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I. Introduction

The radiation of a narrow beam,of electromagnetic fields at high fre-

quencies is an important problem in antenna theory. Various types of antennas

involving reflectors, lenses, phased arrays, etc. , have been used for this

purpose. Considering the radiation of transient pulses a new set of problems

is encountered due to the broad band of frequencies involved, at least for

some kinds of transients. In this paper the desired radiated pulse is a

narrow impulse, subject to the usual restriction on tb.eradiation of low

frequencies by finite size antennas with finite energy available.

Beginning with an aperture formulation for the antenna radiation,

the tangential electric field on the aperture is specified as a plane wave

appropriate to focusing the aperture at QYin some specified direction ?
o“

For a step-function aperture illumination this leads to an impulse-like

waveform, the width of which becomes very narrow as the observer direction

Ir approaches I However, the aperture model is limited in its application
o“

to the low-frequency behavior of certain kinds of antennas

reflectors) .

An appropriate type of antenna for radiating such a

(such as lenses and

pulse is a

parabolic reflector fed by a conical TEM wave launcher. Such a launcher

supports a step-like TEM wave on two or more conical conductors leading from

some apex to the edge of the reflector. The waveform radiated from such an

antenna is discussed, including some effects of the feed.
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m II. Step Response of an Aperture Antenna Focused at Infinity in the
Far-Field Approximation

Consider an antenna as modeled by an aperture on the z=O’plane (S) as

shown in Figure 2.1. Let the source coordinates on this plane be x’, y’ with

the specified tangential electric field

it(x”,y’;t) = 1= “ i(x”,y”,o;t) = (
Ex(x”,y-,O;t), Ey(x”,y-,O;t), o)

Tz=t’-iziz, l -ixix+iyiy+lziz (2.1)

We have various definitions

[;-;-I = [(X-X32 + (y-y”)z + Z2]%

(x’,y’ ,0) ==source coordinates

(X,y,z) = observer coordinates

Laplace-transform (two-sided) variable

complex frequency

(2.2)

~ = free-space propagation constant

Laplace transform (two-sided)

1
, ,= speed of light

+oe ~

“riJoZ. = ~ = free-space wave impedance
o

,.
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m Then as developed in [10,18] the fields for z > 0 are

-“

F(;,s) =-:
][[-

Z&&

11
iz xEt(i!”,s) xiR e

-7R ~S-

S (2.3)

In time domain one has the formulas formed by replacing

Laplace (complex frequency) <----> time domain
domain

e-YR ~t(;’,s) < (---->E ;“, t -:t )
a

s <-:-->
z

(2.4)

s-l <>---- Sdt

The reader can note that related problems can also be formulated in terms of

currents on the aperture [13].

In a previous paper [10] our concern was maximizing

given frequency and particular observer position (~o) with

magnitude of the

an aperture with

field focused at

different.

the fields at a

a specified maximum

tangential electric field on S. This leads to the concept of

a uniform magnitude, single direction tangential electric

the single position ~o. Here our emphasis is quite

Consider the far fields

not allowed to go to UJ). Then

x = v Cos(d)

z = r cos(0)

x = r sin(6)

defined by letting r + @ with Isl bounded (i.e.

introduce the coordinates (as in Figure 2.1).

,Y ==W sin(~)

* U!= r sin(f?) (2.5)

Cos(q$) , y = r sin(d) sin(d)

Let us define some preferred direction ?0 for radiating fields from the

aperture. This also specifies angles 0o,#o with

+

ir(e,~) -f= ix sin(d) COS(+) + i
Y

sin(e) sin(f#)+ iz cos(0)

(2.6)

i =Qoo,do) ==ix sin(Oo) COS(40) + iy sin(80) sin(do) + iZ COS(80)
o

5



Let the aperture be focused at ~ in the direction l..
As in [10] let ~. be

v

defined as rlo.with now r + ~, so we set
a

f(s) = waveform on aperture

~(;) = aperture spatial distribution

In the direction 10 every

add constructively at CO.

will be to spread out the

~(;”) (real), a frequency

elementary part of the aperture is

For other directions ?r the effect

pulse. Note the separation into a

(2.7)

phased so as to

in time domain

spatial factor

function ~(s) and a scale factor E. (real).

In (2.3) we now have for r + a

R=r- ir . ~’ + O(r-l)

iR “ ir + O(r-l)

[ 1iZ x fit(Z”,S) xiR w [(i; ir) ~ - iZ ~r] ● ~=(l”,.) + (l(r-l)

[1
e-yr

++
E(r,s) = Ef(;,s) + o ~ (2.8)

3+
Hf(r,s) -$-ir XEf(l,S)

o

6
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Note that the asymptotic expansion for large r is not uniform with respect to

s, particularly if we take ?r as 10 and let \sl+ ~. This can be treated

special case.

Considering ~f this can be conveniently decomposed after applying

as a

,

the

form in (2.7) as

fif(;,s) =

As

)
F(ir,s =

( .)

++
Fa lr,S =

3

EAZ+
e-~r

= F(lr,s)

aperture area

(2.9)

Sz(s) Fapr,s ) = far-field waveform function

[(4=.+
H

-f[ir-io]cl- ~ ~
A

i lr)T-i2ir . e g(r”) dS-

S
aperture function

Note that if ~(s) is 1/s, (i.e. a unit step in time domain) then the aperture

function is like a delta function in time, except spread out by a factor de-

pending on the nearness of ir to l..

Consider now the simple case that the aperture spatial distribution

is taken as uniform over the aperture (Sa) of finite size with a constant

polarization ia (real unit vector) as

ia.i=o
z

(2.10)

~

+ +.
g(r) ds”=Ai,, a

s

,



The aperture function then reduces to

‘( ) [(
1

Fair,S s iz “ ir) la - (ir ● ia) 1= 7a~r,s)

= ~r x ~z x ‘a] ‘a (i~$s)

==scalar aperture function

We have the special case (focus at the observer)

,’

ir -10

s
a

[
(i=. +

)1
lr)ia - (ir ● ia i= = -Irx

In this special case

differentiator. For

domain, this special

discussed later this

energy flux density)

Extending the

-1

(2.11)

(2.12)

izxi
1
a

= angular function
(i~cluding polarization)

the waveform in (2.9) has the form s~(s), i.e. a time

example if f(s) is taken as 1/s or a unit step in time

case then gives a delta function for the far field. As

is not a true delta function (which would imply infinite

but has some non-zero width.

analysis let the aperture be circular (radius a) and

introduce cylindrical coordinates on the aperture

dS “ - dx” dy- = V- dw” d#-

8
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m Then we have
a 2X

()
1

JJ

Yw’[ir-io]giw.
Zair,s -— e W“ d~- d~”

na=

●

(2.14)

00

In this integral the range of #- is over the unit circle and it makes no

difference where it is begun. Consider that angle at which ?W. is parallel

to ~z ● [ir-iol (i.e. the projection on S) as the starting point of the

integration (say with new angle d“-). Then we have [16]

*

(2.15)
27C

1

Yw-cir-loleiw.
e d+- = 2X Io(q)

o

Substituting in (2.14) gives [16]

qa

Za(ir,S)
‘+ [1’:L+’11]-2]WJ‘q(7a)2

0

(2.16)

‘a= Yalyz“ R -’011

2a(ir,5) -
++: L- 1011]-’1J7aly~● k- ‘J)

+lasq+O
a

9
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An alternate form is found as

-Y=jk,k=~

‘a(irj’”) = * J ‘k[i<i*]J”ds’ -
2[kal!tz[?r- lo]l~-’ ‘~(kalyzo~r- ‘0]1)

‘a

In time domain the scalar aperture function frcm (2.11) is

This applies for the

in the form of (2.7)

s
a

plane-wave specification of an

and (2.10). For step-function

+.
r
)

dS ‘ (2.18)

arbitrary aperture shape

excitation fa gives a

response as an impulse broadened by the aperture dime:-sions. One can find

the waveform in (2.18) by integrating over the aperture. ‘lhe integration is

rather straightforward for any aperture shape, being over that portion of the

aperture for each t such that the’argument of the delta function is near zero.

This is a line formed by the wavefront of the step-function excitation on the
*

aperture. Note that the integral is over two-dimensional space (not time)

which brings a factor of c/[~- . [I--I*]I in going from time to space. Then

for general aperture shapes

()fair,t -

i.e. the only contributions

(2.19)

This is a line parallel to ?Z ● [Ir-lo] on S As t progresses this line
a“

sweeps across Sa (at a speed~

line is outside S the limitsa!
the line on Sa gives the pulse

c). The waveform is zero for t such that this

of this giving the pulse width. The length of

amplitude (times some other factors). ●
10
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For a circular aperture (radius a) this becomes

, ‘~(ir’t)‘~ : [+ - ($~][u(t+T)- u(t-T)]~ ,

=& [1- (:)2][u(t+T) - u(t-T)]

(2.21)

2T = pulse width

This can also be found by taking the inverse transforc of (2.16), such as

from standard tables [15 (Vol. 1, p. 138, No. 14)]. ;Tote tkat for simplicity

(greater symmetry) the pulse is centered on t=O instc.:d of Eeginning here.

Considering the properties of this waveform as in (2.i9) for the

general case, or (2.21) for the circular aperture nott the veriation of the

pulse as ?r (the obsener direction) is changed. At !“:Othe pulse has zero

width and infinite amplitude in the far-field approxi::ation which is not

accurate in this extreme case. As Ir goes away from ’10the pulse width

increases, but the amplitude is finite and proportional to the reciprocal

of the pulse width. This is seen in the calculation rJfthe impulse (i.e.

the “area” under the waveform) as

a m

J
fa(ir,t) dt =

j*j6(t+:~#o]<-) ds-C:=~jds”.~
(2.22)-a -m s c

a ‘a

Note that the complete time integral is the same as t:~etransform evaluated

at zero frequency, giving an alternate way to get the same result. So the

impulse of the scalar part of the aperture function is not a function of ~r,

i.e. is conserved with respect to angle.

shapes.

Viewed in a frequency-domain sense

This holds for arbitrary aperture

the spectral contant is not a

function of ir at low frequencies” (wavelengths large compared to aperture

●
dimensions). The spectral content is flat out to some frequency which is

higher as Yr approaches Io (i.e. as a characteristic time such as T becomes

, 11
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small) . So the beam width for such a transient pulse depends on how small
\

are the times of interest or how high are the frequencies of interest. Such

parameters may be given by other considerations such as attainable risetimes e

of a real pulse, or desired resolution of (say) scattered signals.

In terms of the vector aperture function the impulse is

J
Fa(ir,t) dt= ~a(fr)o) - (~z’ ir) la ‘F~iali.”-irxkxial

-03

.(2.23)

So the imptilse of the radiated waveform is a slowly varying function of angle,

the same vector function which multiplies the scalar r’aveform function which

we have been considering. It is interesting to note that this result is inde-

pendent of I the direction for which the aperture is focused at infinity.
o’

This special direction 10 is significant only for frequencies sufficiently

high that wavelengths are smaller than the aperture dimensions.

Consider the far field from a magnetic dipole located at the origin [6]

given by

*
e--yrPO

im (;,s) =—— SZ ir x X(S)
c 4xr c
1.

(2.24)

Comparing this to the far field for the aperture antenna, then (2.9) and

(2.11) canbe written as

= effective magnetic dipole moment
(for low frequencies)

(2.25)

12
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Taking ~(s) as 1/s for the step excited aperture gives

2EOA ~ 2EOAz
ma(s) - - — —

P. S2 ‘
:a(t) = - — t u(t)

P.

which in time domain is called a ramp function.

In time domain we also have

Ef(;,t)
‘&>ir’

(2.26)

[’;a(t-:io fa(+t)}
(2.27)

o = convolution with respect to time

So the general result (for plane-wave aperture illumination) takes the form

of separate factors. There is an effective magnetic-dipole term which is

modified at high frequencies by a scalar aperture function which gives a

more and more concentrated beam as frequency is increased. In time domain

this scalar aperture function gives an angular-dependent pulse width for step

illumination of the aperture. For more general cases there is a temporal
/

convolution of these two terms. For example, a non-zero risetime for the

aperture illumination gives a lower bound on the pulse width in the far field.

13
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III . Peculiarities Near Focal Direction

~ As discussed in the previous section, the far-field approximation has

difficulty as Isl+ CO, particularly near Ir = 7 . This is seen in the fact

that in this case the scalar aperture function ~ecomes (from (2.18)).

fa(lo,t) =f(t) (3.1)

Now for finite (even though large) r, this is not exact in that it represents

infinite energy flux density, even integrated over a small region near the

direction of propagation. This is basically a problem concerning the order

of two limits: r+m and Isl+m.

This is understood in the context of an “electromagnetic missile”

[12,14] for which the energy flux density and energy integrated over some

small cross section is finite and falls off slower than r-z. Consider the

aperture antenna in Figure 2.1 with plane-wave illumination at direction 10

as in (2.7) and (2.10). For some specified 10 consider the projection of

the aperture as a cylinder (not necessarily circular) parallel to this line.

An observer within this cylinder sees an electric field which is initially a

plane wave with amplitude undiminished from the source. This is obtained by

setting the tangential aperture field Eola equal to the tangential part of

the field at the observer as

Tz ● i(;, t) -Eoiau(t -~)

‘o “ Wo+ = 0
(3.2)

for t - :<At

where At is some time at which the observer first sees a signal from the

boundary of the aperture. This At is maximized if the obse~er is approxi-

mately centered within the aperture projection. For convenience the aperture

“center” is taken as ~=~ so that such an observer can”be taken on the rio

line. Note that as in Section 2 the aperture field is taken as a step

function in time.

14
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For a constant polarization la

m

of the tangential fields on the aperture

the form of (2.3) allows us to write

‘(do’t)=x[30xF. xlJ]‘O ‘(’ -~)
(3.3)

“x
[
(

1
iz*io)ia-(io*ia)iz Eo+:)

for t - ~<At

where x is some scalar constant to be determined.
Applying (3.2) gives

i=
a

[ )](
X12= (iz.lo)la.(l .1 ~

o az -X,12. io) ia

(X-iz.i-l
o)

[

Zo.i
~(rio,t) - ia a+

1

-—12

i= “i Eo’-+-:) ‘or t-:<at
o

For lo chosen normal to S we have the simple

i -io z

()itZiz,t ‘ia Eou(’ -~)

result

for t - ;<At

(3.4)

(3.5)

Let the closest distance of the observer to the aperture projection be

designated as b. Then we have as r + m

(3.6)

15



as the differential time to

the partial impulse of this

boundary is first detected,

: +-At

f
)i$(rio,t dt -

-m

i-
a

.

b

first detect the boundary of the aperture. Define

wave as the integral up to the time the aperture

giving *

iooia+
1

1
E. At

l=.l=
o

(3.7)

[

Ioeia+
=la- 1=

1

1 bz
--~ Eo+O(r-2) as r+m’

iz . i.

Note that this partial impulse falls off as r-l, a far-field-like behavior.

However, the power density during this early portion of the pulse does not

fall off with

pulse is

: +At

r

distance. The associated energy flux for this portion of the

PO b2
-— E~+O(r-2) as r+~

2r

(3.8)

which falls off like r-l (an “electromagnetic missile”) instead of the usual

r-z (for bounded Is]).

Comparing to the results in Section 2 the complete impulse from (2.9)

and (2.23) is

-03

= [(i. ● ‘~)‘~ - (io● ‘a)‘z]~,.

9

(3.9)

e

16
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For a circular aperture (radius a) this is

*

m

1
if(;,t) dt - [(i= ● ‘o) ‘a - (i. ● ‘a) ‘z] ~ ~

-a ..

(3.10)

Comparing this to (3.7) for the partial impulse we see that these are closely

related. For the case of focusing in the Iz direction we have them equal

since

+
10 - i=

(3.11)

b =a

Note this equality is for the case that the observer is precisely on the z

axis so that the distance a is the shortest distance (i.e. the only distance)

to the aperture projection.

Since the impulse only relies on the transform at zero frequency, for

which the far-field expansion is valid, then (3.9) is correct, even for Ir

near i So the impulse of even the “electromagnetic missile” should be
o“

included in this answer. The partial impulse as in (3.7) should be regarded

as just that (i.e. partial). So as Zr approaches 10 the waveform does not

become a delta function but has some non-zero width bounded below by At.

The waveform, when integrated, must be givenby (3.9).

17
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IV. Limitations of Aperture Model
$

While the aperture model in Section 2 gives some important properties

of certain kids of antennas, it has limitations. In particular outside Sa, o

but still on S, the tangential electric field is constrained to be zero. As

indicated in Figure 2.1 this outer region may be a conducting surface on

which surface currents are allowed to flow to maintain the boundary condition.

One can postulate various ways to synthesize the electric field dis-

tribution on S Thinking of a magnetic frill one might construct an array
a“

of magnetic dipoles (loops) with axes parallel to la. While this would

require no currents on S outside Sa there would be waves with opposite

tangential electric field propagating in both directions away from S (+z

and -z). These magnetic dipoles, except for varying turn-on times (to focus

in the direction l.) would have linearly increasing magnetic dipole moments

(as in (2.26)) which corresponds to linearly increasing current with constant

voltage (L dI/dt) for a power linearly increasing with time. This points out

another limitation. A pulser with finite energy can at best give a non-zero

late-time magnetic (or electric) dip~le moment [6]. So the assumptions of

the aperture antenna model need to be modified to allow for this late-time

and low-frequency restriction.

Another way to synthesize the electric-field distribution on S is by

driving currents in the direction ?a over S and letting the currents re-
a

turn on conductors on S outside Sa. In this case step-function-like voltage

sources on S will deliver currents into an inductive load (inductive for low
a

frequencies). This gives the same problem of a linearly increasing current at

late times unless the late-time equivalent magnetic dipole moment is bounded

(modifying the waveform). In this example there are outgoing waves on both

sides of S (+z and -z), but with equal tangential electric fields on S.

If one allows tangential electric field to spread out on S other types

of antennas can be synthesized. As an example one might have a TEM horn, i.e.

a conical transmission line on which a spherical TEM wave (non dispersive) can

propagate with arbitrary time-domain waveform from a source near the apex of

the two (or more) conical conductors in a simple medium such as free space

[2,18]. At the open end of the horn one can define the aperture plane. Of

course, the wave on S is a spherically expanding wave with a radius of curva-

ture given by the length of the horn, so the wave is not focused at infinity, *

18
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but has a beam spread related to the angular opening of the horn (at high

frequencies) . In addition, the discontinuity at the end of the horn produces

a scattered (non TEM) field on S in addition to the incident spherical TEM

wave.

This can be improved as in Figure 4.1 by including a lens in the mouth

of the TEM horn. This lens should convert the incoming fast-rising spherical

wave into a similar plane wave on Sa, not necessarily on all of S. One can

have an ideal (reflectionless and dispersionless) TEM lens (e.g. based”on

bispherical coordinates) [4], or an approximate type of lens which gives only

small perturbations [3]. The aperture field is in general not uniform, but

la can be regarded as some average direction for the electric field, here

taken parallel to ix. There is also the scattered (reflected) field due

to the truncation of the guiding conductors at the aperture plane. This

scattered field, however, contributes negligibly to the fast-rising portion

of the aperture fields. At late time (low frequencies) the antenna behaves

as an electric dipole. If the voltage on the antenna is bounded and oscilla-

tions die out (perhaps due to the inclusion of some damping resistance, say in

the source at the apex) then the late-time electric dipole moment ~(m) governs

the low-frequency behavior and makes the radiated waveform have net-zero time

integral [5].

19
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v. Launching TEM Waves into Reflector Antennas

The more common way to focus waves at infinity by impressing a plane

wave on an aperture plane is through the use of a reflector antenna [17].

This is often a conducting dish shaped as a paraboloid. This is often fed

by a horn on the end of an H-mode waveguide, or by a small antenna at a place

(focus in reception) that makes the spherical wave be reflected into a plane

wave by the paraboloid. This feed may be on the axis of revolution, or may

be offset. Dual offset systems involving a second reflector are also used.

Furthermore, this feed is designed to operate over narrow bands of frequency

as contrasted to the present considerations.

Then let us combine the conical TEM wave launcher (step excited) with a

parabolic reflector as illustrated in Figure 5.1. This functions in the same

way as the usual reflector antenna except that the feed waveform can be made

an approximate step function. Note that the feed can be offset as in Figure

5.1 so as to reduce aperture blockage. The beam (direction ?.) can be steered

by rotating either the reflector or the feed (with some pivot arrangement at

the reflector) or both. One may also include some absorber material to re-

duced the high frequencies radiated from the wave-launcher apex in the focal

direction l..

The conical wave launcher will have some characteristic impedance Zc

(frequency independent) [7,8]. This conical system can consist of two flat

strips or even several stripsi including approximation by wires. One might

have two wires or say four wires with an optimal spacing ratio to optimize the

field uniformity launched into the reflector. [1]. Note that the fields on the

conical transmission line between the conductors have the average direction as

indicated by ~launch in Figure 5.lB, here taken as the -lx direction. On the

outside of the launch conductors the fields have the opposite direction. By

terminating the launcher conductors on the edge of the reflector these exter-

nal fields are not reflected. This is advantageous in that these external

fields are not reflected in a manner which would subtract from the fields

polarized in the la direction (opposite ~launch) and radiated in the ?0

direction. By appropriate design of the wave-launcher conductors (and re-

flector edge (boundary) shape) one can try to optimize the fields radiated

from the reflector for a given voltage, power, etc. on the feed.

21
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Note that at late times or low frequencies the antenna is dominated by

electric and/or magnetic dipole moments [5,6], indicated by ~m and ~m in

Figure 5.lB. ‘1’hemagnetic dipole moment is-associated with current flowing

around the loop comprised of feed and reflector. An electric dipole is’pro-

duced by some termination consisting of two impedances, each Zt/2 in series

at the connection of the feed

which terminates the feed (at

conductors to the reflector. One might choose

it-z
c

low frequencies) in its characteristic

(5.1)

impedance. The electric and magnetic dipoles then combine to maximize the

low-frequency radiation in a direction opposite to the wave-launcher direction

[6,9,11]. This choice should significantly reduce oscillations at late time

on the antenna. Other more sophisticated choices for it are possible, includ-

ing a resistance at low frequencies, but perhaps a lower impedance at high

frequencies.

Consider now the radiated waveform as illustrated in Figure 5.2. First

there is a comparatively low amplitude (negative) step associated with the

spherical wave launched from the feed apex. This can have reduced high fre-

quencies (a slowed risetime) by use of blocking absorbers. Then there is the

large narrow reflector impulse (positive) for the observer near the main beam

direction (Ir near l.). This is followed by a complicated waveform return

region. Here the waveform returns to zero, but in such a manner that the

total time integral (or area) of the waveform is zero, even given non-zero

late-time electric and/or magnetic dipole moments [5]. If these dipole

moments are allowed to decay to zero (as eventually they must for practical

pulsers) then the radiated low frequencies are further reduced. The details

of the return of the waveform to zero are strongly influenced by the choice of

zt , such as for removing oscillations.
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VI. Concluding Remarks

While there are

low-frequency behavior

intermediate -frequency

analytic models appropriate to the early-time and

of antennas for radiating impulse-like fields, the

regime is not so simple in form. Numerous details of

launcher, terminator, reflector, etc. need EO be optimized. This paper gives

some of the principal features of such antennas and outlines how the whole

thing can be put together.
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