
Sensor and Simulation Notes ,,. ...,.,.,:.: :..: .,. .”’”i.’
~ote 307 ““ “’”’ ~~ “’ “ ~ . : “:’:

..
August 3, 1987

;“

Relation Between the Differential Geometry Method” ‘”
and Transit-Time and 13inferential-Irnp edance Mat thing

in Synthesizing Lenses for Inhomogeneous TEIM Plane Waves

‘. Stone C. E’. Baum ““

“ersity of New M.ex.ico ~.:..- ....* I’orce Wca~ ons Lab or at ,CVY

artment of Mathematics and Statistics Kirtland AFB, New Mexico 87117

.lquerque, New Mexico 87131

Abstract

I’his paper concerns the design of lenses for TEM plane waves, such as might exist
crtain types of transmission lines. The medium (or transition region) can be used to

:ify lenses for transitioning TEM waves, without reflection or distortion, between these

.smission lines. Tht desired transmission is to be frequency independent and the lens

gn is based on frequency independent solutions of Maxwell’s equations. As such, these

regions are suitable for transitioning broad-band transient waves.
“1’h %st approach to the design of transition regions is a differential geometric one.

hod is a scaling method which creates an equivalence between two classes of
tromagnetic problems. The first EM problem has a simple geometry and medium and

?[e wave. It is called the formal problem. The second EM problem, which is the real

!d or lens problem, consists of a more complicated geometry and medium and known

e. Thus the differential geometric scaling method transforms an EM problem by a
idinate change, and it k a method that is well known in mechanics and fluid dynamics.

An alternative approach to transient lens design is one which might be termed a dif-

~ntial impedance-matching and differential transit-time conservation approach. I’irstly,
erential impedances must be matched at all Iens-waveguide boundaries so that a TEM

;c may be transmitted from one region to another without reflections. Secondly, in

~w that a wave be transmitted undistorted, a plane wave front in one region should

j!lto 2 plane wave front in another region and consequently the travel time for waves

~O~Vingdifferent paths must be conserved. As a result a system of ordinary nonlinear
~~rential equations will usually arise, and solutions to this system will specify the lens

‘~etry (shape) and physics (material).
h this ~a~er the relation between these two approaches is studied. k the case” of

5 differential geometric scaling method one finds that for a TEM wave propagating

one of the coordinate directions that both transit time conservation and” differential

‘Pe~ance-matching is obtained at the boundaries of the lens. On the other hand, if one,-.
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Abstract

This paper concerns the design of lenses for TEM plane waves, such as might exist

on certain types of transmission lines. The medium (or transition region) can be used to

specify lenses for transitioning TEM waves, wit bout reflection or distortion, between these

transmission lines. The desired transmission is to be frequency independent and the lens

design is based on frequency independent solutions of Maxwell’s equations. As such, these

lens regions are suitable for transitioning broad-band transient waves.

0
The first approach to the design of transition regions is a differential geometric one.

This method is a scaling method which creates an equivalence between two classes of

electromagnetic problems. The first EM problem has a simple geometry and medium and

simple wave. It is called the formal problem. The second EM problem, which is the real

world or lens problem, consists of a more complicated geometry and medium and known

wave. Thus the differential geometric scaling method transforms an EM problem by a

coordinate change, and it-is a method that is well known in mechanics and fluid dynamics.

An alternative approach to transient lens design is one which might be termed a dif-

ferential impedance-matching and differential transit-time conservation approach. Firstly,

differential impedances must be matiched at all lens-waveguide boundaries so that a TEM

wave may be transmitted from one region to another without reflections. Secondly, in

order that a wave be transmitted undistorted, a plane wave front in one region should

go into a plane wave front in another region and consequently the travel time for waves

following different- paths must be conserved. As a result a system of ordinary nonlinear

differential equations will usually arise, and solutions to this system will specify the lens

d geometry (shape) and physics (material).

In this paper the relation between these two approaches is studied. In the case of

the differential geometric scaling method one finds that for a TEM wave propagating
d

in one of the coordinate directions that both transit time conservation and differential

impedance-matching

o
is obtained at the boundaries of the lens. On the other hand, if one
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starts with the impedance-matching and transit-time requirements, then arriving at the

~d.inferentialgeometric conditi~s ge..qu@s,considerrable study. This involves first considering

%e ‘gene;al” cade of transport of *waves fhrc/ug~ set of ducts connecting surfaces which

form the boundaries for a lens.

One then examines use of these ducts to reorder positions on a wavefront and then

considers two possible ways of arriving at an EM lens design. In the first approach> all

magnetic waHs of ducts are removed to form an eIectric hyperduct (E 2-lens) which is

called a jacket. The ensemble of jackets then leads to a hyperj acket (E 3-Iens) and removal

of all intermediate electric walls then leads to an EM lens. The second approach is an

exact dual of the first in that one starts with the removal of all intermediate eIectric wails
to finally arrive at an EM lens.
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1 Introduction

One approach to EM lens design, developed by Baum in [1], for transitioning TEM ‘

*
waves between certain kinds of transmission lines involves a differential geometric scaling

technique. The basic idea in this approach is the creation of a class of electromagnetic.

problems, each having a complicated geometry and medium> which are equivalent ‘rider
.

the scaling to an electromagnetic problem having a simple geometry and medium. The

latter problem we might- ter’m the formal problem while the former problem is our lens

or real-world problem. Solutions to Maxwell’s equations can then be used in specifying

various types of EM lenses for transit ioning TEM waves, without distortion or reflection,

between certain types of transmission lines. For example, in [1] Baum has given examples of

inhomogeneous lenses based on bispherical and toroidal coordinate systems. These lenses,

which can be thought of as converging and diverging lenses, may be used to transition

TEM waves between conical and/or cylindrical transmission lines. Further Work by Stone

a) (see [2]) on this problem resulted in a general procedure for these types of lenses.

An alternative approach to transient lens design is one which might be termed a

differential-impedance-matching and transit-time-conservation approach. Firstly, differ-

ential impedances must be matched at all waveguide and lens boundaries so that a TEM

wave may be transmitted from one region to another without reflections. Secondly, in or-

der that a wave be transmitted undistorted, a wave in one region should go into a wave in

another region and consequently the travel times for waves following different paths must

be conserved. As a result a system of ordinary nonlinear differential equations will usually

arise. Solutions to this system will then specify the lens geometry (shape) and physics (ma-

●
terial). This approach has been described by Baum et al. (see [3]) in a problem in which

a lens is inserted between two cylindrical coaxial waveguides of different size. Another ex-
d

ample occurs in a paper by Baum and Stone ([4]) where the design of a certain anisotropic

7



Iens suitable for launching TEM waves on a conducting circular conical system is speci-

fied, Still another example, of interest because no system of differential equations arises, ●
.

appears in another paper by Baum and Stone ([5]). In that paper, another anisotropic

lens for transitioning plane waves between media of different permittivities is specified.
.

Thus in considering these two approaches to EM lens design it is entirely natural to .

ask such questions as (a) will similar resuIts be obtained by these two approaches in a

particular design problem, (b) are the two methods equivalent in any sense, and (c) is it

possibIe to develop a set of axioms so that the two approaches are unified. In this paper we

address the equivalence problem. In Section 2 we show how the scaling technique leads to

the differential-impedance-matching and differential transit-time conservation approach.

The more difficult problern of arriving at the differential geometric sca~ing method from

the impedance matching and transit time approach is discussed in Sections 3 through 6, In

these sections we begin by considering the general case of transport of waves through a set

of ducts, and the use of these ducts to reorder positions on a wavefront. Restrictions to the

cases of no magnetic currents on magnetic boundaries and no additional electric bound-

aries are then considered and we are then led to the equations describing the differential

geometric scaling method. The paper concludes with a summary in Section 7.

8



Differential Geometry Approach Leading to Differential-
Transit-Time and Differential-Impedance Matching

2
0

Formal Operators and Fields2.1
●

Summarizing the results in [1] we consider an orthogonal curvilinear coordinate system

(ul, u,, U3) with unit vectors 11, rz, 13, with line element.

(a)’= h;(du,)’ + h:(du,)’ + h:(k)’. (2.1)

The scale factors are given by

“=($)2+(32’-(2)27’=12>3 (2.2)

where (z, y, z) are rectangular

define, as in [1], the following:

and the hi are

(h2h3 O

taken as positive.Cartesian coordinates,

00

h2 O

)

(Pi,j) =
O h3

hl

o

0

0

)o,

h1h2( o

0

h1h3

o

(2.3)(%,j)

(?’i,j)

——

=

(a~,i)-’“ (Pi,j) = (@i,j)“ (~~,~)-’.——

With respect to the Ui coordinates, gradient, curl, and divergence are

(2.4)

V.P

The Xi are called
-/

components of X which has the representation

(2.5)
i=l

9



Formal vectors andoperators may redefined as follows. These ob.iects are denoted by
attaching a prime to the usual symbols. Thus, for vectors (1? and @ which are subject to

e
curl we define

i’ = ~x;i, = ~h,X,f, (2.6) .
i=l i=l

X; = h~X~ .
m

The X: are the covariant components of ~. The contravariant components of a vector ;

(vectors such as d, ~, ;subject to diverence) are given by

The formal operators are then defined by

(2.7)

(2.8)

2.2 Maxwell’s Equations

Maxwell’s equations are given by

vxE .-@
f%

a5
VX2 = Z+x (2.9)

V.L5 = p

V“ti = o

10



-v-$ = D

V“s = o

together with the constitutive relations.

. .6 = (E~,j) “ 43

‘“” Z = (/.Li,j)”ti

and continuity equation

v f=_*.
., dt “

The matrices (Ci,j) and (~i,j), which describe permittivity and permeability, are as-

sumed frequency independent and thereby real valued and may be dependent

The equations above can be expressed in terms of the ~i coordinates. Formal

netic quantities are defined by

i’ = (O!~jj) “ i

ii’ = (CYi,j)“ E

Since ~, D, and ~ arise in divergence equations, we define

~, = h1hzh3B
i hi i

~! = h1hzh3D
% hi i

~, = h1hzh3J
i hi ‘“

on position.

electromag-

(2.10)

(2.11)

11



I

If we require

(2.12) .
●

then Maxwell’s equations and the above equations lead to definitions of the formal per- .

mittivity and permeability. These are

(&J,j)= (Pi,i)“ (&i,j)“ (ai,j)-’

(P!,i)= (A,j)‘ (Wi)“ (ai,j)-’

and hence if (Ei,j), (pi,j) are diagonal,

(2.13)

(&J,j)= (~i,i)“ (Ei,j)
(2.14)

(A,j) = (7i,j) “ (Pi,j) .

Maxwell’s equations can now be expressed in terms of formal fiekis and operators as:

vl.~ – ()—

o
(2.15)

12



2.3 Restriction to Inhomogeneous Isotropic Media with Fielc[

0
Components in all Three Coordinate Directions

If’ we restrict–our consideration to inhomogeneous isotropic media (in the real coordi-.

nates), then the constitutive matrices assume the form
.

(&,)j) == C(l,,j)
(2.16)

(Pi,j)= /J(hJ

where c and p are positive, real-valued scalar functions of position. Hence

(4J = &(’Yi,j)

(A,j) = P(%,j).
(2.17)

We may now consider some possible forms for the diagonal matrices (&~,j) and (p~,j).

These in general should be fairly simple so that- the formal electromagnetic fields have

desired forms.

If both E and ~’ have all three formal components and the constitutive parameter;~

have the form

(C; j) = E’(l,)j)

(2.18,)

(/J;)j) = V’(li,j)

where e’, p’ are constants, then we have a formal homogeneous medium. Hence (2.18),

(2.17) and (2.3) yield

(2.19)

and hence

and alsoe

&h = c’
(2.21;1

*
ph = /Lf.

1.3



Therefore &h and ph are constant. However, we do not have the freedom to pick any

function of the ui for our scale factor h since the hi must satisfy the Lam& equations [1]. *

The general result is that there are only two possible forms for h. In the first case h must

be a constant, which implies that the ui form a Cartesian system of coordinates and also “

that the E and p are constants. Hence in the first case we have a homogeneous medium. .

In the second case an inhomogeneous medium is obtained with

& =f=l=._’2
> P’ h X2+ IJ2+,Z2

(2,22)

where a # O is a real constant. This type of h corresponds to 6-sphere coordinates (inver-

sion of Cartesian coordinates). The class of inhomogeneous

to spherically stratified media.

media obtained is restricted

2.4 Waves With Field Components Only in the rl and r2 Direc-

tions (Inhomogeneous TEM Waves)

If we now restrict our attention to inhomogeneous TEM waves which propagate in the

+u3 direction and which have no field components in this direction and if the formal

constitutive parameters have the form

(2.23)

[: !hi’)=l’:!)(&i,j)’= O S’

then the dependence of c! and p! on the coordinates is irrelevant since E! = O and L?~ = 0,

If we choose E’ and p’ as constants, the medium is formaIIy kotropic and homogeneous.

The formal fields have the form

~~ = ~;O(yl, uz)~(t -- US/C’~ = h@l
.



(2.24)

H; = H’ ,O(ul, u,)f(t - US/C’) =h,H,
.

H;=o

P’= constant , ,5’ = constant

{
z;= “=~ constant

c’ = -~ = constant

and the choice of ~(t – 7J3/C’) specifies the waveform. Since F . @ = O, we find

E; E;—=__ =
H; H;

z; (2.25)

where

[
z; = “~ (2.26)

is the formal wave impedance.

@ These results require that the conductors forming the transmission line intersect sur-

faces of constant U3 in such a fashion that the surfaces are represented in terms of only

their U1 and U2 coordinates [1].

If we assume that (Ci,i) and (~i,j) correspond to isotropic but inhomogeneous media,

i.e.,

(&i,j)= ‘(li,j)

(Pijj) = N(u,j)
(2,27)

where c and ~ may be positive valued functions of the coordinates, then (2,17) and (2,23)

yield

. hl h2 E p

and

(2.28)

15



I[ence

and

hl–hz~h

ch3 = d

ph3 = PI

Therefore ch~ and ph3 are constant and the formal

physical wave impedance since (2.30) implies

(2.30)

wave impedance is the same as the

.

(2.31)

Note that since E’ and p’ are arbitrary constants any orthogonal curvilinear coordinate

system for which hl = hz apparently determines our E and p since

i

‘=&
(2.32)

!

~=~

9
However, a differential geometric fact [6] leads to a further restriction on our coordinate.

systcm, name~y, that if hl = hz, then surfaces of constant U3 can onIy be spheres or planes.

Moreover, for rot ational orthogonal curvilinear coordinate systems (q, #, V3) which

have been used to construct coordinates (ul, Uz, U3) in our examples we must also

surfaces of constant 7J3as spheres or planes which requires h@/hV1 to be independent

[1,6]. In our examples one method of construction of the Ui relies on the equations

u~ = A[vl) cos(#)

U2 = A(vl) sin(+)

U3 = f(v3)

have

of U3

(2.33)

for which h4/hV1 is a function of VI alone and where there are choices which must be made

for A(vl) and ((v3).

16
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We can now verify, in this particular case of no field components in the U3 direction,

0 that our scaling apprach leads to differential-transit-time conservation and differential-

impedance matching throughout the lens (~ well as at_lens-transmission-line boundaries).
.

For the (uI, IQ, u3) coordinates in the lens transit-ion region, all waveforms cent ain factors,
—

. as in (2.24), of the form ~ (t — u3/c’), and hence we must- have transit-time conservation.

Our equations (2.30) have also shown that—

h3@ = @ = constant (2.34)

which confirms the above observation concerning transit-time conservation.

A special case of the above has

u3=r, hs=l (2.35)

in the usual spherical (r, 19,q$) coordinate system. In this case we can have

p = p’ = constant
(2.36)

.

.

&= S’ = constant .

This leads to- the case of a conical transmission line as in [7] which has a uniform propa-

gation medium (free space if one prefers).

If we next consider an impedance expression of the form

(2.37)

J U2
dtl = hldul

d-?2 = h2du2

on surfaces of constant u3, where El is evaluated along curves of constant UI and ~2 is

evaluated along curves of constant U2, then (2.37) is

E1hl Aul _ z, AUI
zd =

H2hzAu2 – 0 AU2 “

17
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Since Z{ is not a function of us then the differential impedance is matched all along U3.

In the analysis leading up to (2.31) we have actually found that @ k a constant. Thus o
.

rimpedances can be matched at Iens boundaries by choosing p/e the same as that of the

assumed uniform medium on the other side of a lens boundary of the form U3 = constant.
.

Previous results have established exampIes of lenses with this type of inhomogeneous

TEM wave [1]. There is a converging Iens using bispherical coordinates, a diverging lens

using toroidal lens, and a bending lens using cylindrical coordinates, In each case the

transmission-line conductors paw right through the lens on appropriate coordinate sur-

faces. At the two lens boundaries

fi match through the boundaries,

U3 boundaries.

(surfaces of constant U3 in these examples) both 1? and

in these cases the fidds being tangential to the constant

2.5 Waves With Electric Field

Field Only in ~2 Direction

Only in ~1 Direction and Magnetic

(Homogeneous TEM Waves)

If we further restrict our TEM waves to the form

J = constant , El = constant

—

{

z; = @
-J = constant

(2.39)

.

●

c’ = — = constant&

18



@

the formal permittivity and permeability must satisfy equations of-the form

(EJj)= (Pi,j) “ (&i,j)“ (%jj)-l

. ‘= (Pl,j)= (Pi,j) “(#i)j)“ (ai,j)-’

.

[]

&~oo

(&i,j) = o C2 O

0 0 Es

(2.40)

H
=P1OO

(/-4,j) = o /!L~ o .

0 0 /L~

With the only field components as El and Hz only c1 and Pz in the above are significant,

the other permittivity and permeability components being unspecified. Thus we obtain

Since cj and p; are constants we then obtain

‘~= @=kd-%=constant (2.42)
.

as our basic constraints.

An interesting special case of-this is if one coordinate is “straight” and “parallel”, i.e.

corresponds to a Cartesian coordinate. If this coordinate is taken as UI (in the ~ direction)

then we have

ul=y, hl=l. (2,43)
.

If in addition we require a constant permeability (such as pO) then
*

/J2 = constant

19
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Itzfi = constant

h~fi = constant

(2.44)

●

implying .
hz

h~
— = constant . (2.45)

If this last constant is taken as unity then the %,% coordinates are expressible aS a

conformal transformation (in the z,z plane) with

hz = h~~.h

El =
constant

hz

(2.46)

An example of such a Iens is given in [1 (Section IX)]. Assumptions other than constant

permeability are also possible but do not give so simple results as above.

Alternatively one might choose U2 (in the I? direction) as a Cartesian coordinate giving

u2=x, h2==l. (2.47)

Tf in addition we require a constant permittivity (such as SO) then

&l = constant

hl~ = constant (2.48)

h~fi = constant

implying

~ = Comtant

h~
(2.49)

Again, taking this last constant as unity leads to the Ul, U3 coordinates being expressible

as a conformal transformation (in the y, z plane) with

hl = h~sh
(2.50)

/’42 =
constant .

h2 “

An example of such a lens is also given in [1 (Section IX)]. Again, other than constant .

permittivities are also possible in the above.

20



2.6 Summary

0
In summary, then, if we start with generalized orthogonal curvilinear coordinates (ul, Uz, us) .

with scale factors hl, h2, h3 given by (2.2), and a TEM waveform propagating in one of.

the coordinate directioris (for example, of the form (2.24)), then clearly a transit time

conservation condition is satisfie-d both globally and locally as waves follow ,different paths

through a lens meeting each us surface at the same time during the transit. Moreover,

in the cases we have considered we have noted that @(hi/h2) is a constant and hence

not a function of U3. Thus impedances are matched differentially through the lens. That

is, “differential geometry implies differential-impedance-matching and differential-transit-

time conservation’. The progression of the differential geometric cases here is summarized

in Table 2.1.
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Case Results

Inhomogeneous Isotropic Media:
General Case With All Three

Field Components

hl=hz=hs=h
onlv Cartesian (h = 1) and.

6-sphere
(

h=~z+~ ‘+Z2
a’ )

coordinates &h = c’.
ph = p’,

G= g= constant

Inhomogeneous TEM Waves hl=hz=h

( Propagation in is Direction U3 surfaces spheres or planes
\

{)With =$ = ~
&

Homogeneous TEM Waves

(
Propagation in 13 Direction

r
With ~ = $

~ in rl direction

~ in ~z direction
)

A.ul=g, hl=l

p2 = constant

(not necessary)

B.u2=z, h2=l
El = constant

(not necessary)

iw%=constant
h~m = constant

hz=h~=h
&l = constant.

h2

hl=hz=h
constant

P2 = ~z

.

Table 2.1. Differential-Geometry Progression of Cases
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3 General Case of Transport of Waves Through a Set

of Ducts

In this section we consider the general case of transport of waves through a set of ducts.

. Consider some inhomogeneous TEM plane wave such as that existing on a, two-conductor

transmission line (in a homogeneous isotropic medium). As indicated in I?ig. 3.1 this might

be a finite-width conducting sheet over a ground plane (ideally infinitely wide) [8,9,10].

As is well known [10] such an inhornogeneous TEM wave can be described by a con-

formal transformation with a complex potential

U1 + .7”U2

x+jy

elect~-ic potential

magnetic potential

z

(z, y, z) - Cartesian coordinates.

(3.1)

Our coordinate system (ul, Uz, U3) is thus based on a TEM mode in which UI and U2

correspond to electric and_ magnetic potentials, and U3 is a generalized direction of prop-

agation. Thus, for example, if we consider a coaxial cylinder, then U3 could be chosen as

the z-coordinate. We could, of course, have an E-field with Ul, U2 components, and alscl

an H-field with components in VI, Uz directions. However, in this event-we would simply

redefine our coordinates so as to obtain only an -El component in a U1 direction and an Hz

component in a U2 direction. In any case we have.

E~=133=o, H~=H3=o,. (3.2)
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and our wave propagates in the U3 direction

@ a delay.

Now in the conformal transformation as

portion

and there is

indicated in

(designated by indices (n, m)) given by

no dependence on U3 except for

Fig. 3.1 let us consider a small

&-1) < u~ < up

Utz) (n-l)=Aul for YZ=I,2, . ..N.N— U1

Jz) (m-1) =Au2 for m=1,2,. .. M.M.— U2

Associated with this we have incremental voltages and currents

AV = –Elhl Aul = –E; Au1

A1 = –H2h2Au2 = –H; Au2 .

This gives an associated impedance

AV hlEl Aul E; Aul
zd=E=— —

h2H2 AU2 = ~~ “

The wave impedance is

giving

p = medium permeability

&= medium permittivity

Aul
zd = Z,, —

AU2 “

25.
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Note that

NAuI = V s potential between the

two conductors

MAuZ = ZW1 s change in magnetic

potential on contour

conducting strip .

The characteristic impedance of the transmission line is

surrounding

(3.9)

z difference of UI between conductors=
w change in U2 around a conductor “

Consider now a small region defined by Aul and Auz as in (3.3). OrI some surface of

constant U3 designated as S1 let each such incremental region be the entrance to what we

shall call a duct. Such a duct shall be defined so as to have certain properties. We want the

wave incident on it at S1 to pass into each duct without reflection. With electromagnetic

waves in each duct considered to be propagating independently from those in other ducts, ●
then the input impedance of each duct must be Z~, so that the wave incident on SI as in

Fig. 3.2 is completely transported into the set of N x M ducts.

This concept of a duct can be reaIized as illustrated in Fig. 3.3. It is a special kind of

transmission Iine for which we take us (for a given (ul, UJ appropriate to the particular

duct as defined at its beginning on Sl) as the longitudinal coordinate. Retaining Aul and

Auz as the cross section dimensions we have a Iocal impedance

(3410)

where p, E, Aul and Auz can now be functions of U3 along the duct. As we desire waves

to propagate along a duct without reflection we require

Z,=~(~)*# functionofu~ (3.11)
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@

constraining the U3 dependence of these parameters. Thus the constraint-given by (3.11) is

an impedance matching condition arising from the requirement that the input impedance

for each duct be equal to Zd.

However, suppose these ducts are to be of finite length and to be used to reconstruct a

.
. ..— .- .-.

wave on anoth;r transrnisskn l~ne.at so—meco.nst.ant ti~surface designated Sz as in Fig. 3.2.

Then not only must the duct impedance zd match into an appropriate (Aul, AU2) on S2,

but also the waves on all the ducts must arrive on S2 at the same time to reconstruct a

TEM mode on the transmission line without generating other modes on the transmission

line and sending reflections back into the ducts. If U3

is the prop-agation speed in a duct, and

,.,
‘1) E U3 on Sl(independentU3

# ~
IL3 on S2(independent

then the transit time for the (n, m)th duct is

is arc length in meters, and

where now

coordinate

Of-ul, U2)

of U1,U2)

‘n)m = ~~v-’(uL)h3dU13

(3.13)

(3.14)

one should note that speed (or velocity) is interpreted with respect to the U3

(as is p and c) which may or may not be in meters.

In a more general form we can interpret the speed in a duct in terms of an arc-length

parameter which we take as ~ with speed taken on a wavefront with @ in meters as

‘“A (3.15)

allowing for some difference between U3 and ~. Noting from (2.1) and (2.2) that

h~ =
8+

8U3
U1, U2 constant

(3.16)
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this gives a transit time through a duct

Now let

Tn,m # function of (n, m) or (ul, Uz) .

This gives the constraint that

~: +@w& # function of (n, m) or (ul, zq) .

Combined with (3.1 1) these two relations give the constraints for a duct.

(3.19) is a transit-time constraint, while (3.11) is an impedance constraint.

As in Fig. 3.3, one can specify a duct by boundary conditions

~z . ~ = llz = 0 on surfaces of constant .2

il . fi = 111 = O on surfaces of constant UI .

(3.17)

(3.18)

u1 constant surfaces =

U2 constant surfaces Z

(3.19)

The condition

@

(3.20)

With these constraints and (Aul, AU2) sufficiently small (both electrically, and by com-

parison to the path curvature (along @) of the duct), and with changes in Aul and AU2

small over a wavelength (at the highest frequencies of interest), and with small changes in

Aul and AU2 with respect to changes in U3, then a duct can be considered an ideal TEM

transmission line. Note that with the assumed boundary conditions in (3.20) then

ideal electric boundaries

(perfectly electric conducting surfaces)

ideal magnetic boundaries

(perfectIy magnetic conducting boundaries) .

30
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o
Viewed another way we have

[1? x ~] . i, = O s Poynting vector normal to u, boundaries
-- (3.22) ‘

[E x H] . i, = O ~ Poynting vector normal to u, boundaries

so that energy flow through duct boundaries is zero. Let us refer to these duct boundaries

as electric and magnetic walls.

The region between S1 and S2 we “call a duct space. The cross section of a duct of

sides Aul and AU2 is to move from S1 to S2 is such a way that the impedance and total

transit time is preserved. However, within the constraint of (3.11) one can shrink both

Aul and Auz as us increases, thereby separating the ducts from one another. Given that

no electromagnetic energy can flow through the electric and magnetic boundaries of each

duct, then consider the region between SI and S2 as in Fig. 3.2 which we might calI a duct

space. Part of this region (between the ducts) has no electromagnetic energy. A wave

in one duct does not affect a wave in another duct except via S1 and S2. This allows a

91 considerable variation in the routing of ducts in the duct space without interfering one

with another.

In a more general sense S1 and S2 need not be surfaces of constant us, What-is

important is that

(a) on SI and Sz differential impedance be matched

ducts, and

(b) the transittirne from the wave before SI (say on

between external waves and

some U3 before the lens) be

matched to the wave after S2 (say on some U3 after the lens.
.—

This requires that one consider the possibility that S1 and S2 are not in general orthogonal*

to is on the various sides of the two lens boundaries. Examples of this are found in [3], [4],

[5]. From (a) above this requires that-the differential voltage and current relationships in

@ 31
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[3.4) allow for the projection of i, for the electric fie~d and iz for the magnetic field cm the

lens boundaries be matched across the boundaries since it is the tangential components of
●

El and H2 that must be matched through the lens boundaries.

For this purpose one can define a tangential dyad on S1 and S2 as

(3.23)

= ilil + 1212 + i3i3

s identity dyad .

If the Ui are all defined so as to be continuous through the lens boundaries, then in generaI

the hl and h2 are discontinuous through these boundaries. Basically the hl and hz are

discontinuous so that E[ and H; are matched, but El and H2 are not matched (in general).

So basically we require that

El il. it

1are continuous through S1 and S2 .
H2 ~z . ~~

In a more general sense if the duct size is allowed to abruptly change at the lens boundaries

(with electric and/or magnetic boundaries on SI and S, as required), then one can interpret

(3.4) as requiring both AV and AI to be conserved so that

Elhlfl” ;t

}
are cent inuom through S1 and S2 .

Hzh2i2 . it

(3.25)

The transit-time matching is a macroscopic requirement (except outside the lens being

on a local or differential basis). This must be considered in the overall geometry. In

particular, (3.17) through (3. 19) can be modified so that U$) and U$) can be considered as

functions of UI, Uz, and T~,~ can be modified to allow for the required transit time through
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the lens as

T –tn,m — required departure –t required arrival .
on S~ on S2

(3.26)
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4 Use of Ducts to Reorder Position on Wavefront

If as in Figs. 3.2 and 3.3 we have a duct starting on S1 and ending on Sz there are certain

requirements which must be met. Impedances must be matched, transit times conserved,

and the wave must have the same polarization on the S2 as on entering S1 to synthesize .

the wave at the S2 end. There can moreover be no power flow through a duct boundary

(per (3.22)).

Are there other limitations which must be considered? Could we, for example, tie a

duct in a knot, or could we reorder positions on wave fronts as in Fig. 4.1. In this figure

we have ducts labeled A, B, C, D for entering waves on S1 and a reordering in which A,

B, C, D are mapped to respectively positions C, A, B, D on Sz, Thus within the limits

of our assumptions, what strange things can happen? Note that duct cross sections are

small compared to wavelength, that T“,~ is the same for all ducts (or as in (3.26)), and Z~

is invariant to position along a duct. Furthermore the duct cross sections are shrunk for

positions in the duct space away from S1 and S2 so that each duct may pass between the

others.

This is a strange beast as can be seen by the following gedankenexperiment. Consider

sufficiently low frequencies that the fields are quasi-static. We start out as in Fig. 4.2 by

imagining a test electric charge (say an electron) starting out at a point PI with potential

Upl and cross S1 to travel down a particular duct. Say as in Fig. 4.1 this were duct C.

On crossing S2 the test charge is at a new potential, say UP,, appropriate to_ the second

transmission line. As in Fig. 4.2 this corresponds to an increase in potential U1. Now

go from Pz to 1’3 (in a direction out of the page) to a position to enter duct A on S2 in

Fig. 4.1. The potential here, UP3, is the same as up,. Next enter duct A, crossing Sz, and

leave crossing S1 to PA with potential UPAas appropriate to the first transmission Iine. As

in Fig. 4.2, back in the first transmission line the test charge has risen in potentiaI. If the

0.
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test charge is moved directly from PA to PI energy will be given to or taken from the field.

0 To explain where this comes from we must reexamine our hypotheses and decide what-=
. -. .— .

constraints need to be imposed to avoid this problem. Clearly electric potential was not

conserved, even quasi-stat ically, in the (lens) region because of magnetic barriers. That is,

our path went around magnetic currents. Put otherwise,

(4.1)

The resolution to our apparent contradiction lies in how we viewed the ducts:We have

magnetic (and also electric) currents induced in the duct walls. Hence we must insist that

the region between surfaces S1 and S2) will allow one tono path through the lens (i.e.,

come back to a different potential. That is, energy must be conserved. Hence ducts cannot

be switched “vertically”, These considerations will lead us in the next section to the idea
. .

of removing magnetic boundaries in ducts by removing the side walls of ducts,

We could, of course, consider a dual problem in which we imagine a test magnetic

@ charge following a path from S1 t-o—S2 (say via duct A as in Fig. 4.1) and back to S1

(say via duct D) again. As in the previous case, energy is gained or lost and there is a

difference in magnetic potential. In this case we will insist that ducts cannot be switched

“horizontally”. Thus in a later section we consider the removal of electric boundaries in

ducts by removing the tops and bottoms of ducts.

.
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5 Restriction to the C:ise of No Magnetic Currents

on Magnetic Bounda::ies

In order to keep waves confined to du :ts we have made the wails either electrically or
.

magnetically perfectly conducting (as in (3.22)). Since magnetically perfectly conducting .

boundaries are hard to come by, one nlay wish. to do without them. As indicated in

Pig. 5.1, the presence of magnetic wails allows ducts to be separated by providing for a

discontinuity in the tangential electric fil:ld, the electric field being zero outside the duct

(but still in the duct space).

5. I Removal of Magnetic Boundaries to Produce Jackets

Now if we wish to eIiminate the magnetic currents there are various ways one can look

at this. As indicated in Fig. 5.1 one can consider one of the Maxwell equations in either

differential or integral forms as ●
v~g . .g–3m

(5.1)

$ CA‘“’r = -f% [~’-:ml “d;

where fl~ and its boundary contour C’~ are illustrated in Fig. 5.1 which shows the effect

of magnetic currents on walls in separating waves in ducts.

By hypothesis the magnetic field is zero outside of the ducts. Letting C’~ be parallel to

the electric field just inside the two ducts illustrated, then the difference in the tangential

electric field between two adjacent ducts is just given by

(5.2)

where the unit vectors correspond to the (UI, U2,U3) coordinate system as in Fig. 5.1.
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In this form let the distance between the two ducts shrink to zero with the walls

becoming coincident. Then (5.2) represents the discontinui~y in
e

containing ~~ml and JSm2

the tangential electric field between the two ducts across the common wall. If the surface
.

magnet ic currents are made to be zero (effectively merging the two ducts) then we have

and, of course, consequently (from (3.6))

(5.3) -

(5.4)

noting the vanishingIy small cross section of a duct.

Let us now consider the impedance-matching and transit-time-conservatism require-

ments. Certainly within a duct we must have

hlAul pz~=
r– # function of us

hzAu2 c
(5.5)

●
since we have propagation in the U3 direction, and differential impedances are required to

be matched. The same condition should then hold in a jacket which we describe below.

Moreover, starting at us = O and following a path in a duct to U3 # O, the transit time T

is

T= ~U3@hsduZ # function ofu, . (5.6)

Thus transit time conservation in a duct, and hence a jacket also requires

Thus, if magnetic

ensemble becomes a

resembling “parallel”

pch~ # function of U2 . (5.7)

boundaries (i.e., “side” boundaries of a duct] are removed, the duct

“jacket” (or E hyperduct). This may be thought of as something
.

(or curved) plates. The evolution is described as follows as in Fig. 5.2. .

The jacket is referred to as an E 2-lens, which can be regarded as a two-dimensional space.
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The totality of jackets, which can be regarded as acomposite E 3-lens (orhyperjacket)

is an E lens and is composed (in the limit) of an infinite number of such two-dimensional e
.

spaces. FolIowing the same convention as in Fig. 5.2 jacket n encloses jacket n + m, where

m > I. The ensemble of these jackets is what we might term an E 3-lens or a hyperjacket.
-

Note the presence of perfectly conducting boundaries on surfaces of constant UI which

prevent propagation in the rl direction. While these surfaces can be of zero thickness to

allow no space between one jacket and the next, the converse is also possible. Except on

S1 and Sz where the electric conductors from jacket n must connect to those from jackets

n – 1 and n + 1 to keep electromagnetic energy from the space between the jackets, these

surfaces can in principal

be allowed for.

5.2 TEM Waves

If we now assume, as

components in the form

be separate. By adjustment at hl in the jackets, this spacing can

in a Jacket

in Section 2.5, but now in some nth jacket, that we have field
o

~j = hl& = E&f (t – UZ/C’)

E; = 0,-.q=o

H: = hzHz = ;f (t – @)
0

H; = H:=O

P’ = constant in nthe jacket , d = constant in nth jacket

i
z; = “=-j constant in nth jacket

Cf = — = constant in nth jacket
&
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so that our TEM wave propagates in the U3 direction, then the Maxwell equations assume

a the form
8E’

-9
,alIJ=

U3 –P at.- — . .— ..

~fg = _+l’ .
–8U3

Moreover the formal medium is described, as in (2.41) by,

“ML3E1&’ =
hl

---P’= hl.!ki
hz ‘2 “

Now one jacket (the nth) is characterized by

(5.9)

(5.10)

(5.11)

Essentially in (3.3) we have united all ducts for the same n and removed m from consid-

eration. We have an incremental voltage (jacket voltage)

AV = –E;AuI = –E1hlAul (5.12)

as before. However, the jacket current is the sum of all the duct currents in the nth jacket

as

where the limit as AU2 + O (Af -+ m) is taken.

(5.13)

around jacket

Note as in Fig. 5.2 the contour CA is

contained on a surface of constant y3 in the nth jacket, Here both 1 and AV are functions

of U3, but not U2. The convent ion here is that–increasing potential is in the direction

of increasing U1, and the current on the high-potential electrode is in the direction of

increasing U3.
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With this we have the jacket impedance

AV E;Au1
AZ=—=

~ z, Au~

1

/

(M) OU$M) “

Hi ‘z duz
(0)

%

(5.14) .

.

Note that AZ is independent of U3 (as Z~ is independent of U3) and also independent of

U2 (over which (5.13) integrates and AV is independent). AZ is only a function of u~, or

better n concerning the nth jacket. So we have

z~=~=~~= constantinnth jacket. (5.15)

In addition we have from the velocity

;=~ ~p’c’ = h3 p2c1 = constant in nth jacket . (5.16)

Note that (5.15) and (5.16) correspond to (2.42) in Section 2.5, except that their status as

constants is only in each jacket separately.

o

5.3 Case of p and E Singly or Both Independent of U2 and U3 in

a Jacket

In any jacket ordy the U2 and us coordinates are of importance, and consequently our

first fundamental form is

(dt)’ = h;(duJ2 + h@L,)2 . (5.17)

We, of course, have the added geometrical property of closure in one dimension (uz).

If we now assume p2 is a constant, then in any jacket we have

k%’”== w= constant
~3fi = @’/m= constant

44
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from (5.15) and (5.16).

@ where h2 is a constant.

Therefore if hl is a

we would have

,

.

and (5.17) assumes the

Particular examples of the above situation appear in [1] and [5],

constant- (corresponding to uniformly spaced electric boundaries)

h2_=__hl ~ = constant

hs p’

form (il~ = constant times u3)

(cU)z= h;[(du2)2 + (dtis)2]

with associated Gaussian curvature (see Appendix A, Section A.2)

[

~__ “1 d21n(h2) + d21n(h2)

h; au; 1a-i; “

(5.19)

(5.20)

(5.21)

Thus for constant curvature K, the sign of the Laplacian of k(h2) determines whether or

not we are in a positively or negatively curved space. If K = 0, our space is Euclidean. In

any event, for constant hl, we have

and the medium is

If, on the other

1 /J’&’ 1

--[ 1&’/L2
h; —

‘~=~p2=h; p’
(5.22)

nonuniform. See [1,5] for examples of such nonuniform media.

hand, we assume Cl is a constant, then (5.15) and (5.16) yield

h p2
r

P$l. = constant
h2< “

and the assumption that hl is a constant-would imply

h2h3 = hl ~ = constant .
61

Nexty if both c1 and p2 are taken to be constant, then

h3 = constant

(n
h2= ~ h,

&l/L

(5.23)

(5.24)

(5.25)
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and (5.17) assumes the form (A.31).

ITnally, our surface is Euclidean when cl, PZ, and hl are constant as in this case (5.17) @

assumes the form (A.17). Noting that Euclidean surfaces involve only planes, cylinders,

cones, and various combinations of these surfacest particular examples of these lenses are

given in references [3] and (4]. In these examples, the jackets are cones.

46



o 6 Restriction to Case of No Additional Electric Bouncl-

If now electric boundaries of a duct (i.e., top and bottom faces of a duct) are removed.

.
and continuity in U1 enforced, objects which we refer to as ‘~slices” are obtained, Slices

are in effect H 2-lenses. As in the case of E 2-lenses, an H 2-lens is a two-dimensional

Riemannian space and the totality of these slices yields a composite H-lens, or an infinite

set of Riemannian spaces.

6.1 Removal of Electric Boundaries to Produce Slices

Fig. 6.1 shows the effects of electric currents on surfaces in separating waves in ducts. The

presence of electric boundaries allows ducts to be separated by providing for a discontinuit~~

in the tangential _magnetic field, the magnetic field being zero outside of the duct space.

@
Thus, if we wish to eliminate electric currents we consider the equation

-+
.VX H.= Y+%

(6.1)

where C: is the boundary curv–e for surface” S~-as shown in Fig”. 6.1.

We assume the electric field vanishes outside of the ducts, and so if C: is parallel to

the magnetic field inside the ducts shown-in Fig. 6.1, then the difference of the tangential

components of magnetic fields between two adj scent ducts is clearly

(ii, - ii,). i,= [~1 - i2]. 1, (6.2)

.

where, as usual, the unit vectors correspond to the (UI, U2,U3) coordinate system of Fig. 6.1..
.
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Figure 6.1: Effect of ~lectr~c Currents on Walls in
Separating Waves in Ducts
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ante between ducts shrinks down to zero with the walls contaIf’ now the dis

0

“ x,ning Jsl,

becoming coincident, then (6.2) is just the cliscontinuity in the tangential magnetic field

We then obtain

*

.

and hence

if the currents are zero.

As with the jackets we now consider the impedance-matching

vation. Within a duct we have

(6.3)
.—

(6.4)

and transit+-ime conser-

(6.7)

which

and is

closed

can be referred to as an composite H 3-lens (or H hyperslice) which is an H lens

composed of an infinite number of such two-dimensional spaces. Now slices are not

in the sense of jackets, beginning and ending

—+

(6,5)

matching differential impedances. This same condition holds in a slice which is an ensemble

of ducts. For transit times, starting at U3 = O and following a path in a duct to U3 # O the

transit time T is “”

~= ~u3@3du3 # function of .1 ~ (6.6)

So requiring this to be the case for all UI gives

as the differential transit-time matching requirement in a slice.

So removing electric boundaries (i.e., “top” and “bottom” boundaries of a ducti), except

for the ending electric boundaries (the tmrmrnfmion-line conductors), the ductiensemble

becomes a slice. As in Fig. 6.2 the evolution is described. The slice is referred to as an

H 2-lens (or H hyperduct), which is a kind of two-dimensional space. The totality of slices,

as they do on electric conductors.
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a) Duct

TRANSMISS1ON-LINE
ELECTRIC CONDUCTORS

o , .

K
TRANSMISSION-
LINE ELECTRIC

CONDUCTORS

MAGNETIc
-t CONDUCTORS

v

+

b) Slice (Magnetic Hyperduct, H 2-lens)

c) Hyperslice (H 3--lens)

Figure 6.2: ~volut~on of Duct by Removing Electric Boundaries
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o
Jackets, as noted earlier, have the additional geometrical property of being closed in one

dimension.

Note the presence of perfectiy magnetically conducting boundaries on surfaces of con-
. .+ ..,..

stant U2which prevent propagation “in the 12 direction. Again these surfaces can be of zero

. thickness, but space between them can also be allowed. Except on S1 and S2 where the

magnetic conductors from slice m must connect to those from slices m – 1 and m + 1 to

keep the electromagnetic energy from the space between the slices, these surfaces can in

principle be separate. By adjustment of h2 in the jackets this spacing can be allowed for.

6.2 TEM Wa~es in a Slice

We now assume, as in Section 2.5, but now in some mth slice, that we have field com-

ponents in the form

E; =

E; =

H; =

H; =

J =

z; =

Cf =

O,q=o

h2H2 = ~f (t – US/C’)
o

HJ=o

constant in mth slice , E’ = constant in rnth slice

[-“

P’. = constant in mth slice
E’

& = constant in mth slice

(6,8)

so that our TEM wave propagates in the U3 direction, then the Maxwell equations assume

the form
~ ,=

* du~ = –~ at
(6.9)

dH’ _ ,13E’.
“e U3 — –E*”

o



Moreover the formal medium is described in (2.41) by

P’= !h.!!Q
hz ‘2 “

Now one slice (the rnth) is characterized by

(6.10)

(6.11)

Essentially in (3.3) we have united all ducts for the same m and removed n from consid-

eration. We have an incremental current (slice current)

as before. However, the slice voltage is the sum of all the duct voltages in the mth slice as

(N)

v = $AV = –~”;o) E;dul = –E;u~N) = –
/

~“d;
n=1 al C!E (6.13)

‘N) = total change in U1 across sliceu~

where the limit as Aul + O (N -+ m) is taken. h’ote as in Fig. 6.2 the contour ~E

is contained on a surface of constant U3 in the mth slice. Here both AI and V are

functions of us, but not UI. Again the convention is that increasing (electric) potential is

in the direction of increasing U1, and the current on the high-potential electrode is in the

direction of increasing U3.

With this we have the slice admittance

.

(6.14)

!,

NoLe that AY is independent of us (as Z~ is independent of us) and also independent of

u1 (over which (6.13) integrates and Al is independent). AY is only a function of U2, or

.
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o
better m concernin~ the mth slice. So we have

Z;=~=~~=”constantinmthslice.

In addition we have from the velocitv.—— —

;=r--- -p ‘ ~~ -,

p’E’ = h~ pzcl = constant m tith slice .

(6,15)

(6.16)

Note that [6.15) and (6.16) correspond to [2.42) in Section 2.5, except that their status as.,

con~tants is only in ~agh _slicp_sQaratQ!y. . . . . .=.

6.3 Case of p and E Singly or Both

S1ice

Independent of u~, U3 in a

The results-i-n this section parallel those in Section 5,3 because of the duality between

the roles of the electric and magnetic fields. For a slice, our fundamental form will be

(d?)’ = h;(dul)’ +=h:(du,)’

so that only the U1 and U3 directions are under consideration. Thus in any.- — .— .. .

assume c1 to be a constant, the equations (6.15) and (6.16) yield

-: ~
h,2V’@

h~fi

Hence if we take hz to be a constant

aries) we obtain

hl

h~

— “r#’El— —— = constant–
c)

r

II
—— * = constant .

(corresponding to uniformly spaced-

and therefore we can rewrite (6.17) as

h2cl——
&’ =

constant

(6.17)

slice if we

(6.18)

magnetic

(6.19)

((41)2= h:[(dtil)’ + (du,)’]
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wlicre ill COIIStallt tirtws U1. ‘1’he Gaussian curvature (see Appendix A, Section A.2)

associated with [6.20) is
o

(6.21) -

and thus for surfaces of constant Gaussian curvature the sign of the Laplacian of h(h) -

determines whether surfaces are positively or negatively curved, corresponding to spheres

or pseudospheres. If K = 0, the surface is Euclidean. In any easel when h2. k a constant

,2.2 JE]=2#gq (6.22)

and we have a nonuniform

If instead of taking .zI

medium.

to be a constant, we take ,uZ to be a constant, then equa-

tions (6. 15) and (6.16) yield

(6.23)
o

IIcnce the assumption that h2 is a constant leads to the conclusion that

hlha = hz~ = constant . (6.24)
P2

Finally, if both Cl and p2 are constants (corresponding to a homogeneous medium),

then

h~ =
r

$= constant

(6.25)

Therefore when c1, p2 and. hz are constant our surface is EucIidean. This result is the

analog of that obtained in Section 5 for jackets.
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o 7 Summary

In this paper we have investigated the relations connecting the differential geometry

.
method and the transit=time and differentia~ impedance-matching approach in designing

lenses for inhomogeneous TEM plane waves. In Section 2 of this paper, the differential

geometry scaling method was shown to lead to the transit-time and impedance-matching

method. Various cases were considered (e.g., inhomogeneous isotropic media, inhomoge-

neous TEM waves, homogeneous TEM waves) and the results appear in a summary given

in Table 2.1,

In the remaining sections, 3 through 6, of this paper we show that the physical as-

sumptions of transit-time conservation and differential impedance matching lead to the

differential geometric scaling approach. This is accomplished by showing how a duct can

evolve into an EM 3-lens in one of two ways. First, if all magnetic walls are removed,

wc obtain an E 2-lens which is called a jacket in this paper. The totality of all jackets,

o called a hyperjacket, is an E 3-lens. At this stage if all intermediate electric boundaries

are removed, the end result is an EM 3-lens. This process is described in Sections 4 and 5.

Alternatively, one could remove intermediate electric walls from a duct and obtain an

H 2-lens which is called a slice in this paper. The totality of slices, called a hyperslice, is

a H 3-lens, and removal of all magnetic walls leads once more to an EM 3-lens. Slices are

investigated in Section 6 of this paper.

These remarks are summarized in Table 7,1, which describes the evolution of a duct to

o

an EM 3-lens.
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duct
remove all

remove aII “intermediate”

magnetic walls electric walls

jacket slice

(electric hyperduct, (magnetic hyperduct,

E Z-1ens)
I _.

H 2-lens)
[

ensemble of ensemble of

jackets slices

+
hyperjacket

+
hypers}ice

(E 3-lens) (H 3-Iens)

remove aI1

“intermediate” magnetic walls

electric walIs
I I

EM 3-lens

.

●

I I

Table 7.1. Evolution of Duct to EM 3-Iens
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(Hexagon)

(Puncto)

(Hexagon)

(Puncto)

(Hexagon)

(Puncto)

(Hexagon)

Epilogue

“Can I learn a little more?” I asked when we took leave of each other.
“Couldn’t you lift a tip of the veil for me, so that I can know in what
direction .tg look. fo~the.problem?”. _.

“All right” he said. “Tell me what the sum of the angles of a triangle is.”

That unexpected question did. surprise me, I must admit, but I answered:
“180°, of course.”

“Always?” he asked, and he left.

I was looking forward in high spirits to my next meeting with Mr. Puncto.
From the moment we greeted each other he knew there had to be a reason
for my good mogd. .

“Did you find the solution?” he asked.

“No,” I replied, “I can’t shout Eureka yet, but do believe that I am ver~r
close to discovering the basis of the problem. I think that our curiou:;
phenomenon—the sum of the angles of a triangle exceeding 1800—has tc}
be explained by assuming that the sides of the triangle are-curved but thai;
this curvature is not- visible, I mean: not visible to w. It occurs in a direction
perpendicular to our world. A three-dimensional creature must be able tc~
see the curvature; we cannot.”

from Sphereland (1965)
by Dionys Burger

translated by C. 3. Rheinboldt,

.
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Appendix A. Differential Geometry of Surfaces
e

A.1 Fundamental Forms

1~this appendix some differential geometric results which are relevant to electromagnetic
.

Iens design are discussed. Our starting point in this discussion is the introduction of a .

metric form (also called the first fundamental form) for a surface. It is given by the

expression

(dI)’ = h:(du.)’ + h;(dub)’ , (Al)

where we are dealing with an orthogonal curvilinear coordinate system (u~, Ub,u~) with

line element

(d/)’ = h:(d%)’ + hj(dub)’ + h:(%)’ . (A.2)

Then, corresponding to surfaces u. = constant, the form (Al) is obtained. The coefficients

appearing in (A.2) are computed by taking

“=(%)2+(%)2+(%)2(A.3)

)where z = ~(u~,~b,~m , y = g(ua, ub, un), z = 2(u., u~, u~) are rectangular Cartesian

coordinates, and the index i can be equal to any one of the indices a, b>or n.

The first fundamental form for a surface can also be computed from

(d/)’ = (dfi) o (dF,)

where the position vector F.(UO,~b) describes the surface with parameters

~’(~a)u~) = ~(~a> ~b)~z + y(ua>ub)~y + ~(~aj ~b}lz .

(A.4)

u~ and ub. Thus

(A.5)

Another quadratic differential form which is of importance in the differential geometry

of curves and surfaces is the second fundamental form> denoted by most authors as 11, .

and defined by

11= –(dF,) “ (din(F”)) (A,6) -
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where

The vector I.(F.) can also be expressed in the form
i

(A.7)

(4.8)

where 1= and lb are unit vectors in the coordinate directions u. and ub.

The geometrical significance of the fundamental forms (A.4) and (A.6) lies in the fact-

that the first fundamental form is useful in studying such things as lengths of curves and

angles between curves on surfaces while the second fundamental form is useful in studying

curvature of a surface. .The_second f~ndamental form (A.6) may also be written in the

form (analogous to (Al))

II= .t@LG~ + tb(du~)’

where

(A,9)

(A,1o)

The derivation of formula (A.9) from (A.6) is straightforward though lengthy (see [11(

P 75)]).

A.2 Surface Curvature

Since the Cartesian coordinates ~i of a surface are functions of u= and ub, one finds
~3; 837

that certain compatibility conditions (like ~ = ~) must be satisfied and hence
h,=~ub dubduo

that certain differential equations are obtained. One result of all of this is Gauss’ “Theo-

rems egreguim” which asserts that the Gaussian curvature K is a bending invariant, This

means that K is unchanged by deformations of the surface which do not involve stretch-

ing, shrinking, or tearing. The Gaussian curvature K, associated with (Al), has several

59



c1if~crent formulations. One of the most useful for our purposes is given by

~=-k[&(k2)+&(:2)l -

0
(All)

The compatibility conditions mentioned above also lead to a set of differential equations

which are sometimes referred to

(Al) and (A.9) these equations

as the Codazzi equations

are

We note that these symboIs are symmetric

our surface. The

[11]. For the fundamental forms

(A.12)

complete set of these symbols

The Codazzi equations take a particularly simple form in the case that the lines of

curvature are coordinate lines. The principal curvatures, which are normal curvatures in

the curvature directions, are denoted by K. and K~ and are given by

We also note that the Gaussian curvature may be expressed as

The Codazzi equations may then be reexpressed in the form

K.)

&) .

(A.15)

.
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A.3 Riemannian

0

Surfaces

We next note that any surface which admits a form (Al)

face. A particular instance of such a surface is a Euclidean

fundamental form

is called a Riemannian

surface which admits a

sur-

first

(A.17)(d)’ = ((M)’+ (Ciy’)’

for some coordinates (z’, y’). Thus a basic test for Euclideaness is the existence of a real

coordinate transformation

which transforms (Al) to

(T&, u,) - (z’, y’) (A.18)

(A,17). If no such transformation exists, then (Al) defines a

non-Euclidean surface. A necessary and sufficient condition for a surface to be Euclidean

is the existence of such a transformation (A .18). The reader should see [12] for details.

The simplest examples of Euclidean surfaces include planes, cylinders, and cones and more

complex examples would involve combinations of these [as discussed later in Section A.6).

We now look at some of these simpler cases.

Thus, for a cylinder of radius rO, the transformation

(A.19)

will yield the first fundamental form for a circular cylinder if-we. take W = ro. We thus

obtain the first fundamental form

[dL)’ = T:(dJ)’ + (dZ)’ . (A.20)

Tile form (A.19) may be put into the Euclidean form (A.16) by the transformation

z’ = T(J$

‘ur=z
(A.21)
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and hence we obtain

(CN)z = ((lx’)’ + (dg’)’ . (A.22) e

Thus a circular cylinder of radius To is our first example of a Euclidean surface. .

A second example of a Euclideari surface is a circular cone.

s= r sin(d) cos(~) = Vcos(#)

y = rsin(d) sin(r#) = Vsin(@)

z= r CoS(@)

For the transformation

(A.23)

we can obtain the first fundamental form for a circular cone wiih generating angle 0 = O..

The fundamental form for such a cone is

The transformation

x’ = r cos(~ sin(d~))
(A.25)

u’ = r sin(# sin(d~))

will transform (A.24) to the Euclidean form (dL)’ = (cM)2 + (cly ’)’ thereby demonstrating

that a circular cone is also a Euclidean surface.

Our Iast example is that of a sphere of radius rO. The surface of such a sphere is a

simp~c example of a non-Euclidean surface. The first fundamental form for this surface is

(dt)’ = r~(d~)’ + (r~sin’ O)(d#)’ . (A.26)

One may show that the surface of this sphere is non-Euclidean by showing that there is

no real coordinate transformation (A.18) which transforms (A.26) to the Euclidean form

(A.17). Alternatively we may make use of a fundamental result which states (see [12]) that

the Gaussian curvature K vanishes identically on a surface if and only if there is a real
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coordinate transformation (A.18) which transforms (Al) to (A.17). Thus, for the surface

of a sphere of radius ro, we have

hb = TOsin(d)

(A.27)

and hence

..[ _ l___

d 1. f3(r0 sin(0)) = 1
K=– ~=-”-– m“ (A.28)

Tgsin(6) (98 ro de r.

Tllcrefore, since K # O at all points on the surface of a sphere, this surface is a non-

Euclidean surface. We note that for the previous examples of a circular cylinder and a

circular cone that K vanishes identically for these surfaces thereby establishing once more

the Euclidean nature of these surfaces.

Finally, we “not+ that a surface is Euclidean if and only if at least one of the principal

curvatures, Ka or ~b, vanishes identicW on the surface” This assertion is an immediate

consequence of- (A.14).

A.4 Surfaces of

Surfaces of constant

Constant Gaussian Curvature

Gaussian curvature are of considerable importance. For example,

if K = l/r~ > 0, then the surface associated with (Al) is “essentially” a sphere of radius

TO. The technical statement is that the surface is “isometric” to a sphere of radius ro

This means that there is a mapping of the given surface, say SI, into the surface Of th~’

sphere, say S2, which preserves lengths of curves (i. e., the length of the image of an arc in

S1 equals the length of the arc in S2). Thus (see [13]) we note that a surface of positive

constant Gaussian curvature K = l/r~ is isometric to the surface of a sphere of radius ro,

a surface of Gaussian curvature K = O is isometric to a plane, and a surface of negative

constant Gaussian curvature K = —I/rj is isometric to the Pseudowhere” An examP1e Of
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the latter is provided by a surface with fundarnenta~ form

(d?)’ = ~~~{cd’(~a)}(db)’ + {sinz(U=)}(dUb)’].

For this surface it is easily verified that

K=–; <o.

m
(A.29) .

(A.30)

The surface is a pseudosphere (see Fig. Al) and it is obtained by revolving a tractrix

about its asymptote.

For the special case of Riemannian surfaces with one of the scale factors equal to a

constant more can be said. Let us assume for convenience that ha = 1 and investigate

further. Our first fundamental form is

(dt)2= (d~a)2+ h;(h,)’ (A.31)

with associated Gaussian curvature

1 ~’hb
K = ––—

hb dU: “

o
(A.32)

Now if K is a constant (positive, negative, or zero corresponding to spheres, pseudo-spheres,

or planes) the differential equation (A.32) is integrable and explicit expressions for the scale

factor kb are obtainable. Let us assume that

so that constants of integration may be evaluated. Then, if (a) K = I/r~ > 0, (A.32) can

be dealt with as an ordinary differential equation since K does not depend on ~b, and We

have
.

d’hb
~+;hb=o.

a r~
(A.34) -
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Fi”gure A. 1: Pseudo sphere
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The solution of (A.34) is

()

Ua
hb(~a,~~)=cos ~ (A.35) ●

while if (b) K = – l/r~ < 0, (A.32) has solution

(A.36)
.

and if (c), K = O, (A.32) has solution

hb(~a,~~)= 1. (A.37)

Thus we reaffirm our earlier statement that surfaces of constant Gaussian curvature corre-

spond to spheres, pseudospheres, or planes. For Riemzmnian surfaces with one of the scale

factors equal to a constant, the coordinate system (u., ~b) is usually called a semi-geodesic

coordinate system. The terminology is explained by the fact that one family of coordinate

lines consists of geodesic lines and the other family consists of orthogonal trajectories of

the first family. Simple examples include Cartesian and polar coordinates in a plane (Eu-

clidean space) and spherical coordinates on a sphere (non-Euclidean space). Surfaces of o

revolution will ako yield semi-geodesic coordinates.

A.5 Equal Scale Factors for Surface Coordinates on a Euclidean

Surface

The special case of surfaces whose first fundamental form

(dt)’ = h’[(du.)’ + (dU,)’]

is

(A.38)

(i.e., h.= hb = h in (.4.1)) is ako of interest, If the Gaussian curvature vanishes identically,

so that the space is Euclidean, then there is a coordinate transformation

z’ = d(~=,ub)

3“ = y’(u=,~b)
●
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o such that

.

((-/?)2 =- (f/T’)z + ((-h,’)’ . (A.40)

In this case we can show that Z’ and y’ are either the real and imaginmy parts of an

analytic function of u= + ~ub or of u. – ~ub. To see this, first note that (A.38) and (A.40)

give two distinct expressions for (dl)2. Thus, since

dy’ = j$’du= + ~dub
a

(A.41)

we obtain

(d.t)2 = (d+’+ (dy’)2

!(-) F
~zl 2

ay’ ‘——
6’ua + ha,

2

1

(dua)2 +2 ~~+ ~~ (du=) (dub)
a a

Hence, by comparison of (A.42) with (A.38), we must have

‘2=(%)2+(%)2=(%32+-(%)2
R) (%)+(%)(%)‘0

The equations (A.43) then imply

Thus the only

Hay’ 2
aua

possibility is that

(g)’= (g)’
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a’
and ~. Hence, eitheras otherwise there is a linear relation between + u~

or

ax’ ay’

%=–au=”

lf the first equation of (A.46) holds, then

ax’ (?rJ’——
au. = dub

whiIe if the second equation of (A.46) holds, then

Thus if

(A.46)

(A.48)

(A.47)

(A.49)

o

then the Cauchy-Riemann equations are satisfied and Z’ + ~y’ is an analytic function of

the complex variable u. + juh. Similarly if

&=_a’
A. #-Ub

&!=g
dub a

(A.50)

then z’ – ~’y’ is an analytic function of the complex variable Ua + ~“ub. In either event we

can write

f(%+ .?’Ub) = Z’ + jg’ (A.51)

which represents a ccmformal transformation. Thus, if h. = hb = h so that our first
.

fundamental form is expressible as (A.38), and if our surface so defined is Euclidean, .

conformal maps are the only way in which the form given by (A.38) can be obtained.
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We note also that the coordinates z’ and y’ are generalized

surface is a plane, they are exactly Cartesian coordinates.

end of this appendix, Z’ and y’ could be curvilinear. Finally,

curvature K, given in (All), can be rewritten in the form

Cartesian coordinates. H-the

However, as discussed at the

we observe that the Gaussian

(A.52)

when ho = hm = h. Thus our surface is Euclidean if and only if Ln(h) is a harmonic

function of u. and u~.

Note, however, that merely

tha~ K = O for that surface.

having h. = hb for a surface will not be enough to-guarantee

Equation (A, 15) shows that at least one of the principal

ciirvatures, K= or Kb, must- vanish in order for the Gaussian curyature .to vanish. In the

case that h. = hb = h, equation (A.52) shows that the Gaussian curvature K vanishes if

and only if in(h) k a harmonic function of u~ and ub. A simple example of a surface for

which ha = hb with K # O k given by a sphere on which we choose

ua = ‘2”0Fw+olcos(d)

—. .—
‘- “’”-“2”+an(f+ol sin@)~-zu-b‘“”-

(A.53)

The south pole of the sphere (0 = .~) is tangent to the (u., ~b)-plane at the origin of this

plane and the north pole of the sphere has coordinates (rO, O, O). In this case the mapping

(A.53), which is a conformal mapping, is stereographic projection from (To, O, O) to the

(u., ~b)-~lane. It is a routine calcula~ori to check” that for these coordinates

(dI)’ =
16r~

--, ((du~)’ + (du,)2) .
16r~ + u: + ub

(A.54)

.

.
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A.6 The Scroll: A General Euclidean Surface

Finally, we conclude this appendix

l~or these surfaces, K = O and since

with some further comments on Euclidean surfaces.

.

K = KaKb (A.55)

at least one of the principal curvatures vanishes. If we suppose that Ka = 0, then the

Codazzi equations (A-16) imp~y

~ dh Z?!.kJ. o
h.~ = ‘b dub –

8K =
e

Kb ~hb . –KbW .
u~ hb ~U. a

@.56)

Hence if Kb is nonvanishing, then the scale factors satisfy

h. = f(u.)

hbKb = g(Ub)

since the second equation of (A.57) may be rewritten as

Hence, for Euclidean spaces with K. = O, h_. depends

(A.57)

(A.58)

only on ~al at most, and ~hhh

depends only on uh, at most.

Analogous results hold when Kh = O and K. in nonvanishing. In the case where both K.

and ~h vanish, h. depends only on U., and hb depends only On Ub, and Our first fundamen~a~

form clearly assumes the Euclidean form, for some (z’, y’),

(d)’ = ((id)’+ (dy’)z (A.59)

which is characteristic of a plane. In any case, when our space is Euclidean~ at least one

of the principal curvatures vanishes. If, as we have seen in the above analysis, we take

.

.
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@

Ka = O then ha depends only on u.. Hence, if we define a new coordinate, say

then dtia = hadua and

“(dlj’ “= (diia)’ + h,(du,) (A.61)

which means (fi~, ub) are semi-geodesic coordinates. Therefore, since K = O, we have

hb=AGa+B

(A.62)

(A.63)
.- --

-where A and B. are constants of integration. Hence, because of (A.60), hb k a function of-

u.. Therefore for the case where K= = O the scale factors h. and hb are functions of a single

variable. If-both principal curvatures vanish then, as noted previously, ha is a function of

Ua (at mOSt) and hb is a function of ub (at mOSt).

As we observed in Appendix A.5, the case of equal scale factors for a Euclidean surface

led to the statement-that general Cartesian coordinates (z’, y’) exist with the property that

.f(%+ jub) = Z’ +jd (A.64)

is a conformal map. Thus there are many more ways of producing examples of Euclidean

surfaces. The mostigeneral Euclidean surface is either a plane or a union of planes, cones,

and/or cylinders. Thus one implication of this result is that, for our lens applications,

bending of metal sheets in lenses is permitted, since plane sheets and bent-sheets have the

same (zero) Gaussian curvature. See Figure A.2 for an example of such surfaces, which we

choose to call scrolls.
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It should also be noted that scrolls can be even more complicated as illustrated in

Fig. A.3. In particular, a Euclidean surface can be constructed in such a way that it is

multiply connected. A simpl~ example is a cylinder (not necessarily circular) in which the

.
surface closes on itself, i.e., one can leave some point on a geodesic and arrive back at

the same point. A similar statement can be made concerning cones. We might call such

Euclidean surfaces l-closed, i:e., they are closed in at least one dimension.

As in Fig. A.3 this closure can be rather convoluted. Consider a cylinder (truncated)

which is flattened such that one or more portions are planes (planes having both principal

curvatures zero). One of these planar regions can be part of-another such flattened cylinder,

This

that

with

process can be extended indefinitely. Similarly conical surfaces can have

are planes which can in t-urn-be inclucled in other conical (or cylindrical)

corresponding planar portions.

port ions

surfaces
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Appendix

@

B. Maxwe119s Equations for a

Space

Two-Dimensional

The general form of the real. and formal Maxwell’s equations appear in (2.9) and (2.15) to-

gether with the corresponding constitutive relations, If we specialize to a two-dimensional

space these equations

formal magnetic field

(for the case ~=@ will take the following form if we assume we have

components H;, H( and, a formal electric field E; (as in Section 5):

(B.1)

Alternatively we could proceed by interchanging the roles of electric and magnetic fields

,) as in Section 6. The replacement of the formal field equations by the real field equations

— -. —.
yields

(B.2)

Now various assumptions may be made about the real and formal media. Certainly we

must have in our present case

(B.3)
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from (2. 13). If we then assume the formal medium is isotropic, then pi = Vj = p’ and we

@
obtain

hb h.
~k = —W ,

a hb
(B,4)

.

‘1’hm if the real medium is also isotropic (i.e., pa = pb = P) we find that

.

ha = hb=h

(B.5)

h.p = p’ .

N our space is Euclidean then this case corresponds to that discussed in Appendix A,

equations (A.38) through (A.51), which means the coordkates (u~, Ub) are expr-sible EM

a complex variable UC+ ~ub. If the real and formal media have constant permeability, then

the scale factor h~ is also a constant

conducting boundaries as discussed in

(corresponding to a constant spacing of

Section 5] and the permittivity satisfies

electrical

If the real and formal media are both uniform and isotropic (i.e., constant jL, p’, c.,

~~) then all scale factors are constant and our space is Euclidean. Thus we see that by

increasing the rigidity of our assumptions on our real and formal media we arrive at the

situation where our space has to be Euclidean for the case of uniform and isotropic media.

On the other hand, let us investigate the consequences of the assumptions that h. =

h~ s h, and that our space is Euclidean. Certainly one possibility is the case that h k a

constant. A more interesting case occurs when h is not constant. As shown in Appendix A,

(A.38) through (A.51), conformal maps yield the complete class of solutions. A particular

cxamp Ie corresponds to inversion of coordiantes, where we put

(B.7) .
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ill which case

h= 1--
tL: + U:

(B.8)

.

((u)’ = h’[(dua)’ + (C&)’] = [((id)’+ (dy’)’] . (13.9)

T}lis example is the analog of the situation discussed in [1 (Appendix A)], characteristics o.f—

coordinate systems for field components in all three coordinate. directions are investigateci

(i.e., the case hl = h2 = hs).

“B.2 Case “of a Uniform TEM Plane Wave in_ Two-Dimensional

Formal Coordinates b

Maxwell’s equations (in Appendix B.1) may now be further specialized to the case of’

plane wave propagation in a plane S with propagation in a direction io. We have coor-

dinates (u., u*, u.) as in Appendix A with u,. constant on S and with corresponding unit

++.
vectors- (la, lb, In) and we assume our formal medium is isotropic and homogeneous. Thus

our formal fields are assumed to satisfy

u

i. = (cOs(q))i’a + (sin(v))i~

in (II.1O), p’, s’, and q are constants and hence Z: and c’ are also constants.

(B.1o)
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We note that as a consequence of (B.1O) we must have

e
(D.11)

fy= .’%,-/ Cos(?j)
o

where q is the constant angle defined in (B.1O). We note also that the formal and real “

media properties are related by the following equations. In these equations, which follow

from (2.13), we have taken p’ = U: = I-4 and ~’ = 4 because of our stated ~~umptions on

the formal medium. Thus we obtain

(B,12)

!#&En= &’.
n

Since we have formal magnetic field components H:, H( ancl a formal electric field

component E~, the situation for purposes of the present development is the same as that

for a j ackct, as in Section 5. We note that each of these formal field components satisfies

a two-dimensional wave equation o

(B.13)

where W; can be any one of H:, H(l or E;.

B.3 Specialization of B.2 to the Case of an Isotropic Real Medium

Now the equations (B.12) which give relationships among the scale factors and the real

and formal constitutive parameters were based on the assumption that the formal medium

is isotropic and homogeneous. If we now impose an added restriction on the rea~ medium~

namely, that it is isotropic, then

p = pa=pb

h = h.=hb.
(B.14)
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lIcnce the equations (B.12) maynowbe written as (using s= s.)

E= ~’$
-z

(Bs5)
/

~=~.

c
One consequence of a constant scale factor h. is that for the real medium the permea-

bility p is a constant and that the permittivity c will in general be a function of u= and
i

Ubsince h depends on these coordinates. If our surface is Euclidean, then h is obtainable

through conformal mappings of the plane into itself. A further observation is that for

constant hn, equations (B. 15) correspond. e~actly to the case of two-dimensional lenses

(with electric field in the direction of the z-axis) discussed in [1 (Section IX)]. The case of’

constant h~, as stated earlier, corresponds to a constant spacing of electrical conducting

boundaries.

c? B.4–Further Specialization of B.2 and B.3 to the Case of Constant

y and Constant s

Tllc equations (B.15) are based on the assumptions that the formal medium is isotropic

and homogeneous and that the real medium is also isotropic. If we further specialize

these equations to the case of a constant permeability, p, then the scale factor h~ is also

constant. As we saw at the end of the last section these assumptions led to, in the case of

Euclidean surfaces, tothe case where the complex coordinates and hence h are obtainable
.

by conformal mappings and the permittivity c is a function of the coordinat-es u. and ub.

If’ in addition to a constant p we have a constant S, then equations (B .15) imply that

<
all scale factors are constant. In this event the surface defined by

v (d~)’= h’[(duo)’ + (dub)’] (B.16)
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is obvious Iy Euclidean. Note however that for surfaces which are Euclidean that the

permittivity c need not be a constant.
a

We note that the results obtained above are applicable in Section 5 (on jackets).
v

B.5 Dual Cases .

The results obtained in Sections 13.1 through B.4 can be used in the case where we have

forma] electric field components ~~ and ~~ and one formal magnetic field COmPOnent> H:.

The duality that exists between the roles of the electric and magnetic fields makes this

task a simple one. Thus, for example, the formal MaxweH’s equations become

i3H: , 3E;

— = ‘&b atau.
(B.17)

For the case of a uniform TEM plane wave, as discussed in Section B .2, we would take
9

(B.18)

where ~0, Z, c’, and Z: are the same quantities which appear in (B.1O).

Thus the assumption that the formal medium is isotropic and homogeneous would lead

to the analog of (B.12), namely,

(B.19)

!!fL!h
hnkl = P’.

Hence if the further restriction that the real medium be isotropic is made, then we must

have

&=~~=Eb
(B,20)

h=h. =hb
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9} and consequently (using ~.=~)

,

(B,21)

The analogs of the results in Sections B.3 and B.4 then are easy to state. For example,

h,, is a constant if and only if the real permittivity c is a constant. If c is a constant, then

. p will in general be a function of -u. and Ub and the surface can be Euclidean. If both c

and JL are constant then the surface will be Euclidean. Finally, the case of constantih.
__.=m=. . .. ~=_.._==—.=——-–.+.–

corresponds t-o the case of two-dirn.ensional lenses (with magnetic field in the z-direction)

discussed in [1 (Section IX)]. The results in the dual cases discussed above are applicable

in Section 6 (on slices),

1
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