
.,.,...
s

SENSOR AND SIMULATION

Note 325

April 1990 “

L

NOTES

GIGAHERTZ ANALYSIS OF THE ELLIPTICUS

Nicolas H. Younan

Bobby L. COX

,:. .

ANTENNA

Department of Electrical and Computer Engineering

Mississippi State University

Mississippi State, MS 39762

Abstract

Efficient numerical solution techniques have been developed and used to

examine the elec~omagnetic fields that can be developed in the working volume of

the CW Ellipticus antenna operated at frequencies from 100 KHz to 1 GHz. An

elliptically tapered transition section is designed and tested to obtain the desired

illumination pattern in the working volume. A paramekic study is performed to

ascertain the pefiorrnance of the EIIipticus antenna for frequencies up to 1 GHz.
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I Introduction

o 1.1 Background

Thepresent EMP test facilities at the Weapons Laboratory do not provide

the required high frequency illumination. It has been proposed that a low level CW

facility, incorporating the Elliptipus ,antenna, be used to provide a horizontally

pokrized electric field to illuminate test objects [1,2]. The original design

specifications for the Ellipticus provided for an operating fmquenc y range of 10

KHz to 100 MHz. Upgrading the EllipticLIs (XV antenna design to cover higher

frequencies may be accomplished by using a transition section from rthe driver to

the antenna that radiates up to a few GHz, This design is based on an

exponentially tapered transmission line design that has radiator characteristics at the .

high frequencies and serves as a matching section at low fivquencies.

Due to the wide operating frequency range, a numerical rather than

analytical analysis of the Ellipticus illuminator is required. A suitable procedure

is developed that incorporates the NEC computer code [3]. Since the number of

unknowns increases significantly with the frequency, a novel wire segmentation

procedure-is used [4]. This allows the analysis of very large wire configurations

and provides sufficient accuracy with acceptable computer memory requirements

and computational time.

1.2 Scope of the Investigations

In this report, efficient numerical solution techniques have been developed

to examine the electromagnetic fields that can be developed in the working volume

of the Ellipticus facility operated at frequencies horn approximately 100 KHz to

1 GHz.

First, a detailed description of the Ellipticus CW antenna configuration

design is given in order to perform a detailed analysis of the structure under study
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[5].

Second, numerical models are developed to compute the fields in the

working voIume. The NEC!code is used to anaIyze the Ellipticus configuration [3].

Features of the code include the treatment of a lossy ground plane, various

impedance loading schemes, and several source models.

Third, the ~put transition section of the Ellipticus antenna for high

frequency applications is designed. The basic design is accomplished by using

exponentially tapered transmission line analysis. The NEC code is then used to

evaluate the design in terms of the desired radiation pattern for the working volume.

Also, a model of final design of the transition section is constructed and tested.

The test, in general, includes radiation pattern testing and input impedance

characterization.

Finally, a parametric study is performed to ascertain the performance of the

Ellipticus ilh-minator for frequencies up to 1 GHz.

H Description of the IWipticus IIIuminator

Figures 2-1 and 2-2 [5] show the design structure of the (XV Ellipticus

antenna. The E1lipticus antenna configuration is a distributed impedance loaded

wire structure where the wire forms one half of an ellipse, cut along the semi-major

axis, over a lossy ground. The antenna is loom” across from the base and 20m at

its highest poing a very large structure in terms of a wavelength at few Gigahertz.

The structure is driven from its highest point, at the center, by a differential

mode CW driver thereby producing horizontal polarization of the elecrnc field at

the ground directly below the source. When a large object is illuminated, linear

polarization is not expected over the entire surface. TypicaI1y, the test object is

placed at the center of the Ellipticus antenna on the ground or raised off the ground

on a rail car.
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The antenna is constructed of 0.32 cm diameter, akraft cable. The antema

is resistively loaded whe~ the total antenna resistance is approximately 1750f2,

placed O.lm apart along the length of the antema.

III The Exponentially Tapered Transmission Line Design

3.1 Input Impedance Derivation

A transmission line whose impedance per unit length, Z, and admittance per

unit length, Y, vary with distance down the line is known as a nonurdfoxrn

transmission Iine. This transmission line is ilhmated in Figure 3-1 below [q.

Figure 3-1: The Exponentially Tapered Transmission Line

,

One such nonuniform transmission Ii.ne is the case in which Z and Y vary

exponentially with distance down the line, z, as foIIows [6]:
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Y(z) = jt3Coe’~

(3-1)

(3-2)

Note that ~ and COare the inductance and capacitance per unit length at the input,

respectively. Also, q is the taper factor.

For an exponentially tapered transmission line (ETTL), the voltage and

current vary with distance down the line, z, as follows:

I(z) = Ild+ + ~2e -Y;’z

where the subscripts 1 and 2 denote +Z and -z traveling waves respectively

exponent terms are defined as

(3-3)

(3-4)

and the

(3-5)

(3-6)

Also, the differential equations for the variation of voltage and current along the

transmission line are as follows:

and

fm) =
dz

- Z(Z)I(Z)

dm) .,
dz

- Y(z)v(z)

(3-7a)

(3-7b)
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From equation (3-4) and equation (3-7a), the -z traveling current can be expressed

as

12e-7i’z= - &&P”z)
By evaluating the derivative, the -z traveling current can be solved for as

Similarly, II can be solved for as

The input impedance to the transmission line can be expressed as

(3-8)

(3-9)

(3-lo)

(3-11)

Substituting II and Iz from equations (3-9) and (3-10) into equation (3-11) yields

(3-12)

The characteristic impedance at any point z on the transmission line can be

expressed as

(3-13)

.

Note that Zc(z)does not represent the ratio of V/I for an infinite line.
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The term under the radical in equations (3-5) and (3-6) can be designated as j~.

That is,

‘ ‘&2~cd:l’ (3-14)

Letting q=O, which is true if the line has no tapering, equation (3-5) becomes

(3-15)

Evaluating equation (3-13) at z=O, ~ can then be solved as

~ = zc(o)~~ (3-16)

Finally, using equations (3-14), (3-16), and the term ~ &om equation (3-15),

equation (3-12) for ~ can be re-written as

Xfan arbitrary load is placed on the transmission line at z=~ (as shown in

Figure 3-1), the voltage and current on the line at this termination point will obey

the following relationship

(3-18)

where V({) and 1(!) are defined by equations (3-3) and (3-4) evaluated at z=t. ~

can now be re-written as

Vle “~i + Vze-Y/’t
zL=g=—

V,O” + 14j7e%”t
Y;

9
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Y1’ (3-19)
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Solving for the ratio V1/Vz yields

VI—=
V2

(3-20)

Thus, the input impedance to an exponentirdly tapered transmission line with

input characteristic impedance ZC(0)and loaded with an arbitrary

can be calculated by solving for VJVz using equation (3-20) and

this into equation (3-17).

complex load ~

then substituting

The resulting equation (3- 17) is a function of the complex load ~ placed

across the load terminals of the E?TL and m! the design parameters of the ETTL

itself, q and ZC@The NEC modeling of the results for the Ellipticus Illuminator

(EI) using the lZITL as a transition section give the impedance(s) seen by the

voltage source(s) used in the numerical model. This data is to be used along with

the ~ equation derived above to compute the input impedance of the EI structure

at several frequencies of interest.

In each case, Thevenin modeling of some or all of the E’ITL mmsition

section are used in the NEC model and the values of ~ used in the ~ equation are

found as

zSNEC -zti=zL (3-21)

where ~m is the NEC source impedance. When no symmetry is used in the

model, the values of&= can easily be seen from considering Figure 3-2. When

symmetry is used, two Thevenin voltage sources and loads are used as shown in

Figure 3-3. In this case, ~ is found as
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2z~mc - Zth = ZL (3-22)

Also, the value off in the Zti equation will be the length of the E’ITL that

is modeled by its Thevenin equivalent circuit. For all cases, except the 200 MHz

and higher frequency cases, the value of ! is 1.935m (indicating the entire ETI’L

transition section is being modeled with its Thevenin equivalent circuit). For the

cases of 200 MHz and higher frequencies, the vaiue for { will be 1.935m less the

length of the portion modeled by straight

3.2 Transition Section Design

wire segments in the NEC model.

The governing equation for the characteristic impedance of the exponentially

tapered transmission line is [Q

Zc(z) = z&@ (3-23)

where ZC(Z)is the characteristic impedance at a point z on the line and Z,. is the

input characteristic impedance (i.e. at z=O). For this design ZCO=50ohms. Circular

conductors of radius a will also be useci for this design.

When the center-to-center wire fipacing at a point z, s(z), is at least several

times the wire radius, the characteristic impedance for a two-wire transmission line

can be approximated by [7]

(3-24)

Equations (3-23) and (3-24) can be equated and their derivatives with respect to z

can then be taken. Solving for s’(z), that is the derivative with respect to z of s(z),

yields
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Solving for the position along the transmission line, z, yields

(3-25)

(3-26)

In these expressions, the term s’(z) is chosen as a constant value to begin

the design. Figure 3-4 below illustrates the exponentially tapered mansm,ission line

used as a transition section.

z -son
co

Choosing the

------ --- —- .,-- --+ z

37°

Figure 3-4: Transition Section

37 degee angle below yields s’({)=1.50711.

Evaluating equation (3-24) at the end of the transition section, at z=fl, and

noting that q=1207c yields

[1
Zc(l)= 120 L?n~

a
(3-27)
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Evaluating equation (3-26) also at z=~ yields

The design of the transition section can then be completed by choosing a

value for s(!) and computing the resulting ZC({) and the length Q. Choosing

s(Q)=O.4m yields Z&Q)=413.98 ohms and &=l.935m. These were the values

selected for the ~sition section design. These parameters for the transition

section yield a 50Q to 413.98i2 transition of characteristic impedance over its

1.935m length.

This transition section will also have a lower cutoff ?%equency that can be

calculated as [6]

(3-29]

In equation (3-29) q can be solved for flom equation (3-22). Using the design

pmameters mentioned above, this yields q=l.0924 and a cutoff frequency of

fc=26.07 MHz.

3.3 NW Modeling

The exponentially tapered transmission line driven with a IV source can be

replaced by a Thevenin equivalent circuit for the portion from Al to z=t’, 1’<t,

as shown in Figure 3-5 below. This model will be accurate to use in the NEC

model as long as the wire spacing of the transmission line at z=@’is much less than

one wavelength.

The Thevenin equivalent model will have Vti=V=(Q’)and Zti=VW(C’)&c(t’).

Expressions for Vti and ~ can be derived using the open circuit and short circuit

conditions on the circuit of Figure 3-5 [8].



.

0
Z=o ~=k1

Zc(o)

91‘v.-/
Figure 3-5: Thevenin Equivalent Circuit

The voltage and current on the exponentially tapered transmission

obey the following relationships

J@)

[6]

= vlo’z + J7e-d’z

‘(Z’=[SI’-’’Z’[E”Z-’”Z

line will

(3-30)

(3-31)

Under open circuit conditions, the voltage at z=O and the current at z=L?’can be

expressed as

V(O)= 1- I(o]zc(o)

and

I(l) = O (3-33)

Evaluating equation (3-3 1) at z=l’ and equating it with equation (3-33) yields
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[31’-’’’=-[%)’” (3-34)

Evaluating equation (3-30) at z=O and equating it with equation (3-32) yields

(3-35)

Equations (3-34) and (3-35) can be used to generate expressions for Vl and Vz

These expressions wilI then be used in equation (3-30) with z=@’ to yield

Vti=vm(lr).

From equation (3-35), VI can be found in terms of Vz as

[)Zc(o)Y*//
1 -V21+

VI=
jm~

(3-36)

[1

~c(OY*f
1+

j~~

Substituting equation (3-36) for VI in equation (3-34) and solving for Vz yields
*

To compute V& for arbitrary wdues of ZC(0) and @’,Vz is fiist computed horn

equation (3-37), VI is then found horn equation (3-36), and then Vti is found from

equation (3-30) using z=4’.

Under short circuit conditions, equation (3-32) still holds and V(t’)=o.

Evaluating equation (3-30) at z=!’ and using the fact that V(Q’)=0 yields

(3-38)

Equation (3-38) above and equation (3-35), which is also valid for the short circuit

16 e
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d
case, can be used to solve for VI and ‘Vz These expressions will then be used in

equation (3-3 1) at z=!’ to yield IJt’). The relations for VI and Vz are

vl=-~2’#~(Y1’- u“) (3-39)

and

‘=[[’+‘f:fll-[’+z:::’)’’(’’-’‘3-4”)
To compute IJil’) for arbitrary values ZC(0) and !’, Vz is first computed from

equation (3-40), VI is then computed from equation (3-39), and IJ1’) is computed

from equation (3-3 1)’at z=I’, Finally, ~ is found as

V@(t’)
z*=— (3-41)

l=(i)

In the NIX modeling of the EI, the transition section is modeled by several

straight wire sections that approximate the cwwature of the ETTL. But due to

limitations of the spacing of wkes in the lNEC program, the transition section is

only modeled with straight wires up until the wire spacing approaches 4 or 5 wire

radii in center-to-center separation. The remaining length of the transition section

is denoted as !’ and is modeled with the Thevenin equivalent circuit previously

discussed.

All of the EI except some or all of the transition section is modeled with

straight wires. The coordinates for this wire model are taken from Figure 2-1 for

the main EI’s structure and from the tabulation of wire spacing, s(z), as z varies for

the transition section. These straight wire approximations to the lower portion of

the transition section are used for the 200 MHz, 300 MHz, 500 MHz, 800 MHz,

and 1 GHz cases. Figures 3-6 through 3-9 below are to-scale illustrations of these

straight- wire approximations

.—

to the E7TL. Straight wires are used between the

17
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is shown beside the wire. Symmetry about the x-z pkme is used in these models,

so only half of the ETI’L is illustrated.

In addition to using Thevenin equivalent circuits to model portions of the

transition section and using symmetry with the x-z plane, the EI is also modeled

over a lossy ground pkme. The Sommetield/Norton method for analyzing wire

structures near a lossy ground plane is used in the NIX computations. For each

frequency used, a program titled SOMNEC is run to generate a data file containing

parameters of the lossy ground pkme. This program is given the flequency of

operation and the permittivity and conductivity of the ground pkme in order to

generate each output file. The data file is then used by the NEC program as it is

running [5]. The permittivity and conductivity values used are for concrete. They

me obtained f?om data in a publication by

constitutive parameter data is given only up

higher frequencies the plots are extrapolated

parameters up to a frequency of 1 GHz [10].

Castillo and Singaraju [9]. Their

to a frequency of 100 MHz, so for

to obtain approximate values of the

3.4 Ohmic Losses

The resistance per unit length of a transmission line increases signtilcantly

at high frequencies since the skin depth ~ becomes small, i.e.,

(3-42)

where co is the radian frequency, p is the permeability, and a is the conductivity.

For most practical purposes, only that portion of a conductor that is within a skin

depth of the surface carries significant current.

For a two-wire line with circular cross section conductors, the internal

impedance per unit length is [11]

.

18



z (m)

4
Vz

5

L
3

20.0 _.. .—— —— ,
I
I

4 ! I I I 1 I 1 .

0 0.1 0.2

10.515

20.0

Y(m)

Figure 3-6: Straight-Wire Approximation to the Lower
Portion of the Transition Section with
Thevenin Equivalent Circuit Modeling of
the Upper Portion at 200 MHZ.
V = V~2 and Z = Z~2

z (n)

v ‘t
P

1

20

--— ——_ ,
I
s

o 0.1 O.z

Figure 3-7: Straight-Wire Approximation to the Lower
Portion of the Transition Section with
Thevenin Equivalent Circuit Modeling of
the Upper Portion at 300 MHZ.
V= VJ2and Z=ZJ2

I



f
z m)

20.731 V*

10.435

20.0 _.-_. —.

I I I , It I,*

0 0.1 0.2

Figure 3-8: Straight-Wire Approximation m thti Lower
Portion of the Transition Section with
Thevenin Equivalent Circuit Modeling of
the Upper Portion at 500 MHZ.
V= VJ2and Z=”ZJ2

*

2)

?.0.796 u

>4

34

10

20.43% 10

dLLLLLb
11 0.1 0.2

T(.)

Figure 3-9: Straight-Wire Approximation to the Lower
Portion of the Transition Section with
Thevmin Equivalent Circuit Modeling of
the Upper Portion at 1 GHz.
v=v~2mdz.~

0.



I+j

1
CJ)p

zi\* = ----
20[1 - (:)2]

(3-43)

where a is the wire radius and 2h is the!center-to-center wire separation. Here, the

real part of ~ is the wire resistance per unit length and the imaginary part is the

inductance per unit length that arises from the magnetic flux inside the wire. Note

that the internal impedance grows without bound as the wire separation approaches

zero. This occurs because the line current tends to accumulate on the portion of the

wire surface nearest the other conductor.

If the characteristic impedance of the mnsmission line must be as small as

50!2, then for an air dielectric, the spacing should be

And from equation (3-43), the internal impedance is increased by a factor of 2.33

over the internal impedance for a line spacing satisfying h2 >> a2. Moreover, the

close spacing of the conductors aggravates the breakdown problem and makes the

fabrication more difficult because the reduced tolerance in separation distance

variations.

For thin flat parallel conductom, generally called two-conductor strip line,

the internal impedance is [12]

where

21



and

7CW
x’—

2h
(3-46)

(3-47)

Here w is the plate width, 2h is the plate separation, and t is the plate thickness.

The characteristic impedance of the strip line is [12]:

(3-48)

In order to compare the loss characteristics of strip conductors to circular

conductors, the width of the plates is constrained to have the same circumference,

i.e.,

2W = 27ca

and the characteristic line impedances are required to be equal. With these

conditions, the ratio of the interred impedances is

2x[l+x+n-2&)l

r
1 - (;)2 (3-49)

l+x+i!n(l +x)

Considering a 5(X2characteristic impedance, then h/a= 1.08807 for cirdar

conductors and x = mv/2h = 19.66 for flat strip conductors. In addition, for the

comparison, let

t—= 2
h

;% = 2(;)(6.26)

Then ct = 4.79. Using the foregoing in (7) yields

22
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0
‘i~M@ = 14——
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Clearly for the parameters selected, the ohmic losses of the strip line greatly exceed

those of the circular conductor, two-wire transmission line. This is expected since

the current distribution on thin strip conductors is highly nonuniform with most of

the current in narrow sections at the edges [13]. Consequently, it is desirable to use

circular conductors whenever possible. ‘

In the construction of ~Je exvonentialy tapered transmission line, the.

conductor cross section is continuously varied from flat strips to circular cross

sections as ~Je cim-actexistic impedance incrsases exponentially. This was done to

increase the power handling capability and provide low ohmic loss characteristics.

3.5 Characteristic Impedance Computation

The potential at points near an arbitrarily shaped

numerically by using a fiiite difference approximation

In the discussion that follows, this method is applied to

conductor can be computed

to Laplace’s equation [14].

an elliptical conductor near

a perfect ground plane in order to compute the two dimensional potential

distribution about the conductor. From this, the charge on the ground plane (which

is equivalent to that on the conductor) is found, and from that the characteristic

impedance of the conductor will uMrnately be computed (also see section 3-6),

Applying this process requires that the plane in which the potential values

are to be found be overlaid by a grid. The potentials are computed only at the

points where the grid lines cross. Known boundary conditions are applied to grid

points that fall on a boundary whose potential is already known. Such points are

initialized to their known value and are k:ept at these values throughout the iteration

process that follows. Other boundary conditions may also be used in the iteration

process.
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of the

The iteration pmeess sweeps across the @d of points, ad@ing the values

~tentials with each pass. m-– –-–.-––––-–e. i--- --– –--– .- T.. .. 1 ! !

fine the grid is and by how many

process is stopped

Figure 3-10 below shows the

Lne accuracy 01 mxs process Is unmea c)ynow

iteration passes are Wowed to occur before the

boundary conditions and grid that is used to

compute the potential at points in the region around an elliptical conductor. The

symmetry about the y axis in this problem is also utilized to arxive at boundary

conditions aIong the y axis.
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Figure 3-10: The Elliptical Conductor

The iterative process that is used in this problem is the successive

overrelaxation (SOR) scheme, In this process, an arbitrary grid point (ij) that does

24
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0
not lie adjacent to a boundary is adjustecl on the nth iterative pass to satisfy the

following equation:

vu(”) = (l-K) VU(’-l)+: [J;+*~-l)+~.lf) +qJ+l(~”l)+vq-l(~)]

where 1 e K <2 and where V*Jis dei”med as

‘u = V@,y) where x=iA and y=jA

(3-50)

(3-51)

The values of K used most often are 1.1 e K c 1.3 (K=l.2 is used in all of the

production runs of this process in seclion 3-6),

In this case, a curved boundary is present. Many points that are adjacent to

the curved boundary may have an adj,aeent point that falls on the other side of the

curved boundary. Noting that the iterative equation (3-50) is a function of the

potentials of the four adjacent points, equation (3-50) cannot be used in such cases.

Instea& specialized iterative equations must be used when one or more of the four

points adjacent to a grid point fall on or beyond a boundary.

For points that are close to the lower half of the curved boundary as shown

in Figure 3-11, ‘&e iterative equation used is ,

●

~
(i:l, j) (i,j) ‘ (i+l,j)

‘(i, j-1)
——,

Figure 3-11: One Point Crossing the Boundary
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where V~

{

V.
yy = (1-K-)vv(”-l)+z ~ ~v f)+.z vi JR)+~+14(m-1)

[ 1} (3-52)
1+7 1+11+I+q - 2 -

is the value of the potential on the boundary as shown in Figure 3-11.

For points that are close enough to the boundary to have two adjacent points

fall across the boundary, the iterative equation used is

where V. and V~ are the potentials cm the bmdary as shown in Figure 3-12.

Similar to the case of Figure 3-11 is that of Figure 3-13 below where one

point crosses the boundary. In this case, the iterative equation used is

Here Vb is the potentkd on the boundary as shown in Figure 3-13.

Other possible configurations of points falling near the curved boundary are

straight forward applications of the three cases already presented.

The other boundary conditions of Figure 3-10 involving the normal gradient

of the potential being zero are easily implemented by setting the values of the

potentials of the points that lie on these boundaries equal to that of the adjacent

point that lies inside the ~tid. This is implemented by iterating points that lie near

the boundary at x=O as

Points that Iie adjacent to the upper boundary are iterated as
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0

(i-l,j) ,

—//

(i,j+l) y

“ 7’

dVa -

% RA

:&.
/ $A(i,j)

(i;j-1)

e (i+l, j)

Figure 3-12: TWOPoints Crossing the Boundary

4 (i, j+l)
●

(i-l, j)

j)

(i~j-1)

(ill,j)

Figure 3-13: Second Case of One Point Crossing the Boundary
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to the curved

applications of

boundary. Iterative equations

the previously described cases.

for these are straight forward

The program implementing this procedure for the elliptica.i conductor of

Figure 3-10 uses the finite difference technique. In this program, N and M are set

equal to simplify the calculation of the charge on the ground plane. AIso, the

voltage on the elliptical boundary is set at a constant one voh to simplify the

iterative equations. The results of the finite difference program have been verified

using a circular conductor (with a=b). The exact solution for the potentiaI at points

near a circular conductor is known horn basic fieId theory [15]. The potentials

numerically arrived at by the fiite difference program have been checked for

28
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o
several points and have been found to be within a few percent of the exact values.

Caution must be used however to ensure that: (1) the upper and right

boundaries are at least 3a to 4a away from the origin, (2) the height of the

conductor, h, is small (such as 30% or less of the length of a side boundary), and

(3) that the tolerance used for stopping the iteration, TOL, is small enough to

require several iterations to occur before convergence to a solution. At least 6N or

more iterations is a minimum number for an accurate solution for the potential

distribution.

From basic field tieory, the characteristic lbpedance of a Iossless

transmission line is

(3-62)

where L’ and C’ are the inductancti and capacitance per unit length of the

transmission line [16]. Also

~l@ = pa

Combining equations (3-62) and (3-63), ZCcan be expressed as

(3-63)

(3-64)

The charge per unit length on the transmission line can be expressed in terms of C’

and the potential difference between the conductors, VO,as [16]

Q/ = (yv
o

(3-65)

In the case of Figure 3-10, VOis set at 1 volt. This yields Q’=C’, which then makes

equation (3-64) becomes
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~=dm (3-66)
c Q/

The charge per unit length on the elliptical conductor of Figure 3-10 can be

found by integrating the normal derivative of the potential around the conductor to

give

(3-67)

An easier approach, however, is to integrate the normal derivative of the potentkd

across the ground plane below the conductor, since this charge is the same as that

on the conductor. By choosing the values of M and N the same in the finite

difference program, finding the charge can ‘bedone by simply summing the values

of the potentials in the row just above the ground plane of Figure 3-10. Knowing

the charge, the characteristic impedance of a two-wire transmission line composed

of the elliptical conductors separated by the distance 2h is then computed. Image

theory and the symmetry of Figure 3-10 are taken into account to yield the correct

value for ZCfor the elliptical two-wire transmission line. *

The resuIts of the finite difference program have been confirmed by running

the case of a circular conductor (a=b) close to a perfect ground plane, the

characteristic impedance of which is known exactly. The resulting characteristic

impedance was found to be within approximately 2$%of the exact vahe. The

programs have also been tested on an elliptical conductor with b<ea, that is a nearly

flat conductor. The resulting characteristic impedance was found again to be within

a couple of percent of the theoretical value for an infinitely thin, flat conductor of

the same dimensions.
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3.6 Design and Constriction Of The
Exponentially Tapered Transmission Line

Equation (3-24) gives the characteristic impedance of a two-wire

transmission line of circular conductors [7] and is repeated below,

(3-68)

In this equation, s(z) is the center-to-center wire spacing at a point z along the line

and z is the wire radius. This expression is accurate only when s(z) > 4a. For the

E7TL design arrived at in section 3-2, $Ms 4 radii separation point yields s

characteristic impedance approximately 157.X2 and occurs at z= 1.0528rn from the

50L2drive point. Thus, elliptically-shaped conductors are used from the drive point

out to z= 1.0528m. From z= I .0528m to z=l .935m, where the mmsition section

ends, circular conductors are used.

To arrive at final design parameters for the ETTL, the problem is divided

into three sections: (1) from z=om to m=1.05m where elliptical conductors are used,

(2) from z=l.05m to z=l.254m where the conductors are circular but where an

equation for Zc(z) more accurate equation (1) is used, and (3) from z=l .254m to

z= 1.935m where the conductom are circular and where equation (1) is used to

calculate ZC(Z). For the section with elliptical conductors, the finite difference

method is run numerous times varying the ration b/a and the conductor center-to-

center spacing 2h. For each run, b and h are chosen arbitrarily and the semi-major

axis length a is given by

(3-69)

where c=O.0798m, the circumference of a 1 inch outer diameter conductor. The

circumference must me kept constant in all of these design runs of the finite

difference routine.
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Each resulting characteristic impedance computed by the finite difference

process is then plotted based on where it would occur on the ETTL from equation

(3-23). Thirteen cases are then chosen to yield a smooth increase in the ratio of b/a

and the conductor center-to-center spacing 2h. These cases are the first thirteen

cases listed in Table 3-1 below.

From z=l.05m to z=l .254m, the conductors of the E’ITL are circular and

their characteristic impedance is [15]

where C’ is ‘he capacitance per unit length of the conductor given by

c’= J, ,7-)1

(3-70)

(3-71)

This equation is more accumte than that of equation (3-68) for the close conductor

spacing that is involved in this portion of the ETTL.

From z= L254m to z=l.935m, the conductors of the ETIL are still circular.

The characteristic impedances in this last portion of the EITL are calculated from

equation (3-68). The final design parameters for constructing the E’ITL with

ZC(0)=50LI,Z=(I)=413.98LI, and q=l.0924 are tabulated in Table 3-1 above. In Table

3-1, z is the distance along the z axis from the drive point, b is the length of the

semi-minor axis of the elliptical conductor, a is the length of the semi-major axis,

and 2h is the center-to-center conductor spacing of the ETTL.

The prototype ETTL is constructed from the design specifications of Table

3-1 with one exception. One inch outer diameter copper tubing is not a standard

size, so 7/8” outer diameter copper tubing is substitutecL The effects of this

substitution should be minimal. For example, ZC(l)would be 430f2 rather than
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Table 3-1 Example Design Parameters of the ETTL

Zf@

0.00000
0.13300
0.20000
0.32000
0.42000
0.50000
0.60000
0.68000
0.76000
0.85000
0.93000
0.98000
1.03600
1.09100
1.12700
~.19600
1.25400
1.27500
1.30000
1.32500
1.35000
1.37500
1.40000
1.42500
1.45000
1.47500
1.50000
1.52500
1.55000
1.57500
1.60000
1.62500
1.65000
1.67500
1.70000
1.72500
1.75000
1.77500
1.80000
1.82500
1.85000
1.87500
1.90000
1.92500
1.95000

0.004600
0.005000
0.005500
0.006500
0.008000
0.009500
0.011300
0.013000
0.015000
0.017000
0.019400
0.021000
0.023000
0.026000
0.028000
0.031000
0.034000
0.0339883
0.0356041
0.0373448
0.$392223
0.0412502
0.0434436
o.o~58193
0.0483961
0.0511954
0.0542410
0.0575598
0.0611821
0.0651424
0.0694795
0.0723780
0.0794676
0.0852263
0.0915795
0.0986024
0.106381
0.115015
0.124619
0.135325
0.147286
0.160681
0.175717
0.192636
0.211723

413,98Gl, the length Q would be

Lfd

0.01746
0.01746
0.01746
0.01785
0.01771
0.01751
0.01725
0.01693
0.01654
0.01608”
0.01554
0.01492
0.01420
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
o.oI.270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.131270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270

Mil

0.00159
0.00159
0.00159
0.00200
0.00300
0.00400
0.00500
0.00600
0.00700
0.00800
0.00900
0.01000
0.01100
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270
0.01270

U&D

50.000
61.700
64.800
71.000
79.000
86.400
96.000
105.000
115.000
126.000
138.500
146.000
155.000
164.000
171.200
184.800
196.800
201.307
206.881
212.609
218.495
224.544
230.761
237.150
243.716
250.463
257.398
264.524
271.848
279.374
287.109
295.058
303.227
311.623
320.250
329.117
338.229
347.593
357.217
367.107
377.271.
387.716
398.450
409.482
420.819

2.046m rather than 1.935m, and the cutoff

frequency would be25.09 MHz rather than 26.07 MHz. Any stretching of the

tubing as it is flattened into an elliptical shape will further reduce these

discrepancies.
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Type L, 3/4” inner diameter, flexible copper

conductors of the E’ITL. The tubing is flattened to

tubing is used for the

closely approximate the

elliptical conductors according to Table 3-1 specifications. The conductors are then

secured to the edges of two 1“ by 8“ boards cut to set the proper spacing of the

conductors. Countersunk woodscrews hold the conductors to the boards. A simple

framework of 2“ by 2“ boards forms the support of the ETTL. An N-type feed-

through connector is finally used to drive the EITL. The finished prototype of the

ETI’L is shown in Figures 3-14 and 3-15 below.

IV Computations and ExperirnentaI Testing

4.1 Incident Electric Field Computation

To obtain the incident electric field aIong the ground plane in the working

volume, numerical modeling of the EI is done using the NEC program. The

structure is modeled over a lossy ground plane using Thevenin equivalent circuit

models for portions of the transition section, as discussed in section 3-3. The

desired data obtained from these numericai modeling expexirnents consist of the

total electric and magnetic fields along line a at x=6m, y=- 15m to Om, z=Om and

line b at x=4.705m to 7.295m, y=z=om, and at the origin. This is illustrated in

Figure 4-1 below.

Given the x, y, and z components of both the total electric and magnetic

fields, the incident field can be computed (approximating normal incidence on the

ground plane) as folIows [17]:

(4- 1)

(42)
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Figure 3-14: Prototype of the Exponentially Tapered Transmission Line (E’ITL).
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Figure 3-I5: Prototype of the EITL Undergoing Antenna Power Pattern Measurement.



o Z(m)

‘t
k

. Y(m)

-50m 50m

1 line b
line a

F@re 4-1: ties Along which lEti ~Is Computed

These computations are performed for points 0.06251n apart along the line x=6m,

y=- 15m to Om, z=om and for points 0.01047m apart along the line x=4.705m to

7.295m, y=z=Om. The magnitudes of rhe resulting incident electric field values are

plotted to reveal the behavior of the incident field in this portion of the working

volume. Ideally these plots should resemble the antenna pattern plots that are

performed on the tmmsition section alone for high frequencies.

Figures 4-2 through 4-21 illusmte the dominant y component of the incident

electric field at 100 KHz, 500 KHz, 1 MHz, 5 MHz, 10 MHz, 100 MHz, 200 MHz,

300 MHz, 500 MHz, and 1 GHz along lines a and b of Figure 4-1.

Brief observations of these plots are summarized in Tables 4-1 and 4-2

below.
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Frequency

m
0.1
0.5
1.0
5.0
10.0
100.0

200.0
300.0

500.0
1000,O

Frequency

-

0.1
0.5
1.0
5.0
10.0
100.0
200.0
300.0
500.0
1000.O

TabIe 4-1 Observations of the IEkCI plots
for the line a of Figure 4-1

Approx. R~ge $ Basic Description
Values of IE,=~
1.05 to 1
1.05 to 1
1.09 to 1
1.2 to 1
1.24 to 1
5.2 to 1

3.5 to 1

of the Curve
smooth, constant slope
smooth, constant slope
smooth, constant slope
smooth, constant slope
smooth, constant slope
slow, smooth variations
sidelobes present
(same as for 100=)

with

(large to a null) oslow, smooth variations with a
deep null at x=lom

1.2 to 1 slow, smooth variations
2.5 to 1 rapid, smalI variations with a

smooth envelope

Table 4-2 Observations of the IEiti \ plots
for line b of Figure 4-~-

Approx. Range in
Values of I13.1

1.07 to 1
1.07 to 1
1.07 to 1
1.08 to 1
1.06 to 1
1.06 to 1
1.07 to 1
1.11 to 1
1.21 to 1
1.35 to 1

Basic Description
of the Curve

essentiality flat
essentially flat
essentially flat
essentially flat
essentially flat
essentially flat
essentiality flat
essentially flat
essentially flat
mostly flat but with
slow, smooth variation
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4.2 Measured Antenna Power Patterns

What follows are the results obtained from measuring the antenna power

pattern of the exponentially tapered transmission line (ETTL) at frequencies of 300

MHz, 500 MHz, 800 MHz, and 1 GHz. The dimensions and construction of the

ETTL are detailed in section 3-6.

The apparatus used to measure the power pattern of the ETI’L at each of the

fore- frequencies consist mainly of two half-wave dipoles cut for the specific

frequency in use, a signal source with external 1000 Hz sinusoidal modulation to

drive the transmitting dipole, a detection circuit to receive the signal with either the

dipole or the EllTL, and a pattern plotter. The basic apparatus is illustrated in

Figure 4-22 below. Here, antenna (1) is a reference dipole and antenna (2) is the

ETTL.

!7
Local

Oscillator
(,/) f + 32MHz

// y,) 1 ‘/
L *

,./\

T’z

Mixer

f

‘i’< L+k ‘; ‘
o

1000
u

Hz
T

)

L - 4X ‘

Pattern

Plotter
I.F.

Amplifier

Figure 4-22: Block Diagram of the Pattern Plotting Apparatus

Photographs of the apparatus as it is being used are presented in Figures 4-23

through 4-29 below.
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Figure 4-23: Transmitting Half-Wave Dipole Antenna
and its Signal Source with 1000 Hz ExternaI
Modulation. Frequency in Use Is 300 MHz.
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Figure 4-~4: E’JTL on Pattern Plotter Turntable, R@ceivedSignal Is Being Input to the
,Dctection Circuit at the Left.
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Figure 4-25: Another Angle of Figure 4-24.
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Figure 4-26: Half-Wave Dipole Receiving at 1.0 GHz.
Ferrite Cores Were Used to Reduce Reflections
from the Coaxial Feedline.
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Figure 4-27: Detection Circuit Used to Detect the Received Signal. The Output of the
IF Amplifier Is Being Observedon an Oscillator for a Maximum Received
Signal Strength. Once Tuned, This Signal Is Sent to tie Pattern Plotter.
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Figure 4-28: Half-Wave Dipole in Foreground at the Left 1s Transmitting at 300 MHz.
The EITL in the Distant Background (Indicated with an Arrow) Is
Receiving the Signal on the Turntable of [he Pattern Plotter.
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Figure 4-29: Half-Wave Dipole on the Plotter Turntable
Receiving a Signal at 300 MHz from the
Transmitting Dipole in the Background
(Indicated with an Arrow).
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At each of the test frequencies, the power pattern for a half-wave dipole is

superimposed over that of the ETTL for 3 different configurations: (1) horizontal

polarization, (2) horizontal polarization with a large wire loop connected to the

EITL, and (3) vertical polarization. The resulting plots follow in Figures 4-30

through 4-41. The large wire loop used in the second horizontally polarized test

consists simply of an approximately 40 ft length of 10 gauge solid copper wire

connected across the output terminals of the ETTL in the shape of a large

semicircle.

The resulting antenna power patterns yield very similar- results for the 500

MHz, 800 MHz, and 1 GHz cases. In each of these cases the horizontal

polarization tests, both with and without the large wire loop, yield half-power

beamwidths of 34 to 35 degrees. The vertical polarization tests yield half-power

beamwidths of 42 degrees and 45 degrees in each of these three cases. The 300

MHz case yields no measurable half-power beamwidth when horizontally polarized

due to its nearly constant gain, but when vertically polarized it yields a 64 degree

half-power beamwidth.

In the antenna power pattern plots that follow, the horizontal scaling k in

3 degree steps and the smallest vertical divisions are 0.2 dB each.

Some similarities between the incident electric plots and the antenna power

pattern plots can be noted. The angles to the fiit null along line a of Figure 4-1

at 500 MHz and 1 GHz (see Figures 4-10 and 4-11) are approximately 26.6 degrees

and 33 degrees respectively, both of which match closely their corresponding

antenna power patter plots. The half-power beamwidth along line a of Figure 4-1

at 1 GHz is approximately 36 degrees, which again is close to that measured for the

ETTL. Along line b of Figure 4-1 at 300 MHz and 500 MHz (see Figures 4-19 and

4-20), the half-power beamwidths are 55.1 degrees and 41.3 degrees respectively.

These also fall reasonably close to the measured values for the ETI’L.
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Figure 4-30: Antema Power Pattern of the ETT’L and
a Half-Wave DipoIe at 300 MKz with
Horizontal Pokuization.

F@ure 4-31: Antenna Power Pattern of the ETI’L and
a HaIf-Wave Dipole at 300 MHz with
Horizontal Polarization and a Large
Wire Loop Connected to the ETT’L.
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Figure 4-32: Antenna Power Pattern of the ETTL and
a Half-Wave Dipole at 300 MHz with
Verticai ~?oitiation.

Antenna Power Pattern of the ETI’L and
a Half-Wave Dipole at 500 MHz with
Horizontal Polarization.
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Figure 4-35: Antenna Power Pattern of the ETT’L and
a Half-Wave Dipole at 500 MHz with
Vertical Polarization.

.
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Horizontal Poh&.ation.

I

Figure 4-37: Antenna Power Pattern of the ETI’L and
a Half-Wave Dipole at 800 MHz with
Horizontal Polarization and a Large
Wire Loop Connected to the ETTL.
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Figure 4-38: Antenna Power Pattern of the ETTL and
a Half-Wave Dipole at 800 MHz with
Vertical Pokrization.

.

Figure 4-39: Antenna Power Pattern of the El_I’L and
a HaIf-Wave Dipole at 1 GHz with
Horizontal Polarization.
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Figure 4-40: Antenna Power Pattern of she 13TT’L
a Half-Wave Dipole at 1 GHz with
Horizontal Polarization and a Large
Wire Loop Comeeted to the E’TTL.

and

o
klgure 4-41: Antenna Power Pattern

a Half-Wave Dipole at
Vertical Polarization.
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4.3 Input Impedance CaIculation

.

●

The input impedance for the ETTL is derived earlier in section 3-1 and the

method for using the results of the NEC-2 modeling to compute the input

impedance for the EI is described. The resulting computed input impedances of the

EI are tabulated in Table 4-3 below.

Table 4-3

4.4

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
5.0
10.0
100.0
200.0
300.0
500.0
1000.0

Calculated input impedances of the EI
using results obtained from the NEC-2
modeling at various frequencies.

INPUT TMPEDANCE (OHMS)

1854.6- j 50.5
1834.9- j 132.3
1894.0- j 257.3
1873.3- j 415.2
1846.6- j 635.4
1778.2- j 820.2
1628.9- j 994.4
1426.1- j 1125.4
1230.1- j 1209.4
1014.8- j 1188.2
203.8- j 364.3
78.6- j 236.7
10.8- j 1.3
82.4 + j 161.4
20.1 +j 18.6
13.6- j 11.7
56.8- j 75.9

Input Impedance Measurement

VSWR

37.1
36.9
38.0
39.3
41.3
43.1
44.7
46,3
48.4
48.1
17.3
16.4
4.6
6.6
2.9
3.9
3.8

Results of measuring the S parameters of the ETT’L with a network analyzer

and computing the corresponding input impedances are presented in this section.

The E’Ill is tested inside a laboratory room in two different positions within the
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room. Also, a large wire, no. 12 A.W.G., loop (about 4m in diameter), is placed

as a load on the output terminals of the E’ITL (as is done in the antenna pattern

measurements of section 4-2) in one c~fthe two positions. The different positions

are used to try to gauge the affects of the test being conducted indoors in close

proximity to possible sources of perturbation. The wire loop is used in one case

to observe possible affects of connecting the E’ITL to the EI structure as a

transition section.

Of the four S parameters measured, Sll alone is used to compute the input

impedance of the ETI’L. These measurements are made from 100 MHz to 1 GHz

in 50 MHz steps. The resulting values of 2& are tabulated in Table 4-4 below.

Apparently, the connection to the wire loop provides only a small perturbation in

the input impedance measurement. Moreover, it appears that the input impedance

at high frequency is near the design goal of 50LI.

~hotographs of the testing appaxatus are presented in Figures 4-42 and 4-43

respectively.

4.5 Current Computation

The output data of the JNECmodeling of the EI also contains the computed

currents on the structure. By observing the magnitude of these currents at different

frequencies, the portions of the structure that are contributing most strongly to the

radiated fields can be seen.

Plots of the magnitude of these currents from NEC models at 200 MHz up

to 1 GHz are presented in Figures 4-44 through 4-47. On each plot, the junction

of the main EI structure with the transition section is indicated. Note that the wire

current amplitude decreases rapidly with distance from the driving point at high

frequency.
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Table 4-4 Measured input impedances of the EITL
A: in one position within the lab room
B: in same position with Iarge wire Ioop added
C: in a second position within the lab morn

FREQUENCY INPUT IMPEDANCE INPUT IMPEDANCE INPUT IMPEDANCE

4mzL

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000

FOR TEST A

29.89- j 12.01
156.04 + j 163.58
84.34- j 45.31
15.96 + j 4.96

107.29 + j 52,30
232.07- j 45.33
29.08 + j 2.96
40.14 -j 5.10
105.57- j 20.79
52.85- j 1.43
44.68- j 0.91
134.60 + j 20.85
72.64- j 6.14
39.41- j 1.01
50.10 + j 0.02
80.73- j 8.31
29.62 + j 0.23
70.48 + j 0.39
70.48 + j 0.39

FOR TEST B

60.50 + j 3.09
74.82 + j 0.92
75.36- j 7.22
63.08 + j 0.96

112.07 + j 11.99
98.66- j 3.29
51.40 + j 0.22
47.37 -j 1.04
66.27- j 5.29
52.92- j 0.64
66.33 + j 1.53

110.72 + j 2.05
60.86- j 0.29
52.64 + j 0.42
50.50 + j 0.07
70,05- j 3.88
34.40- j 0.76
78,02- j 0.94
78.02- j 0,94

FOR TEST C

30.07- j 11.76
153.85 + j 173.23
84.94- j 45.75
15.16 + j 5.22

101.81 + j 48.12
236.44- j 69.42
30.79 + j 2.72
39.95- j 5.07

104.40- j 22.35
52.17 -j 1.14
41.81 -j 1.14

138.56 + j 22.33
70.08- j 4.91
39.01- j 0.98
49.13- j 0.21
80.80 -j 8.11
28.80 + j 0.20
68,19 + j 0.56
68.19 + j 0.56

.
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Figure 4-42: Network Analyzer Used to Measure the S Parameters of the ETI’L.
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Figure 4-43: Measuring the S Parameters of the E’ITL. (This Particular Position Is not
Presented in Table 4-2).
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Figure 4-44: Current on 1/2 Structure at 200 MHZ
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Figure 4-45: Cument on 1/2 Structure at 300 MHZ
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Figure 4-46: Current on 1/2 Structure at 500 MHZ
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Figure 4-47: Current on 1/2 Structure at 1 GHz
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V Conclusion

Numerical techniques have been utilized to examine the electromagnetic

fields that can be developed in the working volume of the CW Ellipticus antenna

operated at frequencies ranging from approximately 100 KHz to 1 GHz with an

exponentially tapered input section. The NEC code is used to analyze the Ellipticus

conilguration with the transition secticm present. The input transition section is

needed for impedance matching and to drive efficiently the Ellipticus antenna.

A prototype of the input transition section was designed, constructed, and

tested at Mississippi State University. The calculated design is verified by

measurements done within the antenna pattern range and by impedance

measurements. Calculations from the NEC code indicate that field uniformity

achieved within the working volume of the Ellipticus antema.

is
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