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INTRODUCTION

In the recent past attention has been given to the problem of calculating the fields produced by a

toroidai an~enna at and around its center (Refs. 1 and 2). Specifically, for a &gap generator it was

determined that a low frequency Efli ratio at the center equal to the free-space intrinsic impedance
.

can be achieved with a particular uniform loading resistance, The results obtained in the above
B

papers have been revisited here with a much simpler approach, based on the asymptotic antenna

theory, for the case of a thin Torus. The fields have been calculated at and around the center, in the

frequency and time domains. The cases of one and of two &gap generators (one source plus its

image) were investigated. The current was calculated in the time domain at three different

locations along the wire. A ‘<uniformity error” based on the root-mean-square variation of the

principaI field component around its average value in a certain domain of interest has been

computed also. In addition, other properties of toroidal antennas, such as the input impedance have

been derived. ‘The case of a finite-gap source with the field configuration at the gap produced by a

biconical wave launcher has also been investigated. The approach has been extended to the

elliptical geometry and the same electromagnetic quantities were derived. In addition, parametric

studies to analyze the field behavior as a function of the loading resistance, the location of the

source, the eccentricity and the thickness of the wire relative to the major semiaxis were a!so

conducted. In Part I the circular geometry is discussed, whereas Part 11is concerned with the

elliptical one. This approach is particularly appealing since the analytical results can be cast in

closed forms.

1.1

1.1.

1.0 PART 1: THIN TOROIDAL ANTENNA

SINGLE &GAP GENERATOR

1 Current Along A Thin Circular LoorJ Antenna
,.:,.::
.,,,’

Figure 1 illustrates the geometry of the antenna being analyzed, together with the cylindrical.’,,,,.
coordinate system used in the calculations. It is shown that the radius of the antenna is a and the

radius of the wire is b. We shall indicate with a s and az the unit vectors normal to the surfaces
P’ @

p = const, @ = const, and z = const, respectively, and forming a right handed system. In the case of

a single ti-gap source, which is dealt with first, it is assumed that its location is coincident with the

origin of the @coordinate. The same approach is applicable also in the case of multiple &gap

generators located along the antenna; as will be discussed in Section 1.2. The particular case of a
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Figure 1. Geometry of TORUS antenna with &gap generator located at Q= 0°,
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half circle with single or multiple fi-gaps above a perfectly conduc~ing ground, wilh the plane of Lhe

antenna perpendicular ta the ground, can be treated within this last category.

ILis noted that with the approximation of a thin antenna, i.e., a >> b, kb <<1, one can ignore the

current flow along the circumference of the wire and consider only that along the antenna loop, i.e.

along @ That is to say that the current has only one component in the @direction. One can see,

from Maxwell equations and the equations for the vector potential in cylindrical coordinates (Ref. 3)

that, associated with I@(@)along the loop are two components of the vector potential, A* and Ap.

On the antenna surface the poten~ial can be represented, in terms of the currents, by

and

(1)

p ax lJ#j’)e
ik ~nf2-Zos(4-#}1 + bz

A$tJ = :
\

a sin(@- @’)d@’
o %0a 2 -2co$+-@’)1 +b2

where, in the integrand, use has been made of the approximate kernel diszussed in Ref. 4. These

integrals can be evaluated approximately when ka is large. In fact, in such case, due to the

oscillatory nature of the exponential terms in Eqs. 1 and 2 and the assumption that b c < a j only

the values of@ close ta + are going to contribute signWzcantly to the integral. By using this

approximation, Eqs. 1 and 2 become

(2)

A+($) = ~ I@((#I)
/

a d@’
o /4a2sin2(@’/2) + b2

A$@] = O

Since, for @- @’,cos (~ - @’)-1 and sin (~ -#) --O. By making the change of variable

<= 2asin(~’/2], d~= aco$@’/2)d@’ = a d~’, bemu~ mosl of the contribution to Eq. 1.a is coming

from ~ close to 0°, itis obtained

(1.%)

(2a)

*
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(1. ID)

In writing Eq. 1.b one must exclude the point $=: OO.In fact, because of the &gap generator, the

current is infinite at the gap location. The nature of the singularity of the current has been

investigated by T.T. Wu and R.W. P. King in Ref. 5 who found it to be of logarithmic type, therefore

integrable. Hence Eq. I.b does not represent correctly, at ~= 0°, the relationship between the

potential, which is finite, and the current which diverges. However, for the purpose of calculating

the current everywhere else and consequently, the fields, Eq, 1,b and its approximate forms are

adequate.

The contribution to A+(@) from the second integral is negligible compared to that of the first

for large ka. Therefore one obtains

0

5’ ‘o)x [hH:l)~bl
A@(@)= ~n ~

.

<,

ntegra

(1.(:)

where H~l) is the Hankel function of the fti kind and order O. Eq. 1.cforsmall kb, can be written as

A@(@)= ~ I@) X
.[-2’n@b’l

Furthermore, Eqs. 1 and 2 can be evaluated approximately at low frequencies also, i.e. when

ka << 1 and the exponential factor in Eqs.1 and 2 is taken equal to 1. In this case the same

argument used before to justify neglecting AP compared to A+ can be invoked again, In fact, the

integrand I/{k’(a’ I !2-2cos($ - ~’)] + W)} is very large when @ = $’ and decays rapidly to much

smaller values elsewhere since a> > b. Then, one is left with the evaluation of the inte~al

‘n
A+($) = ~10($)

Id

a cosfl
Ed(3

o 4a2sin2(0/2) + b2

(1.d)

(1.(?)
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which yields

[
‘I (~) 211n(8a/b) -A@(@ = ~n ~ ln( 2)–3/4]

)

which is the resuit obtained within the Q-theory, as described in Ref. 6. It is interesting to notice

~hat for frequencies f ( = c/A) such that 2rIa = A, Eq. l.d can be written as

(1.0

(1.g)

which is quite close to Eq. 1.f since in 8- 2- (ln2 + 3/4). This approximation is legitimate particularly

when a >> b, which is the case of interest here. Since the approximation (Eqs. l,c and l.d) used to

evaluate the integrals is also known as ~-theory (Ref. 7), the derivations illustrated above show

that the two theories can be reconciled. It will be shown shortly that choosing Eq. (1.g) for the

potential is also equivalent to the approach used in Ref,l, i.e. the same resuits for the

electromagnetic fields at the center of the antenna are found. This is to say that the more

complicated approach of Ref. 1 when taking the thin wire approximation can also be obtained from a

much simpler asymptotic antenna theory. Again it is stressed that the key approximations invoIved

in Eqs. l.b through l.g are that kb <<1, a >> b. Therefore, in the following, the reader should

exercise care when interpreting the results in the frequency range in which kb approaches 1.

The surface of the toroid is loaded with an impedance per unit Iength Zi. The choice of the value of

Zi depends upon the radiated fields’ properties that the designer intends to achieve. Ample

discussion of this issue is presented in Ref. 1 where a value for Zi had been obtained such

that E/H = 377 !2 at the center of the loop. In this note it will be shown that when this Z: is chosen,

there is complete agreement between the results for the fields at the center, both in the high and low

frequency limits, obtained with the method presented in Ref. 1 and with the asymptotic antenna

theory detibed in the following. Therefore this same value Z; is retained throughout most of

Part 1.

.
*
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Because the antenna internal impedance is negligible, one has
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everywhere along the antenna except at the source location. For the case of a b-gap generator, at the

source location E@= -VON@)/a.

From Maxwell equations and the equations for tk~epotential one obtains

(4),

with
(5)

v“z - ik%$ = o

By combining Eqs. 3,4, and 5, neglecting the contribution of AP since it is much smaller than A@,as

shown by Eqs. 2 and 2a, one can write,

which can be rewritten in terms of the current as

~ #l@
2n Zi i2nk2 ‘0

——

a2 i@2
+k2[l+i —— — 6(Q)

~poln(kb) ‘*+ = opolnkb) a

to be solved together with the boundary conditions

1*(o) = 1+(211)

and

2nik2
where P =

upoln(kb) “

Equation 7 is also interpreted formally as a transmission line equation. The “characteristic

impedance” of such line is defined as --0 ln(kb)/2[1. However, this does not imply that the

solution for the current represents the lowest order mode of propagation in a transmission line and

(6)

(7)

(8)

(9’)
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that, Lhcrefore, should be valid only when ka is small. In fact the term “transmission line model” is

used improperly and the more correct term “asymptotic antenna theory” should be used instead.

At frequencies at which 21M = h and below, In(kb) is replaced by - in (a/b), since Eq. I.d is replaced

by Eq. 1.g. Furthermore, at frcquenciesat which kb >0.1 in (kb) must be replaced with (-ird2) ll~)(kb)

since the approximation of Eq, 1.e by Eq. 1.d is not very accurate.

By defining

II

ziP
Y2=- k2 l+—

k2

the solution to Eq. 7 with Eqs. 8 and 9 can be written as

I@(@,u)= Aey* + Be ‘y@

where

Pvo - Pvo
A = B

2y(l - em)’ = 2Y(1 _ e-am)

(10)

(11)

(12)

.

.

In Eq. 11 the explicit dependence of 10 on o as well as @has been emphasized. It is noted that this

approximation does not exhibit the divergent behavior at@ = OO.However for the purpose of

calculating the fields this approximation is adequate, because the effect of the singular term is very

localized. One could a~ways add this singuiar term according to Ref. 5.

When Zi is assumed equal to Z; = Ro/2na = r@-d8a/b) - 21/2na = q~n(a/b)/2rta derived in Ref. 1,

Eq. 10 it is obtained

1

1n2(a/b)

‘ex’liiadanl

hda/b)
ylyo=d li-

1}
(13)

k2a71n(ka) + ln(b/a)12 ka [ln(ka) + lr@/a)I

where yoa = + ika and q. = 377 Q is the vacuum intrinsic impedance. Again, at frequencies at

which 2[1a = L and below, the term in (ka) is neglected. The normalized wave number y/yO is plo~ted

in Fig. 2, as a function of ka, while b/a acts as a parameter. It appears that at high frequency the

propagation along the antenna tends to resemble that in free space, i.e. y = yu = ik, whereas at

.
.

relatively low frequency it is characterized by the dispersive behavior illustrated by the two curves.

Note that for a/b = 102 both real and imaginary part of y/y. become inllnit-e at ka = 100. This is

8
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caused by the term ln(ka) + ln(b/a) in Eq. 13 which vanishes. however, the asymptotic antenna

theory breaks down when kb becomes 1 or larger and one should not use the results for w%= 102

when ka approaches 100.

1.1.2 Time-Domain Antenna Current
.

L

Equation 11 represents the antenna current in the frequency-domain. It is interesting to calculate

the antenna current in the time domain. This is obtained by performing an inverse Fourier

transform. For the case that the driving voltage is a unit step function this amounts b calculating

(14)

where I@(@,m) is given by Eq. 11 with @ = kc. However one still needs to truncate the integration at

some point to be abie to carry it out numerically. To avoid the singularity at m=O Eq. 14 can be

evaluated as

(16)

where I’(m,@)= I(o,@) e-ikq and 1’(0,+)= Iim M@). The first integral isevaluated numeritxlly
-o

without making approximations on the kernel. The limit of integration is selected so that kb << 1

and Eq. l.d holds. We have chosen to terminate the integration at lca = 30, corresponding h

kb = 0.03. The second and third integrals compensate for the numerical truncation by adding a

contribution evaluated analytically. Such contribution, which is dependent on the truncation value,

is calculated by approximating y with ik and keeping ka, kb fixed at the values 30 and 0.03,

respectively. This approximation is justified by the fact that the integrand of the second and third

.
.

.
.

integrals is decreasing and the phase varies very rapidly at high frequencies. Therefore one is left

with

[.

‘e
-ik[ct-a@}

– A Re ll’h,f(c@)- 1’(0,+)1
/

C!ti
1

(16)
n L im

10
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with I’h ~(ti,$)= lim
. .

~m
‘(Lo,$)obtained using y =& in I(u,$) given by Eq.1 1. By making a suitabhhange

of variable Eq. 16 can be evaluated analytically also, yielding

- ~Re[I’h f(u,@)- l’(O,@)lsi[ka( : -0)1
n ,.

(’17)

with si(z) being the sine integral defined as

/

‘sin(t) (18)Si (z)= - —dt
z t

The fourth integral on the right-hand side of Eq. 15 can be evaluated analytically and it yields the

unit step function of amplitude I’(O,@)excited at the time t = a@c.

Figure 3 presents the time domain current response at three different values of +, i.e. @= 0°,

@= 90°,and 180’), respectively.

1.1.3 Input Impedance

From Eq, 11 calculated at +=0°, simply by dividing by VOand taking the reciprocal of the ratio, the

input impedance Zin is derived. It is found

R
-w? -n

-ikan Y (W+iT) ikan Y (W+iT)
b-I&b) eZ,n=-J

-e
l/Y (W+iT) — —

n In(a/b) ~-ikan Y-l&( W+iTl -w
+e

ikan Y (W+iT)

with

h (a/b)x=
ka[ln(ka)+ln(tda)]

(19)

(20,a)

‘“A (20.b)

11
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(:20,C)

F
I+Y

w= T
(2!0.d)

.4’

,4

0

The calculation of Eq. 19 resulted in the two curves presented in Fig. 4 for the real and imaginary

part, respectively. Because of the lack of the singular term in the solution for the current at $= 0°

one should expect to see large errors in the calculation of the input impedance at += 0°, particularly

as far as the reactance is concerned. In fact, theoretically, the reactance shuld be zero, On the other

hand, since the antenna is resistively loaded, the resistive part is controlled by such load. However,

one should remember that the singularity in the current is associated with the presence ofa slice

generator, which is not a realistic generator. In practice, measurements of input impedances

associated with use of feasible sources would reveal the presence of a reactance ditTerent from zero.

At low frequency the calculated impedance is purely resistive and equal to the value ROof the

loading resistance, As the frequency increases the resistance gradually decreases to zero. The

reactance is always inductive and decreases to zero also, both at the low and high frequencies.

Intuitively it was at first expected the reactance to change sign, maybe even several times, before

vanishing (transmission line behavior); however this does not happen. Mathematically this can be

understood ifEq. 19 is rewritten in the form

eB(cosA-isi.nA) - e- B(ms4+isinA) (21)

eB(co+-isinA) + e- B(cosA+isinA)

with A=kan ‘~ W, B=kan ‘fi~ T.

As ka increases, T~O and W~l. However, in the range of ka considered, B assumes fairly large

values anyway which cause the exponential eB (e-B) to become very large (small). Therefore the

ratio containing A and B in Eq, 21 is not oscillatory but is always very close to 1, and the impedance

does not exhibit a strong resonant behavior, it is evinced that the loading resistance R. is causing! a

pronounced damping effect and only a small portion of the loop in the vicinity of the source is the

“effective” antenna. A simple circuit representation is thus given by an open circuit voltage source

in series with the loading resistance and the inductive reactance. A possible capacitive reactance

would be in parallel to this series of elements, However, as the frequency increases, this reactive

element is shorted out and the only surviving reactive element is inductive. Because of the high

13
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value of the loading resistance the radiation resistance may become negligible and may be omittecl

from the circuit representation.

1.1.4 Fields At The Center Of The Antenna

Once the current is known one can calculate the potential AP, A@everywhere. In general these

components are given by

P. @

\

eikda’+p’- ‘apUJ@ + z’

Ap(p,$,z) = — I (@-@’)-
4n ~-21-I 4

a ain$’d$’
2ap cos$’ + 22

Po

\

ik - 23pcosl$’ + 22

A@(p,@,z) = Q I (Q-($’):
4n @-2n 4

a czx@’d@’
a2+ p’ - 2ap CO*’ + z’

Consequently, the electromagnetic field at the center of the TORUS, i.e. for z = O, p = O, is

and

-[

aA4 t?A
P

=az2—– —
* 1** Z=p=o

E,= (-c2/io)V X E
Z=o, p=o

- aA4 aAp

I

la aAp
13p=— B@=— B

&’ C%’ z=
—(pA@) - —

i+ * 1

(22)

(23)

(24)

(:25)

(26)

(:27)

15



Taking the limit in Eq.25, it is obtained

H

~ SAe d2AP _ ~ d3A4 , d3AP d2A@
z, = (-c2/iti) ; - — - —

I II

(28)
-—_ -—

~ 2 @2* ~2 -a+ 2dp2*
+—

2 **2 &2 p=o, z=o

Equations 24 and 28 can be carried out analytically for p= z = Oby first calculating the derivatives

in p and z and taking the limits for p,z -0 of the integrand and then performing the integration and

finally the derivative with respect to@

It is obtained

e
ika -Pv

E= ~(1 -ika)~
()

o-
—a

c
y2a z

ii= 3(1+: - ika)
c 4n

:(-),,

(29)

(30)

By evaluating - PVJ(yaa) and PVJ(yzaz + l) in the low frequency limit the same results of Eq.

6.13 and Eq. 6.22 of Ref. 1 are obtained. Similarly, in the high frequency limit, by evaluating Eq. 30

with use of Eq. 1.c, a result equivalent to that of Eq. 6.28 of Ref. 1 can be easily established.

Furthermore, the mtio AO = - EC/qoHCis given by

1 +ilka-ika y2a2
Au = x—

(31)

l-ilm y2a2+ 1

It is noted that in both the low frequency and high frequency limit, the value of & is 1, in agreement

with Ref. 1. Equations 29 and 30 have been plotted in Fig. 5 together with the correspondent

quantities from Ref. 1. It is noted that they compare quite well, especially at low and intermediate

frequency. At high frequency the asymptotic antenna theory breaks down when kb approaches 1,

The fields at the center have been obtained in the time domain also by performing the inverse

Fourier transforms of Eqs, 29 and 30 as

/

+~~c(ka)
Et(t) =-+ —e ‘i’’tdu

-m im

b,

. .

16
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Note: The asymptotic antenna theory starts breaking down at ka around 100.



. .

I

+mEc(ka)
Et(t)=–& —c ““’dti

-m im

(33)

where, again, it was assumed tha~ the source was a step function of amplitude Vo. 13yfollowing a

similar procedure to that illustrated in Section 1.1.3, (see i?qs. 15 through 171one can write

H

L ~~(ka)-~~(a)
Et(t)= - & e- ‘k’’t-a’ da

-L i~

/

-L ~~(ka)-E~(0)

/

~ ~~(ka)-E~(0)
+ e ‘ik(ct-a)du+ e ‘ik’ct-a)dm

-m iti L iu

+

\

+m @

+ — e- ‘k’ct-atdm
-m iti I

t.

-.

(34)

(35)

with E~(ka)=EC(ka) e-ika, B~(ka)= Bc(ka) e-i~a. The resuks shown in Figs. 6 and 7 were obtained, for

the magnetic and the electric field, respectively. In this case the time domain response is triggered

at t= dc to account for the propagation delay between the source and the center of the antenna. It is

stressed that, because of the error at high frequency due to the failure of the asymptotic antenna

theory as well as the numerical error introduced in performing the integrations in Eqs, 34 and 35,

the early time results are certainly affected by error. This is cordlrmed by the fact that the ratio

EJ(BZC) obtained from the curves in Figs. 6 an 7 is not exactly 1 at all times, but deviates from it at

early times by as much as 20%. This must be accepted as a penalty intrinsic to the approximations

used.

1.1.5 Fields Off The Center Of The Antenna

At points other than the center the fields cannot, in general, be evaluated analytically, Iiowever the

computation of Eqs. 22 and 23 and their derivatives is straightforward and can be handled with

relatively modest computational resources. This section presents the derivation of the fields and

their computation in some regions of practical interest.

18
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In these calculations the delta gap source is supposed to be located at Q= OO.From Maxwell’s

equations ~ =Vx ~, -imopo~ =Vx ~ it isobtained:

-aA@ dA~

I

la aAp
Bp= — B

+= ~
B- –(pA4)- —

& ‘=P * * I

(36)

(37)

[

#A@ #AP + i?A@laA@l A+laAPl

1

(38)
-iutp E =- —+ -—-— —— --—

Oo1$
dp2p+p24p2@ p ~ap ~

(39)

In the following we report the expressions of the partial denvativesofthe vector potential ~. All pairs

of derivatives of AP,A@whose expressions are very similar except for some fac~rs having been

written as a single equation with the derivative of A+ appearing inside braces { }. This means that

the reader can switch from one quantity to the other by substituting the correspondent quantity

within braces on the right-hand side of the equation

Letting~a2+p2-2ap co~+z2 = C (a, p, Q, z), it was found

P. ikC

+-& PVOa2 ai.m${co@} ~

(40)

(41)

Writing v for either p or z and S for either p-a cos@’ or z, correspondingly, it was obtained



S2
h+ikc+

)
— (3 - 3ikC-k2C211 d@’

C2 C2

(42) o

*.

. .

(43)

(44)

The principal components of the electromagnetic fields Bz and Ey have been computed using the

above equations along the line da = Oor 0.5 and a~ the heights y~a = O.~, 0.2 and 0.25. The results

are presented in Figs. 8 and 9.

1.1,6 Field Uniformity Error

In practice one is interested in the behavior of the electromagnetic fields in a volume around the

center of the antenna or, in the case of a semicircular loop above the ground, in a region elevated

above the ground plane itself, Ideally one would Iike to design the antenna in such a way that the

principal components of the fields areas uniform as possible in such region and, in addition, the non

principal components are small. One convenient and well accepted quantifier of the deviation from

field uniformity in a certain domain is the 2-norm error.

Two domains have been considered for this case; for simplicity they are taken h be one dimensional.

One is a semi-circle. This is suitable to quantify a uniformity error intrinsically related to the

circular geometry of the antenna. Another domain, perhaps more interesting from a practical

viewpoint, when the test article is an aircraft, is a straight segment of total length equal to the

radius a, located above the ground at a variable distance y in a symmetrical position with respect to

the y axis. These domains are visualized in Fig. 10. The 2-norm error, 2-N, written here for the

principal component Pa of the tields, is given by

.

..

22
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In

I

L/2
IP&(ka, p/a, tia, $)- P~12d@

2-N= ‘~ 0
lPyl

for the circular domain of integration and

u0.5

I

I/2

~P&(_ka,xla, yla, da)- P~/2d(xla)

2-N=
-0.5

/

0s
ave =P& P8(ka, xfa, yla, zfa) d(xfa)

-0.5

(45)

(46}

(47)

(48)

for a straight line. P6 is either EYor Elzfor the case of a single &gap source located at ~= OO.

Figures 11 and 12 illustrate the results for the two chosen domains. As intuitively expected, the

2-norm error is smaller when calculated along the circle (P/a = const) than along the straight line

(y/a = const). At low frequency (ka < 1) the error can be made quite small, i.e. about 10% for either

field component up to the distance of p = 0.2a from the center. For frequencies such that ka >1 the

deviation from uniformity increases quite dramatically and the effect of the resonances of the

antenna clearly appears in the 2-norm error in the form of spikes.

1.2. MULTIPLE &GAP GENERATORS

1.2.1 Current Calculation

The results of Eqs. 11 and 12 for the current can be generalized for the case when there are two

&gap smrces, Iocated one at@ = O. and the other at @ = 2n - @c,this being the image of the first

source with respect to a conducting plane perpendicular h the plane of the antenna. This situation

arises in practical systems where Iarge semicircular antennas are erected above conducting grounds,

*.

. .

,.

The problem amcmnts t.a solving Eq. 7 with 6(@)replaced by {M@- @a) + 8(1#1+ @O- 2rI)}.

26



.’ .;
“, ‘,

moo

100

L
o 10
L

k 1

E
L 0.1
:
& 0.01

0.001

(d

I
1 v 1 I 1 v m

I
1000

100

10

i

0.1

0.01

—.. — .- —-. — -- _--— --
—-—- —-,_ -_. -— -
—.—. — .—. —.—

——— —.

ka ka

Figure 11. TORUS: Two-norm error calculated according to Eq. 45 (a) B,; (b) EY. Source is located at $ = OO.

p/a = 0.01

pla = 0.1

pla = 0.2 0°<$<360°

— pla = 0.5 zla = O

pla = 0.8 db = 103, RO= qolog(db)———

Note: Since fields at high frequencies (ka approaching 100) might be affected by error, also 2-norm error
must be taken cautiously.

I

I



N
al

100

10

1

‘*’+1
‘“O$.O1

I m 1

O.i i io

o

ka

Figure 12. TORUS Two-norm error ca

L
al

~ 10

(u

yla = 0.1

yla = 0.2

yla = 0.25—.— —

culat.ed according1013q. 47 (a’ i3z; ib) EY. Source is located at.@= 0“.

-0.5< da < 0.5, z/a=O

ti= 103, RO= qjodti)
I

No@: Since fields at high frequencies (ka approaching 100) might be affected by error, also 2-norm error
must be taken cautiously.

I

“, * o o



—

,-

..

The solution for I@(@)can be written in the following form, with the symmetry condition

l.(0) = l@(2n-$) imposed,

f

ya(@-@O) -ya(@-@O)

Ce +De (11) o<($<~o

“{
ya(.$ - $.) -ya($l-@o)

Fe +Ge (12) @o<@<n

I@((#))= -ya(@+*o-2n)
Ce

ya@++o-2n}
+De (13) 2n-@o<@<2n

L -ya(Q+@O-2n) yrul$+l$o-2n J

e +Ge (14) ll<$<ti-$o..

with the coeffkients C, D, F and G chosen such as to satisfy

‘- 131
1) ~ =0

* @=O,+=n

2) 1,= 12 at+ =@O

The solution for C, D, F and G is

F =
2y(l -.*)

2ya(n-@o)
l+e

D=F
W@.

l+e

‘C&*n -+.)

G=Fe

(49)

(50.a)

(50.b)

(50.C)

(51)

(52)

(53)

(54)2Y*0
C=De
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1.2.2 Electromagnetic Fields

As for the fields at the center of the antenna, from the results for a single &gap source, the magnetic

field EC is found to be 2 times Eq. 25, bemuse there arc two xnmces with the same strength V .

Such field is still directed along Z. TO calculate ECone must aumunt for the ditTerent poiatitio~

of the eIectric field which arises when the source is dispiaced from the original location at @ = OO.

Such polarization is in the direction perpendicular h the line passing through the center and the

source location. As a result, at the center of the antenna the two sources give rise m both Ey

components oriented in the same direction (EY,~~= 2EC cos @o)and Excmmponentsoriented in opposite

directions, thus resuIting in a cancellation of the latter. When $0 is equal ta 90°, the EYcomponents

are zero. The results were verified by using Eqs.36, through 39 to calculate the fields at the center.

The general expressions of the fields everywhere in space are given by Eqs.36 through 39. The

derivatives of the vector potential, as given by Eqs. 40 through 44 can still be used provided the

I

@
finction 1(o) is given by Eq. 49. In this case the integmtion appearing .meach of the equations

Eqs. 40 through 44 must be performed as follows
l&2n

(55)

One change occurs affecting Eq.41. In fact, the finite term outside the integral sign becomes

P. ikC

in place of — PVUa
ge

4n
— sin~ {m@}. It is pointed out that C(+-$o] =
c

a2+p2- 2apco4*-@O)+z2

and C(@+@O)=

-.

-.

Using the above equations the principal components of the electromagnetic fields, EXand Bz have

been computed along the lines x=O and X/a = 0.5 at the heights y/a= O.1, 0.2, and 0.25. The results
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are reported in Figs. 13 and 14. By comparing Figs. 13, 14 with Figs. 8,9 one can see that, at low

frequency, Bz is indeed nearly twice as large for the present case than for the single source case. On

the other hand the electric field is nearly a factir of 10 lower in the present case because of the close

proximity to the conducting ground which makes the tangential E field small.

,+
By using equations similar to Eqs. 34 and 35 except for the different locations and delay factor

cV(a-y) the time domain response to a step function excitation was calculated at x/a = O,yla = 0.1,
..

#a= Oand is illustrated in Fig. 15. The large peak of the E field is very likely affected by error since

the early time results suffer from the difficulty of the asymptotic antenna theory to give correct

results at the highest frequencies.

1.2.3 Field Uniformity Error (Two sources: One at ~ = 90° and its image at @ = 270°~

0

Analogously to what was done for the single source configuration, the 2-norm error was calculated

in the case of the double source also, using the same definitions Eqs, 45 through 48 already

introduced. It is noted that in this case the principal component of the electric field is Ex while the

principal component of the magnetic field is still Hz. The results are reported in Fig. 16 (integration

on the circular domain) and in Fig. 17 (inteWat,ion on the straight line). By comparison of Fig. 11

with Fig. 16 and of Fig. 12 with Fig. 17, one can notice that: 1) the uniformity of the magnetic field

improves for the two sources over the single source case. In fact the magnetic fields add up, therefore

resulting, by symmetry, in a more uniform distribution along a circumference. Again the

uniformity is worse along the straight line than along the circle, for a given distance from the

center. 2) the uniformity for the electric field is in general worse. This is due t.a the fact that now the

principal component is Ex, which vanishes along the ground plane. Precisely, each source produces

equal and opposite E= contributions along the ground plane, Therefore the variation of E, along a

circle, for any value of the radius p, is much larger than in the case of the single source. This

explains why the 2-norm error at the lower values of pla is much higher in this case than in the

single source one (compare Fig. 11 to Fig. 16). In addition one must consider that a further cause of

error might originate from numerical problems, like round-off errors in the computations. These

tend to affect particularly the calculations at the lowest values of p when EXis very small and

theoretically vanishing at the ground plane, on the other hand, given a certain distance from the

center, unlike for the case ofa single source, the uniformity along a straight Iine’is better than that

along a circle. (See Fig, 12 and Fig, 17). From what has already been explained one can intuitively

understand that the variation of EXalong a circle is more drastic than along a line, since EXvanishes

along the ground plane.
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1.3 DISTRIBUTED SOURCE .

0

●.

So far the discussion has been concerned only with &gap generators, in practice, however, such

sources do not exist. A realistic source extends over a certain length along the antenna, let’s say

(-L,, + ZIS)chosen for convenience around the origin. Figure 18 illustrates the distributed source

together with the coordinate ~ running along the surface S which is the finite antenna gap, for an

infinitely long cylindrical antenna. The choice of the value of <s is related to the physical size of the

pulser, or CW source, which are selected according to the overall performances of the system. For an

in.finitely long cylindrical antenna the distribution of the electric field at the mathematical surface

S can be approximated by that associated with a biconical antenna whose angle is such that the

conical surface intersects a circular cylinder of radius b at t ~~,as shown in Fig. 18. Such biconical

antenna radiates a spherical wave emanating from its apex. The corresponding electric field

tangential to S has been derived in Ref. 8. Assuming that the bicone voltage is a unit step function

VOuft), then the electric field in the frequency domain turns out to be (Ref. 8)

k)m /,

‘s(r”o)=& e‘“ “

(57)

where both r = b2 + <z and ~< are indicated in Fig. 18 and f. = {2 In (cot(QO/2))}”1. Strictlys

speaking this expression is valid for an infinitely long linear antenna. In the case of a circular

antenna the curvature introduces a distortion in the wavefront, which results in a change in the

phase of the fields at the surface S with respect to the distribution corresponding to Eq. 57. However,

for very large antennas compared to the size of the source section one can, as a first approximation,

neglect the effect of the curvature. Therefore one can find the electric field at the origin by

integrating Eq. 26 over the source while using, in place of the voltage per unit length, the expression

= 2naZ’, it is obtained, for the field at the center ofgiven by 13q.57, By making again RU = q,, In (ah)

the antenna

1 q{)

I

-ika + 1 -k2a2
Ecd5 =--—

2R (J -ika-l+k2a2

Similarly for the magnetic field

(58)
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Therefore the ratio of E over qOH becomes

E
C,dis

A;.= —
I

ika -1 +k2a2
=

1
-x

~oHc, dis -ika-l+k2a2

At low frequency, i.e. 0+0, Eq. 60 can be evaluated analytically

(59)

(60)

The result is

b’ (s
–-–@l-Oln

I

<H@’
A&=l+

4a2 4a2 b 1
(61)

Equation 61 provides the expression for the dependence of A’& on the extent of the source relative to

the radius of the antenna. Figure 19 illustrates A& at low tiequency asa function of ~la, while bla is

being used asa parameter. Figure 20 shows A& asa function ofka fordilTerent values of{la. Ir~this

calculation b/a was assumed equal to 10”3. IL is pointed out that the variation is contained within a

few percent of the value AOcalculated for the &gap generator.
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2.1

2.1

2.0 PART 1[: TIIIN ELLIPTICAL ANTENNA

SINC1.118.GAP GENEllATOIt

1 Description

Consider an antenna of elliptical geometry, fed atone point with a &gap generator. By analogy

with the noun “TORUS”, this antenna is referred to as “ELLIIWICUS.” Figure 21 illustrates Lhe

geometry of the sys~em and the elliptical coordinate system used to analyze the problem. The

antenna is located at ~ = (Oand the&gap generator is at v = OO.The transformation between

elliptical and Cartesian coordinates is given by

(62)

The semi axes of the ELLIPTICUS are thus deduced to be

(63)

where ( A d,O) are the locations of the foci.

Please note that in ParL II of this note we indicate with a the major semiaxis of the ellipse, whiIe in

Part I a has a different meaning. The reciprocal of to is also called eccentricity. From Fig. 21 it is

seen that the unit vectomare indicated with ~t, normal to the ellipti=l cylinders t = cxmst, ~ ~, normal

ta the hyperbola v = canst, and ~ ~, normal to the planesz = cmnst. The relationships between
--

a (’
a” and a ~and a ~ were found to be the following

-- -<sinv

av=axJGx

(64)

o

=4

and, conversely,
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.,

\ dt2-1 Cosv - -[sin”-.
aX=a

‘G ““-

-- {sinv K
a

Y
‘WG=v + ‘“E

The length of an arc of ellipse s(v) is given by

(65)

where the integral is referred to as the elliptic integral of the second kind, and is indicated with

E(v, I/LO). The total perimeter of the ellipse is given bys. = 4aEh-d2, l/{.).

2.1.2 Current Calculation

To calculate the current flowing along a thin elliptical antenna one can apply the same line of

reasoning as for the case of the thin TORUS. However, in this case one must work with the elliptic

coordinates, which introduce some complication in the calculations. To simplify the problem we

assumed that the current of a thin elliptical antenna and that of a thin toroidal antenna of the same

total length, i.e. so= 4a E(nf2, I/fo)= 2naw am the ~me, provided a cmmspondene isestabiished

-- between the position along the equivalent TORUS, aeq~, and that along the ellipse, s(v), namely

s(v) = aeq$. Therefore, within this approximation, the current is then given by:

IV(v)=A’eWtv)+B’e-W1v)

where

Pv - Pv
A’=

o
, B’=

o

2y(l -eyso) 2y(l -eWo)

Such a current is directed in the v direction, i.e. longitudinal to the antenna wire.

(67)

(68)

(69)

*.

..

(66)
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0

Equations 67 and 68 are very similar to Eqs. 1 I and 12 of Part 1. On t.huother hand Eq. 69 is more

general than Eq. 13 of Part I because here the loading resistance R. = s,,Zi is not yet specified. In

fact, in thiscasc the choice Z~=qO In (sO/211b)for the value of the loading resistance might not be

the proper value in order to impose E/Ii = q. al the center of the antenna. The discussion on the

selection of the loading resistance as a function of the geometry of the ELLIPTICUS is pestWned to

Section 2.1.5. Furthermore, it is noted that in Eq. 69 the quantity sO/2n, which is the “equivalent

radius” of a circle whose circumference is equal to the perimeter so of the ellipse, is used in place of’s

of Eq. 13.

Once the current is known, one can go through the same process illustrated in Part I to find the

vector potential and the electromagnetic fields everywhere. In doing so the elliptical coordinate

system must be used and the calculations become more cumbersome. The following sections

illustrate the results obtained for this case.

2.1.3 Electromagnetic Fields Calculation

The vector potential A can be calculated from the knowledge of the current IV(v), using the free-

space Green’s function e ‘kD/(4n D) where

D= d?~2+&A.n2v -Sin2V’-2~OCOSV COSV’-2 (\*- l)({:.-l) Sinv Sinv’] + Z* (70)

It was found

E]2/7-J +aisv’sinw’~ (o dv,

P. ~

I

eikD d[_sfilv’~sv to

A<($v, z) = — Iv(v’) —
4rl () D a

(71)

IJo 2“
/

eikD d[~~osinv’ s~v + Gfi..’cl.l
Av(~v, z) = — Iv(v’) — —

4rl o D -o
dv’ (72)

where <0and the prime (’) coordina~s for v indicate the source point.

\
From Maxwell’s equations the electromagnetic fields in the elliptic coordinate system are written as

E=vx Z=BL;L+BV1V+13Z;
(’73)

z

45



.

dA(
B =—

v &.

and

[ 1

.

Vxvxz= - - - =
‘tat+Ev av+Ezaz ~z

(74)

(75)

(76)

(77)

{

+

—[-

[

(

aA( 3G @v 3 sinv (X)SVA(
E =-

V +
d= d(L2-cus2v)W - ; (2- cns2v - (2- als2v )
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The derivatives of A( and A, appearing in Eqs, 83 through 86 were calculated to be

with

G = d2(–6tsinv + fifi OOSV)(ik- ~)+
xcosv-Ysinv alsv sin’

x Sinv + Y msv - (2_m&
(82)

ti=~cosv - @Ev’ fH/Gi.nv-v&Ginv’ (83)

X=d ~ ~COSV’ {d{tosinv’} (34)

Again one can switch from one derivative of At to the correspondent derivative of Av by substituting

the proper expressions appearing within braces.

.,

..

with

d2(6cosv -t fi(~fi) SinV) t+ x’ + Y’vfi
F =

D
(ik - ;)-

(2- COS2V T
(87)

X’{+Y’ {-1

X’=d ~~;-1 COSV’SiIIV {dl@nv’ainv } (88)

47



- -d <0 SiIW’COSVY’– {d- Cf)SV’mSV}

It is noted tha~X sinv + Ycosv = X’<+ Y’*.

with

[1

aF
— + FG dv’
&

#F

{
d

~[-ssinv + p(v/{2-l )Cosvl

G= Q

,

Z<cf)sv &lv [x Cosv/{- Y(t/(t2- 1) Sinv)l
+ +

(kQs2v)2 xsinv+Ycmv

(89)

(90)

(91)

. .

--
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1- @shiv’shvl-&Z/((Z-1)+ 11/&
d2

D I
(ik - +)

.*

..

with

+

+

d?6cosv + fi(t/~(2- I )sinv]2 2

()x 5-
ik1)3

E2+(mzv rx’Y’Oml (2L2-1) -X’2({2- 1)- Y’2({2+ 1)]<-

(t2-c0s2v)2 (x’(+ Y’* )2

—

X(ik+ ~)+(-8{COSV + P*.1 .sinv + (L cos2v)2
d2(ik -

D
:)

(x Lmsv - Y sinv)2 COS2V- sin2v 2 L!OS2Vti2v
-l-——-

}
dv’

(x Sinv + Y @sv)2 (2-- ms2v ((2- c0s2v)2

D
with

a] I ik ~2
D2- 222—=. (I- —)-—

al) D2 D’

(92)

(!23)

(:94)

(95)

(96)

(97)
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with

2.1.4

2[21=:1;’$’’’%’’;>5’(F”+3’V’

ilzz

@COSV+ flW@)sinv (-ik +
}

# dv’
~

Determination Of The Loadirw Resistance

(98)

(99)

(loo)

When designing an EMP illuminator one is interested in obtaining incident fields with certain

specified characteristics in some region of space. Typically it is desired to have the ratio E/H at the

center of the antenna equal to the free space intrinsic impedance, i.e. 377 C!,so that the incident field

has local] y the characteristics of a plane wave, in the broadest possible frequency range of interest.

This is to simulate the realistic condition of threat for a test object located on the ground. In the case

of the thin circular geometry such property was established at low frequency by choosing a proper

uniform loading resistance, as derived in Ref. 1. Unlike for the circular geometry, in the case of the

thin elliptical geometry, the value of the uniform loading resistance which makes E/H= 377 at the

center is dependent upon the location of the &gap generator, because the location of the source on

the ellipse is not symmetric with respect to its center. In the following we discuss how we

determined the loading resistance for the case of(a) a&gap generator at v = 0° such that E#iz= 377

at the center and (b) a &gap generator at v=90° such that EX/Hz=377 at the center, at IOW

frequency. It is stressed that any choice of the loading resistance will approximately give such field

ratio at high frequency because of the local plane wave behavior of the radiated (far-zone) fields of

any source.

.
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Using the above equations the electromagnetic fields were determined at the center of the

ELLIPTICUS ({=1, v=n/2) in the low frequency limit. From Eq. 6, when y~O, by performing a

Taylor series expansion and retaining terms up to the y2 power, it was obtained

Pv

[

S2

](v) = - J
2s

S2(V)- dv)so + :
1

0

.-
ln this limit the magnetic field at the center was calculated to be

(’101)

(:102)

where the yet unknown loading resistance R. appears in the denominator, This value is

independent of the location of the source. The low frequency electric field component was obtained

as

@

I

~ @GL5v’ 3(2
EY=TO xIntl =T o

ti (C*’ - 2 J(S2(V’) - ‘V’)SO”V’
(103)

o (:.-slnzv’
o

corresponding to the source located at v = 0° and

~

5fi (Odrlv’

(

3(@ 2
E== Tox Int2=T —— _—

otid~ )
[s4v’)2-3/2s(v’)sO+ 5/16 S:& ‘

(~~- sin2v ‘)2 g- dn2v’

(1 04)

for the case when the source is located at v = 90°. In both cases

V.
To =

4 ln(so/2nb)d2s o

By imposing EY/Hz = ~ or Ex/Hz= ~ one can solve for R. obtaining

o 4 qoln(so/2nb) dsoE(n/2, 1/ {.)
R =

(J
Intl n & o

(105)

(106)
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(107)

Equations ] 06, 107 give the loading resistance required for EY/l!2= qo, E,/IIz= qu at the center of the

antenna, when the source is one &gap generiitur located aL v = 0°, v =90° as a function of the

geometry of the ELLIP’TICLIS (to). Furthermore the ratio of the equivalent radius to the thickness

of the wire, b, also appears. The quantities Go, Ggo equal to ROnormalized with respect to

q. ln(sU/(2nb)) are plotted in Fig. 22 as a function of {.. For ease of interpretation the scaIe a/a’ is

also provided on the top of the FIOLframe. An expanded jortion of GO,Ggo is shown in Fig. 23

corresponding to a/a’ ranging between 1.1 and 3. Go, Ggo represent the amount of resistance, as a

fraction of qti ln(sO/(2nb)), that one should load the antenna with, ta obtain E/H = 377 Q at the

center, in the low frequency limit. lt can be seen from either curve that, for high values of the

eccentricity, i.e. ~o~l, the optimum resistance can be even 80% (or lower) ofqoln(sO/2nb). By

comparing Co with Ggo, one can notice that the differences in loading resistances depending on the

source location appear mainly for values of to smaller than 3 and, in any case, are contained within

15%. These differences account for the effect of the curvature of the ellipse relative to the location of

the source. Such effect is manifested in the low frequency value of the electric fieId only, as shown in

Eqs. 103 and 104. In fact Intl is higher than lntz because the separation between the wires, where

the potential difference is established, is smaller when the source is at v= OO.Because of this the

vaIue of ROmust. increase when the electric field decreases, so that the magnetic field can decrease

also, to establish E/H= 377. Figures 24 through 27 illustrate the fields at the center corresponding

to the choice GO,Ggo for two particular values of<., i.e. 1.09 and 1.34, chosen as examples. One

shouId notice that in one case (Go) the incident E-field is vertically polarized whereas in the other

(GW) the incident E-field is horizontally polarized. The calculations are made for thin antennas, i.e.

dill= 4.7X104 ((0 = 1.09) and a/b= 2x104(to = 1.34). In both cases we have taken the ratio W(H 377)

and plotted it as a function of frequency in Figs. 28 and 29.

It appears that when the source is located at v = 0° the electric field is more dependent on the

geometry (<.) than when the source is at v =90°. This is to say that EYof Figs. 24 (t. = 1.09) and 25

([0 = 1.34J look quite different from each other whereas EXof Figs. 26 ({0= 1.09) and 27 (t. = 1.34)

look quite similar. Perhaps when the source is at v =0° the illuminator looks more Iike a guided

wave system since the wires are closer together in the neighborhood of the source, exhibiting a

standing wave pattern particularly apparent in the case when go= 1.09. On the contrary when the

source is placed at v = 90° the wires are further apart and the change of geometry does not affect this

separation quite as much as it does for the other source location. As a result, by looking at Figs. 28
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Figure 24. Principal field components of ELLIPTICUS calculated at X/a= O,y/a’ = O, da= O. Source is at v= O“,
ELLJPTICUS geometry: L = 1.09, a/b= 4.7x104, RO= 0.78 qOlnls,j(2nb)] from Go. Magnetic field has
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Figure 25. Principal field components of ELLIPTICUS calculated at x/a= O,y/ti’ = O, #a= O. Source is at v = 0“,
12LLIPTICUS geometry: {0 = 1.34, a/b= 2x104, Ro= 0.91 q(,ln[sO/(2nb)] from Go. Magnetic field has units
of Siemens, electric field has units of Farad/meter.
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Figure 26. Principal field components of ELLIPTICUS calculated at X/a= O,y/a’ = O, da= O. source is at v = 900,

EI,LIPTICUS geometry: { = 1.09, a/b= 4.7x104, R,,= 0.93 r1010g[sO/(2nb)]from Ggo. Magnetic field has
?’units of Siemens, electric leld has units of Farad/meter.



m
co

10

1 a 1 I
$’01. 0.1 i 10 No

ka

100 v w # ●

io “

aJa’ = 1.5

b 01
1 a 1

. 0.1 i io MO
ka

Figure 27. Principal field components of ELLIPTICUS calculated at xla = O,y/a’ = O, da= O. Source is at v = 90°,
ELLIP’TICUS geometry: L =1.34, tub= 2X104, RO= 1.02 qologlso/(2nb)l from Go,o. Magnetic field has

!units of Siemens, electric leld has units of Farad/meter.

o “. \ o .’ .’



.“

Ii

,.

w

.

8

6

4

2

‘o

50

40

30

20

10

!
(a)

J i 1

ala’ = 2.5

L
) 100

ka

(b)
1 I

ala’= 1.5

1

ka

Figure 28. E#iz ratio at the center for

(a) Fields of Fig. 24, to= 1.09, R,= 0.78 qOlog(a/b), LA=4.7x104.
(b) Fields of Fig. 25, Lo= 1.34, RO= 0.91 qolog(fi), ah= 2X104.

Source is at v= 0°,



. .

(a)
t.2

0.4

1.6

1.4

1.20

1.00

0.80

0.60

0.40

ala’ = 2.5

aia’= 1.5

1 * t-. -. .- .-U.1 1 1(J 100

Figure ’29, Ex/Hz ratio for at the center for

(a) Fields of Fig. 26, to= 1.09, RO=0.93 qolog(afb), w%= 4.7x104.

(b] Fields of Fig. 27, to--1.39, Ro= 1.02 ~lOg(fi), a/b= 2x104.

Murce is at v =90”.

-.

.=

.

.“

,
. .



-.

,.

..

“.

and 29 the field ratios are, as an overall, closer to the plane wave situation when the source is at

v = 90°. In any case these considerations were made to assess how the choice of the loading

resistance affects the “plane wave behavior” of the incident field at the center of the antenna. In,

practice, however, the selection according to either GOor G90 is going to make only a very small

difference in the event that the source is located at v= 90° with an image at v=270°. This point will

be clarified with illustrations of calculated fields in Sec. 2.2.1.

For the two chosen geometries and d ratios, using Eqs. 69 through 100, the principal components of

the electromagnetic fields EYand BZwere calculated also at the observation points (x/a = O,

yla’ = 0.1,0.2,0.25, da=O) (x/a = 0.46, y/a@=0, 0.1,0.2,0.25, fla=O) for the case when LO= 1.0:9

and (x/a=O, y/a’= 0.1,0.2,0.25, ~a=O) (x/a = 0.37, y/a’ = 0.1,0.2,0.25, z/a=O) for the case when

{0= 1.34. The geometries and the observation points are visualized in Fig. 30.

The results of the calculations are presented in Figs. 31 through 34. In these calculations the &gap

source was assumed to be at v = 0° and R. was chosen according to Eq, 106. One can notice, by

comparison with Figs. 8 and 9, that the field values at low frequency and the general trend are very

similar for both the toroidal and the elliptical geometries but some details, particularly in the

intermediate and high frequency region where the di.fTerent modes of the antennas contribute their

peculiar features, are quite different in the two configurations.

It is pointed out that when {oa~, i.e. the ellipse becomes a circle, both Eqs. 106, and 107 give the

value qo In (ti), as expected. This result was obtained by carrying out the limit of each factor of

Eqs. 106 and 107 for \O~CO.

2.1.5 2-Norm Error Calculations

2-Norm errors have been calculated according to the following definitions

H

lM

z .~ ‘P’(ka’ “ “ ‘)-p~’ ‘d]l ‘n
2–N=

lPy’[
(108)

(109)
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Source is at v = O°,$ = 1.09, a/b = 4.7x1 04, R. = 0.78 q(,lnlsJ(2nb)l. Magnetic field has units of Siemens,
electric field has umts of Farad/meter.
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The integrations were carried out alonga straight line of length L located ata height y/a’. Such

length, for a given height y/a’, is determined b,y imposing that (see Eq.62)

‘F” (110)
yla’=dla ( ~ -1 smv)

L=2d[cosv (111)

solved for v = 60°. Equation 110 determines the value of { which, once substituted in Eq. 111, gives

L. It is stressed that the l~ngth of the domair~ of integration depends on the value of the height y/ii’

since v is al ways taken equal to 60° in Eqs. 110 and 111. Consistently with what was done for the

TORUS, three different heights were considered, namely y/a’ =0.1, 0.2 and 0.25. The 2-Norm errors

calculated for the two elliptical geometries of interest, i.e. to= 1.09 and {.= 1.34, are illustrated in

Figs. 35 and 36, respectively. They are very similar to those calculated for the TORUS and reported

in Fig. 11.

2.2 MULTIPLE &GAP GENERATORS

2.2.1 Electromwnetic Fields (one source at v = 90° and its ima~e at v = 270°)

The case of a half ELLIFTICUS above a perfectly conducting ground with a &gap generator Iocati?d

at v = 90° can be treated analogously to what was done for the half TORUS. That is to say that Eqs.

49 through 54 can be used to calculate the current provided the substitution a$= S(V) is made. ‘1’h,e

expressions for the vector potential, its derivatives and the fields everywhere in space are still given

by Eqs. 70 through 100, the only difference being that the integrations between Oand 2n must here

be carried out like shown in the following

\

21

~

IU2

I

n

/

3nf2

I

n

Iv(v’)... = Il(v’)... + 12(V’)... -i- 14(V’)... + 13(V’)...
o 0 m n 3nR

(112)

with 11, 12, 13, and 14given by Eq, 49 with a~ substituted by s(v) given by Eq. 66. The principal field

components EXand Iiz were calculated at the points yla’ = 0.1, 0,2, 0.25; da= O,<a= Oand

y/a’ =0.1, 0,2, 0,25, z/a=O, x/a= 0.46(~o= 1.09) or0.37 ({0= 1.34) and the results are presented in

Figs. 37 through 40. These results can be compared with those obtiined for the TORUS and reported

in Figs. 13 and 14. One can notice that the trends are very similar for the two geometries,

particularly at the low frequency values, while at high frequencies the higher order modes introduce
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Figure 38. Principal field components of ELLIPTICUS calculated at x/a= 0.46, zJa= Oand

yla’ = 0.1
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Source is at v = 90” with image at v = 270’. ELLIPTICUS geometry: $ = 1.09, a/b= 4.7x104, RO= 0.78 ln[sO/(2nb)],
Magnetic field has units of Siemens, electric field has units of Farad/meter.
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Figure 39. Principal field components of ELLIPTICUS calculated at x/n= O,z/a = Oand

yla’ = 0.1

—. yla’ = 0.2 .

—— — yla’ = 0,25
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more marked differences between them. Furthermore, in the low frequency range, i.e. ka < 1, there

is more variation of EXalong the x axis the higher the eccent.ricil,y. This point is clearly illustrated

in Fig. 41 which shows the behavior of the principai field components for the TORUS as well as the

two elliptical configurations of interest here. in this case y/a’ (y/a) was equal to 0.1 and ka = 0.01.

Furthermore Fig. 42 plots the fields at X/a= 0, y/a’ (yPi) = 0.1 for a TORUS and an ELLIIWCUS of

very smail eccentricity (1/~0= 0.1) to show that indeed, in the limit, our calculations for the

ELLIPTICUS are consistent with those derived for the TORUS.

In the above calculations the loading resistance was that given by Eq. 106. Figures 43 through 46

illustrate the results for the case when It. is given by Eq. 107 instead. One can notice that the

results are very similar, In the remaining calculations the choice of ROgiven by Eq. 106 was

retained throughout. .

Time domain responses to a step function were carried out also in this case. Figures 47 through 50

illustrate the results for the case of~u= 1.09, 1.34, at the point x/a= O,yla’ = 0.1 and da = O. They are

consistent with those obtained for the TORUS and the same limitations already pointed out in Sec.

1.1.4 and 1.2 hold. However, it is noted that the fields exhibit an oscillating behavior even for

relatively late times, particularly the E-field. Such oscillations arise from the truncation of the

integrand in the frequency domain, which introduces an arti.tlcial ‘“resonance”. Therefore the

oscillations are somewhat dependent on the truncation point and should not necessarily be

interpreted as proper resonances of the system. An attempt to correct for this unwanted effect is to

account for the truncation by adding a term evaluated analytically which representa the remaining

contribution to the integral (see, for instance, second line of Eq. 15, 34 and 35). Such correction

however is not perfect since the integraIs are evaluated analytically but approximately. Such

correction process is more effective for the TORUS fields than it is for the ELLIPTICUS bnes.

Realistic physical puIsed sources have a switch which when closed allows the voltage built-up at

capacitors to be applied to the actual load presented by theantenna. We have mod~!ed th-is capacitor

inserted in series with the antenna load. Such a capacitor acts as a high-pass filter. In this case, the

time domain response to a step ~unction can be calculated by

/

+. zinc
E(t)+ ii(kti I - ‘tiLdti

-m izinuc - 1 e

(113)
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Figure 41. Comparison between the principal field components of a TORUS and of two ELLIPTICUS of different
geometries. Calculations are along x-axis at the height y/a (y/a’)= 0.1, ka = 10-2.
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0.91 q. log@#2nb)] ELLIPTICUS LO= 1.34 a/a’= 1.5

Source is at O= 900 (or v = 90°) with image at +2’70° (v = 2700). Magnetic field has units of Siemens,
electric field has units of Farad/meter.
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Note: Peak values might not he calculated correctly due to high frequency truncation when performing inverse
Fourier transform.
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where E(lia)and B (ka)are the fields maculated at some points via Eqs. 70 through 100, with thecunent

specified by Eq. 112. Calculations of Eqs. 113 and 114 were carried out a~ da =0, y/a’ =0.1, tia= O

for the case &= 1.09, 1.34, with two different values of C: 10-7 and 10“8 F, The results are presented

in Figs. 51 and 52. It is noticed that both fields compared to those of Figs. 47 through 50, are

strong] y reduced because of the filtering effect, which is more pronounced the smaller the

capacitance (i.e. the higher the impedance). For completeness a calculation of the above field

response for a TORUS was also performed and the results are illustrated in Fig. 53. Similar features

ta those of Figs. 51 and 52 are observed.

2.2.2 Two-norm Errors

Two-norm errors for the principal field components were also calculated according to Eqs. 108 and

109 and the results are reported in Figs. 54 and 55. Comparing these curves with those of Fig. 17

obtained for the TORUS one should notice that at very low frequency the 2-norm error for EX is

much larger for the ELLIPTICUS than for the TORUS. In particular, for the case to= 1.09 the low

frequency value is about one order of magnitude higher than that of the TORUS. This is explained

by the higher variation of the electric field along x shown by the elliptical geometry over the toroidal

one, as illustrated in Fig. 43.

2.3 PARAMETRIC STUDIES FOR ELLIPTICLJS DESIGN

In most of the calculations presented so far it was assumed that the uniform loading resistance is

Ro= Gorto ln[sO/2nb)] with GO,plotted in Fig. 22, determined in order to achieve EY/Hz= 377f2 at the

center, at low frequency, for the case of a single &gap generator placed at v = OO.TO analyze the fi~]d

behavior as a function of the loading resistance, various values of GO,other than those of Fig, 22,

were considered, and the results are presented in Figs, 56, 57 for the case {,,= 1,09, a/11= 4,7x104 and

in Figs, 58, 59 for the case when to = 1.09, db= 102. In both cases the value GO=0.78 is that

obtained when Eq. 106 holds. One can notice Lhat, by increasing the loading resistance, the first

resonance in both the E and B fields is slightly attenuated, while the first anti-resonance becomes

sharper. The higher order resonances tend b decrease also. One question arises regarding the

correctness of the asymptotic antenna theory mode], since the radiation ]OSS has not been accounted

for in our calculations. Such effect, which manifests itself as a frequency-dependent resistance is

likely to affect the antenna performance in the neighborhood of the first resonance and anti-
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resonance, Iiowever, accounting for this effect analytically is very difficult and this effort goes

beyond the scope of the present analysis.

Another limitation of the model rests in the assumption of a perfectly conducting ground. In reality

the ground has a finite conductivity, typically u= 10-3S/m and is also characterized by an electric
,&

relative perrnitt.ivity, ~r = 15. To account for this effect approximately, at points directly below the

source, for instance at X/a= O,yla’ = 0.1,0.2,0.25, da=O, one can find the total field as given by an
P

incident field, calculated assuming the antenna, in free-space with a &gap source at v = 90°, plus a

reflected term. Such term is found by assuming that the incident field at the ground is reflected as

though it were a plane wave. Considering the polarization of the fields it is obtained

E@t(O y/a’,0)= Ei,nc(O,y/a’,0) + R E~c(O, O, O)eikyx’ L

li~t(O, y/a’,0)= H~c(O, y/a’,0) - RH~c(O, O, O)eiky

(115)

(116)

‘nC Hint are calculated using Eqs. 70 through 100 with a 6-gap soume lo~ted at v =90°. Thewhere E ,

(9
Fresnel ~efle~tion coefficient R is given by

1- J Cr(l - :)

R= ,_ (117)

Equations 115 and 116 with 117 were calculated for the cases <.= 1.09 and 1.34 and the results are

presented in Figs. 60 and 61, ROwas that of Eq. 107. Therefore one can compare Figs. 60 and 61 t,o

Figs. 37 and 39. It is noted that the effect of the finite ground conductivity results in a smoother field

behavior. On the other hand at low frequency this mode] does not give, at these points, the same

results as those obtained for the perfectly conducting ground. ‘l’he discrepancies might be attributed

to the approximation involved in the model described by 13qs. 115, 116 and 1I 7, Nevertheless, it is

stressed that the smoother field behavior, particularly at high frequency, is a true indication of the

performances ofa system on a realistic ground.

To further analyze the effect of the antenna thickness on its performance, Figs, 62 and 63 present

49 the fields calculated at the point tia =0. y/a ‘= 0.1, da= Ofor different values of the ratio db, for the

two elliptical geometries of concern here. It is noted that the field values are higher the lower the
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Source is at v = 90” and finite conductivity of the soil is accounted for with o= 10-3 S/m, c, = 15.
ELLIPTICUS geometry:

)
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units of Siemens, electric leld has units of Farad/meter.
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ah ratio. This is due to the decreasing amplitude of y and of ROwhich result in a current increase,
\

for a fixed voitage source. Apart from this, the trend of the fields is the same regardless of the ah

ratio, A further investigation was performed on the dependence of the fields on the antenna

eccentricity (l/{.). Figures 64 and 65 illustrate our findings for seven difl’erent values of{.. In both

figures the uppermost curve corresponds to a very high eccentricity, whereas the lowermost one

corresponds to the case of a nearly circular antenna. The plots clearly show that the fields become

smoother the lower the eccentricity, except at high frequency. However, depending on the antenna

size, ka = 100 might correspond to frequencies already beycmd the range of interest for this antenna’s

applications.

2.4 DISTRIBUTED SOURCE

Within the approximation of a thin elliptical antenna whose dimensions are much bigger than that

of the source region, the issue of the distributed source can be handled in a totally analogous manner

to that already discussed for the TORUS. In particular the same results apply to this case also. The

reader can thus refer to Fig. 20 which illustrates the variation of the ratio E/H at the center as a

function of the source region. Although the effect of the curvature was not taken into account, in

any case the resulting variation is contained within a few percent of the value correspondent ta the

S-gap generator case. Therefore, we shall not be furtherly concerned with this issue.

2.5 HIGH FREQUENCY CAPABILITIES

Recently people have become concerned with performing tests at increasingly higher frequencies.

Therefore, the ability to predict the performances of simulates at frequencies as high as possible is

useful both as alternative or in support of testing activities, such as test plan and data

interpretation. The following question has been addressed in this note: what is the maximum

frequency fm at which the calculations presented here are still vaIid? The answer is: fm less than

cf(2nb). For thin antennas this limit could be in the hundreds of MHz. Beyond this point the

asymptotic antenna theory cannot be applied to this illuminator. Within this limit the theory

provides results which are in good agreement with those of Ref. 1 for the TORUS, and also check

satisfactorily with available measured data for the ELLIPTICUS. However one should bear in mind

that this model rests on the further following assumptions and approximations

- a perfectly conducting ground is used

- radiation loss is not accounted for

- specific source features (i.e. shape, balun) are not considered
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Needless to say, it is di.fflcult to quantify how much er’ror these approximations give rise to, with

respect to the real situation. The impact of the finite ground conductivity on the fields was addressed

in Section 2,3 for a spec~lc case. Once the limitations of applicability of the results obtained in this

note are understood, one could still ask the question: can this illuminator work at higher

frequencies? Because of the inability of our model to assess its Wrformances at very high frequencies,

this is a difficult question to answer within the scope of the present analysis, and could be the subj{sct

of’further investigations.
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3.0 SUMMARY

The asymptotic antenna theory has been applied to the problem of determining the current and the

electromagnetic fields produced by thin loop antennas, of circular and elliptical geometries. Part 1 of

this Note is concerned with the circular loop antenna. Section 1.1,1 discusses the limits of

applicability of the theory and the approximations involved. The current time-domain response to a

unit step function is evaluated in Sec. l.I.2 at three different locations. Section 1.1.3 presents the

input impedance and the results are dixussed and compared to the theoretical ones associated with a

slice generator. Section 1.1.4 discusses the fields at the center of the thin circular loop, for the case

when the source is a 6-gap generator. These are compared with the results contained in Ref. 1,

assuming the same loading resistance. Both frequency domain calculations as weIl as time domain

field responses ta a unit step function excitation are presented. Section 1.1.5 addresses the

calculation of the fields anywhere in space. The expressions of all the field components are reported

explicitly. In Sec. 1.1.6 the 2-Norm error is defined and illustrated for two particular domains of

integration chosen as examples. section 1.2 deals with the calculation of current and fields in the

case when the antenna is a half-TORUS located above a perfectly conducting ground, with a &gap

source located at 4=90°. Current, fields and 2-Norm error calculations are found in Sees. 1.2.1, 1.2.2 .

and 1.2.3 respectively. ‘Throughout Sec. 1.2 it was assumed that the loading resistance ROwas half of
o

that used for the case of a complete loop in free space. For this last case a value was determined in

Ref. 1 such that the ratio EM in the Iow frequency limit, at the center of the antenna, was equal to the

free space intrinsic impedance, i.e. 377 Q. Section 1.3 evaluates the effect of the finite extent of the

source region on the ratio E/H at the center of a loop in free space. Since it was found that this effect

results in a change of only a couple of percent in the value of such ratio, no further field calculations

were carried out for other source locations ard/or observation points. Part II deals with the loop of

elliptical geometry. Using the same current calculated for the circular loop and adapted b the

elliptical geometry (Sections 2,1,1 and 2. 1.2) the fields were calculated everywhere in space and the

exp[icit expressions are reported in Sec. 2.1.3. The question of what is the proper loading resistance to

achieve a ratio E/’I-l=377 at some specified point and frequency range, depending on the source

location and cofll~ration (single or double &gap generatur) is addressed in Sec. 2.1.4. Assuming a

loading resistance obtained for the case of a single &gap located at v= 0° which makes EYflIzor

EX/Hz= 377 at the center, the fields at a few points and the 2-Norm errors were calculated for two

different elliptical geometries. Comparisons with the corresponding results for the circular loop are

discussed ako. (Sections 2.1.4,2.1.5 for single source, Sections 2.2.1,2.2.2 for double source), Section

2.3 analyzes the dependence of the field behavior on parameters such as the loading resistance, the

thickness of the antenna, the eccentricity and the characteristics of the soil. In particular it was

found that ellipses of high eccentricity tend to produce smoother fields as a function of frequency.
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