in some mth slice, that we have field com-

ponents in the form

Ei = hlEleéf(t—u3/c')
E, = 0, E,=0

E,
H, = hyH,= ??f(t —uz/c')
0

H = Hi=0 (6.8)
p' = constant in mth slice , € = constant in mth slice
ST " o o , i
Zy = — = -constant in mth slice
€
) 1 . .
¢ = ——== = constant in mth slice

Ve

so that our TEM wave propagates in the us direction, then the Maxwell equations assume

the form / ,
oF, _ _ ,0H]
8u3 ot
(6.9)
oH, _ 0B
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Moreover the formal medium is described in (2.41) by

(6.10)
y = hyhs
Now one slice (the mth) is characterized by

WY <y < oM

(6.11)
ugm) — u(lmH) = Aug .

Essentially in (3.3) we have united all ducts for the same m and removed n from consid-

eration. We have an incremental current (slice current)
Al = —H;Aug = “thgAUg (612)

as before. However, the slice voltage is the sum of all the duct voltages in the mth slice as

N L0 L
V= AV = —[ | Eduy=-E«=—] E.d
Ex W H Cs (6.13)
ugN} = total change in u; across slice

where the limit as Au; — 0 (N — oo) is taken. Note as in Fig. 6.2 the contour Cg
is contained on a surface of constant us In the mth slice. Here both AJ and V are
functions of ug, but not u;. Again the convention is that increasing (electric) potential is
in the direction of increasing u;, and the current on the high-potential electrode is in the
direction of increasing us.

With this we have the slice admittance

AT H}Au, 1 Aug
AY == =g (614
{70

Note that AY is independent of us (as Z; is independent of u3) and also independent of

vy (over which (6.13) integrates and AI is independent). AY is only a function of u;, or
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better m concerning the mth slice. So we have

\/ 1/#2 = constant in mth slice . (6.15)

In addition we have from the Veloc1ty

We el = hrg,/,uzsl = constant in mth slice . (6.16)

Note that (6.15) and (6.16) correspond to (2.42) in Section 2.5, except that their status as

constants is only in each slice separately. _

6.3 Case of B and € Slngly or Both Independent of U1, Ug in a

Slice

The resultsTin this section paralle] those in Section 5.3 because of the duality between

the roles of the electric and magnetlc fields. I' or a shce our fundamental form will be

(d8)? = K3 (dus)? +h2(dus)? (6.17)

so that only the u; and us directions are under consideration. Thus in any slice if we

assume €; to be a constant, the equations

—~

6.15) and (6.16) yield

A thﬂz = g = constant™
(6.18)
1 _1 )
hsy/ua = ‘% = constant .

Hence if we take h, to be a constant (correspondmg to un1formly spaced- magnetlc bound-

aries) we obtaln

" h h
h—l = 2::1 == constant (6.19)
3 3
‘and therefore we can rewrite (6.17) as
(d€)? = hi[(di)? + (dus)?] (6.20)
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where U constant times ;. The Gaussian curvalure (sce Appendix A, Section A.2)

associated with (6.20) is

oL [a2zn(h3) N é’zﬁn(h_g)] (6.21)

TR aul oul
and thus for surfaces of constant Gaussian curvature the sign of the Laplacian of £n(hs)

determines whether surfaces are positively or negatively curved, corresponding to spheres

or pseudospheres. If K = 0, the surface is Euclidean. In any case, when h;. is a constant

1 [h2u'e;
= = 6.22
il (022

1
h3

#’IE’
€1

K2 =

and we have a nonuniform medium.
If instead of taking e&; to be a constant, we take u, to be a constant, then equa-

tions (6.15) and (6.16) yield

— ,

%f,/sl = E,uf& = constant
(6.23)
P :

_ Jeu _
hs /1 = g = constant .
Hence the assumption that hy is a constant leads to the conclusion that
“f

hihs = ha— = constant . (6.24)

M2
Finally, if both &; and p, are constants (corresponding to a homogeneous medium)},

then
hy = EE — constant

(6.25)

2 .

o= (1S by
Ha€
Therefore when ey, 42 and hy are constant our surface is Euclidean. This result is the

analog of that obtained in Section 5 for jackets.
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7 Summary

In this paper we have investigated the relations connecting the differential geometry
method and the transit-time and differential impedance-matching approach in designing
lenses for inhomogeneous TEM plane waves. In Section 2 of this paper, the differential

geometry scaling method was shown to lead to the transit-time and impedance-matching

method. Various cases were considered (e.g., inhomogeneous isotropic media, inhomoge-
neous TEM waves, homogeneous TEM waves) and the results appear in a summary given
in Table 2.1.

In the remaining sections, 3 through 6, of this paper we show that the physical as-

sumptions of transit-time conservation and differential impedance matching lead to the

differential geometric scaling approach. This is accomplished by showing how a duct can
evolve into an EM 3-lens in one of two ways. First, if all magnetic walls are removed,
we obtain an E 2-lens which is called a jacket in this paper. The totality of all jackets,
called a hyperjacket, is an E 3-lens. At this stage if all intermediate electric boundaries
are removed, the end result is an EM 3-lens. This process is described in Sections 4 and 5.

Alternatively, one could remove intermediate electric walls from a duct and obtain an
I 2-lens which is called a slice in this paper. The totality of slices, called a hyperslice, is
a H 3-lens, and removal of all magnetic walls leads once more to an EM 3-lens. Slices are
investigated in Section 6 of this paper.

These remarks are summarized in Table 7.1, which describes the evolution of a duct to

an EM 3-lens.
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remove all

magnetic walls

jacket
(electric hyperduct,
E 2-lens)

ensemble of
jackets

Y
hyperjacket
(E 3-lens)

remove all
“intermediate”

electric walls

duct
remove all

“Intermediate”

electric walls

slice
(magnetic hyperduct,
H 2-lens)

ensemble of

slices

hyperslice
(H 3-lens)

remove all

magnetic walls

EM 3-lens

T;.ble 7.1. Evolution of Duct to EM 3-lens
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Epilogue

(Hexagon)

(Puncto)

(Hexagon)

(Puncto)

(Hexagon)

(Puncto)

(Hexagon)

“Can I learn a little more?” I asked when we took leave of each other.
“Couldn’t you lift a tip of the veil for me, so that I can know in what

: dlrectlon to look for the problum"” o

“All r1gh‘f” he sa1d “Tell me what the sum of the angles of a tmangle is.

That unexpected question did surprise me, I must admit, but I answered:
“180°, of course.”

“Always?” he asked, and he left.

I was looking forward in high spirits to my next meeting with Mr. Puncto.
From the moment we greeted each other he knew there had to be a reason
for my good mood.

“Did you find the solution?” he asked.

“No,” I replied, “I can’t shout Eureka yet, but do believe that I am very
close to discovering the basis of the problem. I think that our curious
phenomenon—the sum of the angles of a triangle exceeding 180°—has to
be explained by assuming that the sides of the triangle are-curved but that
this curvature is not visible, I mean: not visible to us. It occurs in a direction
perpendicular to our world. A three-dimensional creature must be able to
see the curvature; we cannot.”

from Sphereland (1965)

by Dionys Burger
translated by C. J. Rheinboldt
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Appendix A. Differential Geometry of Surfaces

A.1 Fundamental Forms

In this appendix some differential geometric results which are relevant to electromagnetic
lens design are discussed. Our starting point in this discussion is the introduction of a
metric form (also called the first fundamental form) for a surface. It is given by the
expression

(d€)* = h2(du,)?® + hi(dus)®, (A.1)
where we are dealing with an orthogonal curvilinear coordinate system (ug,u, u,) with
line element

(d0)? = h2(du,)? + hE(dus)® + RE(du,)? . (A.2)
Then, corresponding to surfaces u, = constant, the form (A.I) is obtained. The coefficients

appearing in (A.2) are computed by taking

oz \* dy 2 oz \*
h? = .
! (au,-) * <3u;) + (Bu,-) (A 3)

where z = z(uq, Up, un), ¥ = Y(Us,Us, un), 2 = z(u,,us,u,) are rectangular Cartesian

coordinates, and the index ¢ can be equal to any one of the indices a,b, or n.

The first fundamental form for a surface can also be computed from
(d6)* = (dr) - (dr) (A.4)

where the position vector 73(u,,u;) describes the surface with parameters u, and u,. Thus

—_

F:s(uai ub} = 2:(ua.a ub)i&: + y(ua: ub)fy + z(uaa ub)]-z . (A‘S)

Another quadratic differential form which is of importance in the differential geometry

of curves and surfaces is the second fundamental form, denoted by most authors as I1I,
and defined by
II = —(dF,) - (dT. (7)) (A.6)



where

- or, or, or, or
=) = S : : AT
Ln(7%) (aua % Bub> / \Bua X aub‘ ( )
The vector fn(Fa) can also be expressed in the form
I(7) =T x (4.5)

where 1, and 1, are unit vectors in the coordinate directions u, and us.

The geometrical significance of the fundamental forms (A.4) and (A.6) lies in the fact”
that the first fundamental form is useful in studying such things as lengths of curves and
angles betweenlcfl'r\;ersr dnr s{lrrﬁf:e;é”és'\n;hiilé' the second fundamental form is usgful in studying
curvature of a surface. The second fundamental form (A.6) may also be written in the

form (analogous to (41))

II = £,(du,)® + 6 (dus)® (A.9)
where T B
o o e (en, om
@ T hghy aui Oug Jduy
(A.10)
Ty L 1o, (9r. 9%
b= hohy 8uf Ou, ouy )
The derivation of formula (A.9) from (A.6) is straightforward though lengthy (see [11(

p. 75)]).

A.2 Surface Curvature

Since the Cartesian coordinates z; of a surface are functions of u, and up, one finds
87, 9%
) = 7

auaaub 8ub8ua

that certain differential equations are obtained. One result of all of this is Gauss’ “Theo-

that certain compatibility conditions (like ) must be satisfied and hence

rema egreguim” which asserts that the Gaussian curvature K is a bending invariant. This
means that K is unchanged by deformations of the surface which do not involve stretch-

ing, shrinking, or tearing. The Gaussian curvature K, associated with (A.1), has several
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different formulations. One of the most useful for our purposes is given by

1 d 1 0k d 1 Oh,
K=o b | =22 — : (A.11)
hahy | Oug \ by Ou, Juy \ hy uy

The compatibility conditions mentioned above also lead to a set of differential equations

which are sometimes referred to as the Codazzi equations [11]. For the fundamental forms
(A.1) and (A.9) these equations are

9L _ e, —T

aub a,aeb

(A.12)
g—ﬁ‘; = rgbeﬂ - rg,bgb

where the T, are Christoffel symbols for our surface. The complete set of these symbols

are given by

a _ 18k B . kh, Oh
Poo = Ridu,  Teo = 30y,

« _ 10hy b - 10k ,

ab T h, dug ra,b - hb O, ) (Al3)
a hy Oh oh

by = ‘E% Thy = ;}bggh

We note that these symbols are symmetric in the lower subscripts, that is, I’_‘;-’k = I‘i’j.
The Codazzi equations take a particularly simple form in the case that the lines of
curvature are coordinate lines. The principal curvatures, which are normal curvatures in

the curvature directions, are denoted by K, and K; and are given by

2, £y
K = ﬁ and Kz, = ?1? . (A.14)
We also note that the Gaussian curvature may be expressed as
L, &
= K Ky = =22 1
K K Kb hg hg (A 5)
The Codazzi equations may then be reexpressed in the form
oK 10k dlnlh,
Ga — LOhax, - k) = 2glhal i, - k)
(A.16)
Ju. = hyon Ke—K) = #(Ka — Ky .
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A.3 Riemannian Surfaces

We next note that any surface which admits a form (A.1) is called a Riemannian sur-

face. A particular instance of such a surface is a Euclidean surface which admits a first

fundamental form

(d0)? = (d2')? + (dy')? - (A.17)

for some coordinates (z',y'). Thus a basic test for Euclideaness is the existence of a real
coordinate transformation o
(wa,wp) — (2',7") (A.18)

which transforms (A.1) to (A.17). If no such transformation exists, then (A.1) defines a
is the existence of such a transformation (A.18). The reader should see [12] for details.
The simplest examples of Euclidean surfaces include planes, cylinders, and cones and more
complex examples would involve combinations of these (as discussed later in Section A.6).
We now look at some of these simpler cases.

Thus, for a cylinder of radius rg, the transformation

z = Wcos(e)
y = Usin(¢) (A.19)

z = =z
will yield the first fundamental form for a circular cylinder if-we take ¥ = r;. We thus

‘obtain the first fundamental form

C(dO)? =ri(dP)? + (d2)t. (A.20)

The form (A.19) may be put into the Euclidean form (A.16) by the transformation

Bo= e (A.21)

y = =z

61



and hence we obtain

(d6)? = (d')* + (d¥)” . (A.22)

Thus a circular cylinder of radius rq is our first example of a Euclidean surface.

A sccond example of a Euclidean surface is a circular cone. For the transformation

z = rsin(f)cos(@) = ¥cos(4)
y = rsin(8)sin(¢) = Usin(¢) (A.23)

z = rcos(f)

we can obtain the first fundamental form for a circular cone with generating angle § = 6.

The fundamental form for such a cone is
(de)? = (dr)? + (r*sin®(80)) (d8)* (4.24)

The transformation

' = rcos(¢sin(fo))
Yy = rsin(¢sin(fo))

will transform (A.24) to the Euclidean form (d€)* = (dz')? + (dy')* thereby demonstrating

(A.25)

that a circular cone is also a Buclidean surface.
Our last example is that of a sphere of radius rq. The surface of such a sphere is a

simple example of a non-Euclidean surface. The first fundamental form for this surface is
(d€)* = r2(d6)* + (risin® 8)(dg)® . (A.26)

One may show that the surface of this sphere is non-Euclidean by showing that there is
no real coordinate transformation (A.18) which transforms (A.26) to the Euclidean form
(A.17). Alternatively we may make use of a fundamental result which states (see [12]) that

the Gaussian curvature K vanishes identically on a surface if and only if there is a real
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coordinate transformation (A.18) which transforms (A.1) to (A.17). Thus, for the surface

of a sphere of radius ro, we have

hy = r
° (A.27)
,,,,, ] hy = rosin(6)
and hence
1 9 [18(rgsin(d)) 1
— | \ = . A.28
ETOT A (A2

Therefore, since K # 0 at all points on the surface of a sphere, this surface is a non-
Euclidean surface. We note that for the previous examples of a circular cylinder and a
circular cone that K vanishes identically for these surfaces thereby establishing once more

the Fuclidean nature of these surfaces.

Finally, we note that a surface is Euclidean if and only if at least one of the principal
curvatures, K, or Kp, vanishes identically on the surface. This assertion is an immediate

consequence of (A.14).

A.4 Surfaces of Constant Gaussian Curvature

Surfaces of constanf rGﬂaurssiari curve;tt;re are gf cojnsidrerable importaﬁce. For examplé,
if K =1/r > 0, then the surface associated with (A.1) is “essenti’ally”r a sphere of radiusr
ro. The technical statement is that the surface is “isometric” to a sphere of radius 7.
This means that there is a mapping of the given surface, say S;, into the surface of the
sphere, say Sy, which preserves lengths of curves (i.e., the length of the imége of an arc in
Sy equals the length of the arc in S;). Thus (see [13]) we note that a surface of positive
constant Gaussian curvature K = 1/r8 is isometric to the surface of a sphere of radius rq,
a surface of Gaussian curvature K = 0 is isometric to a plane, and a surface of negative

constant Gaussian curvature K = —1/r? is isometric to the pseudosphere. An example of
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the latter is provided by a surface with fundamental form
(d0)? = r2l{cot?(ua)}(dua)® + {sin®(ua)}(dus)?] . (A.29)

For this surface it is easily verified that

K=-2<o0. (4.30)

™o
The surface is a pseudosphere (see Fig. A.1} and it is obtained by revolving a tractrix
about its asymptote.
For the special case of Riemannian surfaces with one of the scale factors equal to a
const.ant more can be said. Let us assume for convenience that h, = 1 and investigate

further. OQur first fundamental form is
(d€)? = (du,)® + hi(du,)? (A.31)

with associated Gaussian curvature

1 8%h,

K=—;L;au§ .

(A.32)

Now if K is a constant {positive, negative, or zero corresponding to spheres, pseudo-spheres,
or planes) the differential equation (A.32) is integrable and explicit expressions for the scale

factor hj are obtainable. Let us assume that

lter ) L T (A.33)
Sh '
%i(ua’ub) =0 =0

so that constants of integration may be evaluated. Then, if (a}) K = 1/r > 0, (A.32) can

be dealt with as an ordinary differential equation since K does not depend on u;, and we

have
d*hy, 1
du? -+ %_ghb =0. (A.34)
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Figure A.l: Pseudosphere
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The solution of (A.34) is

hy(uq, up) = cos (E) (A.35)
To
while if (b) K = —1/r3 < 0, (A.32) has solution
Up
hy(tq,up) = cosh (r_) (A.36)
0
and if (c), K = 0, (A.32) has solution
hy(ug,up) = 1. (A.37)

Thus we reaffirm our earlier statement that surfaces of constant Gaussian curvature corre-
spond to spheres, pseudospheres, or planes. For Riemannian surfaces with one of the scale
factors equal to a constant, the coordinate system (u,, up) is usually called ésemi—geodesic
coordinate system. The terminology is explained by the fact that one family of coordinate
lines consists of geodesic lines and the other family consists of orthogonal trajectories of
the first family. Simple examples include Cartesian and polar coordinates in a plane {(Eu-
clidean space) and spherical coordinates on a sphere (non-Euclidean space). Surfaces of

revolution will also yield semi-geodesic coordinates.

A.5 Equal Scale Factors for Surface Coordinates on a Euclidean

Surface o o - -

The special case of surfaces whose first fundamental form is
(d€)* = R*[(dua)? + (dus)? (A.38)

(i.e., kg = hy = hin (A.1)) is also of interest. If the Gaussian curvature vanishes identically,
so that the space is'Euclidean, then there is a coordinate transformation

= 2'(ug,u)

(A.39)

Y= y(us,w)



such that
(d0)? = (d=)? + (dy)" . (A.40)

In this case we can show that 7' and y' are either the real and imaginary parts of an

analytic function of u, + jub or of u, — jJu,. To see thls ﬁrst note that (A 38) and (A.40)

gwe two dlstmct expressions for (d(’f) Thus since

dr' = Qx—,dua oz duy

Jdu, 8
(A.41)
dy = ngua+g&dub

we obtain
(de)? = (d')* + (dy)?

o' \*  [ay'\* oz 9z’ Ay Ay
- Kau > N (8u ) (dua)* +2 du aub+8u Juy (dua)(dus)

&)+ (2) ]

Hence, by comparison of (A.42) with (A.38), we must have

7,2—_3_23_'2 Q(L’Z__az’z 8y’ \*
= (32) - (80 - () (2

_+_

L , (A.43)
(92 (o9z N 9N 9y _ g
aua 8ub Oug ) \ Ouy _ )
The equations (A 43) then 1mp1y
ayf Jduy . oz’ Ouy
(a%) g | e ) e | | (A.44)
D v - an an
Thus the only possik;ilirtﬂy is that .
N 474 2 oz'\? |
<8ua) _ (a_w) (A.45) -
67



f '
as otherwise there is a linear relation between g—% and g% Hence, either
' Iy
Juy - 63 i (AAG)
or
9z _ oy
aub - 8% )
If the first equation of (A.46) holds, then
or' ay'
while if the second equation of (A.46) holds, then
oz a9y
e = u, (A.48)
Thus if
oz’ _ 9Oy
ou, ~ Ouy
(A.49)
azt _ _oy
duy Ou,

then the Cauchy-Riemann equations are satisfied and z' + jy' is an analytic function of

the complex variable u, + juy. Similarly if
o oY
du, gu%

o' _ 9y
duy, I,

(A.50)
then z' — 7y’ is an analytic function of the complex variable u, + ju;. In either event we

can write
flug +Jup) = 2’ £ 5y (A.51)
which represents a conformal transformation. Thus, if h, = ks = k so that our first

fundamental form is expressible as (A.38), and if our surface so defined is Euclidean,

conformal maps are the only way in which the form given by (A.38) can be obtained.
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“curvature K, given in (A.11), can be rewritten in the form

We note also that the coordinates =’ and y' are generalized Cartesian coordinates. If the

surface is a plane, they are exactly Cartesian coordinates. However, as discussed at the

- end of this appendix, z' and 4’ could be curvilinear. Finally, we observe that the Gaussian

K = _% 82(§Zgh)) N 82(§Z§h)) (A.52)

when h, = ha:hThus our surface is Euchdeanlf and only if En(h) is a harmonic
function of v, and w,.

Note, however, that merely having h, = h; for a surface will not be enough toguarantee
that K = O for that surface. Equation (A.15) shows that at least one of the principal
curvatures, K, or K, must vanish in order for the Gaussian curvature to vanish. In the
case that h, = hy = h, equation (A.52) shows that the Gaussian curvature K vanishes if
and only if ¢n(h) is a harmonic function of u, and us. A simple example of a surface forr
which h, = h, with K # 0 is given by a sphere on which we choose

Ug = 219 [t'cm (% -+ %)} éos(cﬁ)
(A.53)

TR T g [tan (% + %)} sin(¢) .

The south pole of the sphere (§ =-7) is tangent to the (u,,us)-plane at the origin of this
plane and the north pole of the sphere has ccordinates (r,0,0). In this case the mapping

(A.53), which is a conformal mapping, is stereographic projection from (ry,0,0) to the

(uq,us)-plane. It is a routine calculathntocheclgthat for thésrerrcqrordriqates

@0t = — 90?4 (du)?) (A.54)

T 16rE +ul ol
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A.6 The Scroll: A General Euclidean Surface

Finally, we conclude this appendix with some further comments on Euclidean surfaces.

For these surfaces, K = 0 and since
K = K.K; (A.55)

at least one of the principal curvatures vanishes. If we suppose that K, = 0, then the

Codazzi equations (A.16) imply

Ky 8h atnih
EAY) — a;
Ry Ouy = Ko7 ou, =0
(A.56)
0Ky _ _ KyShy _ - Ofn(hy)
%f ~ Thy Ou, Ko Uy
Ience if K is nonvanishing, then the scale factors satisfy
h, = Uy
f(ua) (A.57)
he Ky = g(us)
since the second equation of (A.57) may be rewritten as
A{hyKy)
— =0. A.58
B, (A.58)

Hence, for Buclidean spaces with K, = 0, h, depends only on u,, at most, and Kyhs
depends only on u;, at most.

Analogous results hold when K = 0 and K, in nonvanishing. In the case where both K,
and K, vanish, h, depends only on u,, and h; depends only on u;, and our first fundamental

form clearly assumes the Euclidean form, for some {z',¥'},
(d6)? = (dz')* + (dy')? (A.59)

which is characteristic of a plane. In any case, when our space is Euclidean, at least one

- of the principal curvatures vanishes. If, as we have seen in the above analysis, we take
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K, = 0 then h, depends only on u,. Hence, if we define a new coordinate, say
B = / NCAL (A.60)
Uaq

then du, = h.du, and

() = (diin)? + hy(dus) ' (A.61)

which means (#,,u;) are semi-geodesic coordinates. Therefore, since K = 0, we have

N e
=0 A.62
8i? (4.62)

and so SR .

- hy=AU,+B ’ (A.63)

where A and B éfe coinsitantsijfimte;gratloin}Iencé, because of (A.60), hy is a function of—
uq. Therefore for the case where K, = 0 the scale factors h, and h; are functions of a single
variable. If both principal curvatures vanish then, as noted previously, h, is a function of
u, (at most) and h, is a function of u, (at most).

As we obscrved in Appendix A.5, the case of equal scale factors for a Euclidcan surface

led to the statement that general Cartesian coordinates (', y') exist with the property that

flug + Jup) = 7' £+ v (A.64)
is a conformal map. Thus there are many more ways of producing examples of Euclidean
surfaces. The mostgeneral Euclidean surface is either a plane or a union of planes, cones,
and/or cylinders. Thus one implication of this result is that, for our lens applications,
bending of metal sheets in lenses is permitted, since plane sheets and bent-sheets have the

same (zero) Gaussian curvature. See Figure A.2 for an example of such surfaces, which we

choose to call scrolls.
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Figure A.2: A Scroll as a General Euclidean Surface
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It should also be noted that scrolls can be even more complicated as illustrated in
" [Fig. A.3. In particular, a Euclidean surface can be constructed in such a way that it is

multiply connected. A simple Ver>:<;arrnpﬁlé is ﬂé cylinder (qpt I}'écés”sarily gircular) in which the

surface closes on itself, i.e., one can leave some point on a geodesic and arrive back at

. the same point. A similar statement can be made concerning cones. We might call such

Euclidean surfaces 1-closed, i.e., they are closed in at least one dimension.

As in Fig. A.3 this closure can be rather convoluted. Consider a cylinder (truncated)
which is flattened such that one or more portions are planes (planes having both principal

curvatures zero). One of these planar regions can be part of another such flattened cylinder.

This process can be extendédlﬁdeﬁnite;lgfSlmﬂarly conical surfaces can have pbrtions
that are planes which can in turn be included in other conical (or cylindrical) surfaces

with corresponding planar portions.
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Appendix B. Maxwell’s Equations for a Two-Dimensional

~_Space

B._lf Realrand Ebrmgl &Iﬁgwe]] E_quatlgrﬁ

" The genefal form of the real and formal Maxwell’s equations appear in (2.9) and (2.15) to-
gether with the corresponding constitutive relations. If \;/g's’ngiralize to a two-dimensional
space these equations (for the case J= 6) will take the following form if we assume we have

formal magnetic field components H;, H; and a formal electric field E!, (as in Section 5):

“9E, _  ,8H,
o ey, M
! !
T = W (B.1)
0H, OH' OE.
- Bu, 6w, _ e

Alternatively we could proceed by interchanging the roles of electric and magnetic fields

as in Section 6. The replacement of the formal field equations by the real field equations

vields
= o O(haEn) OH.,
- R e Y Y YA .
8ub bHt ot
d(h.E, 0H
(aTa) = ]’Lahn,uthb‘ (BZ)
O(haH,) _O(MH) _ , ,  OE,
8ura an = ]’Lahbﬁ'n EY) .

Now various assumptions may be made about the real and formal media. Certainly we

must have in our present case -

- hahy )
Epn =
h., ©n
hyh,
a — B.3
o H Ha (B:3)
hah, .
h, Hy = Hy
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from {2.13). If we then assume the formal medium is isotropic, then p, = p; = u' and we

obtain

hb ha
— = — . B.4
e = b (B.4)

Thus if the real medium is also isotropic (i.e., o, = pp = p) we find that

he = hy=nh

2
:—-En = &, (B.5)
hott = '

If our space is Euclidean then this case corresponds to that discussed in Appendix A,
equations (A.38) through (A.51), which means the coordinates (u,,u;) are expressible as
a complex variable u, + jus. If the real and formal media have constant permeability, then
the scale factor h,, is also a constant (corresponding to a constant spacing of electrical

conducting boundaries as discussed in Section 5) and the permittivity satisfies

_ hyel,
R

If the real and formal media are both uniform and isotropic (i.e., constant g, ', g,

€n

(B.6)

el) then all scale factors are constant and our space is Euclidean. Thus we sce that by
increasing the rigidity of our assumptions on our real and formal media we arrive at the
situation where our space has to be Euclidean for the case of uniform and iéotropic media.

On the other hand, let us investigate the consequences of the assumptions that &, =
hy, = h, and that our space is Euclidean. Certainly one possibility is the case that k is a
constant. A more interesting case occurs when £ is not constant. As shown in Appendix A,
(A.38) through (A.51), conformal maps yield the complete class of solutions. A particular
c¢xample corresponds to inversion of coordiantes, where we put

'

Uy =



|

Q

@

in which case

1
- ul %:ug (B.8)
so that
(d6)? = h*[(dua)? + (dws)?] = [(dz)* + (dy')z} s (B.9)

This example is the analog of the situation discussed in [1 (Appendix A)], characteristics of —
coordinate systems for field components in all three coordinate directions are investigatec

(i.e., the case hl = hz = h3)

B.2 Case of a Uniform T?E:MPlaneWave in Two-Dimensional
Formal Coordinates

Maxwell’s equations (in Appendix B.1) may now be further specialized to the case of
plane wave propagation in a plane S with propggation in a direction I,. We have coor-
dinates (ua,ub,jun) a:sln Appéndix A with u, constant on S and with corresponding unit
Vectors,(fa, 1y, fn) and we assume our formal medium is isotropic and homdgeneous. Thus

our formal flelds are assumed to satisfy

E' = EI,

=, 1 - ,

H = ",10><E

lo = (cos(n))1s + (sin(n))1s (B.10)

v o= (ua.aub)
: poo, 1
ZD L —CT, ¢ /ﬂlgf B

In (B.10), &', €, and 77 are constants and hence Z4 and ¢' are also constants.
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We note that as a consequence of (B.10) we must have

il

H = ?‘}‘sin(n)
’ (B.11)
Ef

Hy = '—*Zz‘cos(??)

where n is the constant angle defined in (B.10). We note also that the formal and real
media properties are related by the following equations. In these equations, which follow
from (2.13), we have taken p' = p! = pj and &' = €/, because of our stated assumptions on

the formal medium. Thus we obtain

'hhhib Ha = %ﬁhn“”:‘“
(B.12)
ZL—;‘Lﬁhsn = €.

Since we have formal magnetic field components H, H; and a formél electric field
component E!, the situation for purposes of the present development is the same as that
for a jacket, as in Section 5. We note that each of these formal field components satisfies
a two-dimensional wave equation

a*w!  *W! Ay iﬂﬁ

1

Jul * Oul T HE o

(B.13)

! ! 1 !
where W; can be any one of H}, H;, or E].

B.3 Specialization of B.2 to the Case of an Isotropic Real Medium

Now the equations (B.12) which give relationships among the scale factors and the real
and formal constitutive parameters were based on the assumption that the formal medium
is isotropic and homogeneous. If we now impose an added restriction on the real medium,

namely, that it is isotropic, then

e A
h = hy,=hy.

(B.14)
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llence the equations (B.12) may now be written as (using € = &,)

s = o

) o (B.15)
!

s

n

One consequence of a constant scale factor A, is that for the real medium the perme-
ability u is a constant and that the permittivity ¢ will in general be a function of u, and
u,, since h depends on these coordinates. If our surface is Euclidean, then h is obtainable
through conformal mappings of the plane into itself. A further observation is that for
constant Ay, equa.tjiofis”(B.iS) cor;eisﬁpoirilici rerzxactly to the case of two-dimensional lenses
(with electric field in the direction of the z-a.:xis)r discussed in [1 (Section IX)]. The case of
constant h,, as stated earlier, correspﬁqnds to a constant spacing of electrical conducting

boundaries.

B.4 Further Specialization of B.2 and B.3 to the Case of Constant

u and Constant ¢

The cquations (B.15) are based on the assumptions that the formal medium is isotropic
and homogeneous and that the real medium is also isotropic. If we further specialize
these equations to the case of a constant permeability, p, then the scale factor A, is also
constant. As we saw at the end of the last section these assumptions led to, in the case of
Euclidean surfaces, to the case where the complex coordinates and hence h are obtainable
by éonforma.l mappings and the permittivity € is a function of the coordinates u, and u;.

If in addition to a constant u we have a constant €, then equations (B.15) imply that

all scale factors are constant. In this event the surface defined by

(de)? = h*[(dug)® + (dus)?] (B.16)
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is obviously Euclidean. Note however that for surfaces which are Euclidean that the
permittivity £ need not be a constant.

We note that the results obtained above are applicable in Section 5 {on jackets).

B.5 Dual Cases

The results obtained in Sections B.1 through B.4 can be used in the case where we have
formal electric field components E!, and E} and one formal magnetic field component, H}.
The duality that exists between the roles of the electric and magnetic fields makes this

task a simple one. Thus, for example, the formal Maxwell’s equations become

8H! _ ,9E!
Buy, T
I I
(;fj: = ——EL% (B.17)
0E, OE. _  ,OH!
du,  Ous | mar

For the case of a uniform TEM plane wave, as discussed in Section B.2, we would take
H = H',=Hyg(t—-1, @/)1n
! = ( /¢) (B.18)
E = Z(’)(IO X H’)
where 1o, 7, ¢', and Z} are the same quantities which appear in (B.10).

Thus the assumption that the formal medium is isotropic and homogeneous would lead

to the analog of (B.12), namely,

hhhf;n e, = hhg}bzﬂ R
(B.19)
%‘;{‘iun = u.
Hence if the further restriction that the real medium be isotropic is made, then we must
have
€E=¢E, =¢&
’ (B.20)
h=h,=h



@

and consequently (using u, = u)

g = hn
(B.21)
H
hn
wo= B

The analogs of the results in Sections B.3 and B.4 then are easy to state. For example,
h, is a constant if and only if the real permittivity ¢ is a constant. If £ is a constant, then
« will in general be a function of u, and u; and the surface can be Euclidean. If both €

and p are constant then the surface will be Euclidean. Finally, the case of constant h,

corresponds to the és of th-amensmnal 1ensiesr,ﬂ(w'1th magnetic field in the z-direction)

discussed in [1 (Section IX)]. The results in the dual cases discussed above are applicable

in Section 6 (on slices).
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