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Abstract

The field radiated fit)m an impulse radiating antenna (HL4) utilizing a reflector and
driver by a step-function source consists of three distinct parts. First, there is a prepulse, which
looks ikc a step function, and lasts for a time equal to twice the electrical length of the feed.
Following this comes the actual impulse-like waveform. Finally, there is a small tail that
appears after the impulse. Although the impulse portion of the waveform has been analyzed
elsewhere, the prepulse has been only approximate i. The purpose of this note is to provide
simple anal ytical formulas for calculating the prepul, e for the two most common feed types, two
bent circular cones, and two conical coplanar plates.

By ~enerating simple formulas for the forward and backward radiation on axis, one can
compare the area of the prepulse to that of the impulse. After doing so, it is easy to identify
cases where the areas of the impulse and prepulse are equal, to within a very small tolerance.
Since the total area under the waveform must be zero, this suggests that the tail after the impulse
has zero area, a necessary condition for making the tail small.

—



I. Introduction

The field radiated from the impulse radiating antenna utilizing a reflector consists of three
distinct parts. The first of these is the direct radiation from the feed structure, which is of rather
low magnitude, but lasts for a fairly long time. This is followed by an impulse, which lasts for
a brief time and is high in amplitude. Finally, there is a tail expected after the impulse. It is
tempting to concentrate one’s analysis of the IRA on the impulse, since radiating an impulse is
the purpose of an IRA. However, it is also of considerable interest to understand exactly the
nature of the prepulse, since the areas under the prepulse and impulse are comparable in
magnitude. If the areas are equal, then one would expect a relatively small tail after the
impulse, which would be a desirable characteristic for a broadband radiator. The purpose of this
paper is to present simple closed-form expressions for the magnitude of the prepulse. This is
done for two common feed configurations, two bent circular cones and two coplanar conical
plates. Once the prepulse of the waveform is expressed simply, it is then easy to compare the
area under the prepulse to that under the impulse. The final result is that it is simple to find
cases where, to a very good approximation, the two areas are equal. This indicates that with
proper tuning of the matching circuit, it should be possible to tune away most, if not all, of the
tail,

The utility of the impulse radiating antenna (IRA) has been demonstrated in a number of
papers. It was first observed in [1] that one could feed a paraboloidal reflector with a TEM feed
which could be made to give balanced electric and magnetic dipoles at low frequency. Such an
arrangement provides a compromise between high-frequency and low-frequency characteristics
for radiating impulses, and is closely related to the concept of the Balanced Transmission-line
Wave sensor. The Balanced Transmission-line Wave (BTW) sensor had recently been developed
as a ~X; sensor, whose low-frequency properties were such that they provided a 1+cos(6)

pattern [2]. The receiving characteristics of such a ~xfi antenna were examined in [15]. A
variety of methods of feeding the IRA have been suggested [3], A calculation of-the aperture
efficiency of the IRA has been made, which showed that the aperture efficiency could be
expressed in a simple closed form [4]. Finally, a numerical calculation was made, which
approximated the entire radiated waveform on boresight [5].

A diagram of a typical IRA is shown in Figure 1. It consists of a conical transmission
line structure feeding into and attaching to a parabolic reflector. Suitable loads are placed
between the transmission-line feed and the dish in order to reduce reflections and provide the
matched load required of the BTW. At the apex of the feed, a step-function voltage drives the
antenna. An idealized radiated field is shown in Figure 2, It consists of a prepulse caused by
direct radiation of the currents on the feed, followed by the impulse formed by the reflector,
followed by a still-unknown tail. Since the total area under the waveform must be zero, if the
area under the prepulse is equal to the area under the impulse, then it should be possible to make
the tail waveform small.

In order to calculate the prepulse radiation, it is first necessary to provide a stereographic
transformation to project a spherical geometry onto a planar surfzce. Since the standard
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transformation has a singularity at exactly the position we are interested in, we have to establish
a so-called reverse stereographic projection to handle this case. Once this is done, spherical
geometries are easily transformed into cylindrical ones, and the resulting cylindrical geometries
are solved using conformal mapping. This is done for both the bent circular cones and the
coplanar conical plates. It is shown that the fields on boresight for both cases are similar.
Finally, for the case of two bent circular cones, the area under the prepulse is compared to the
area under the impulse,
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IL The Forward and Reverse Stereographic Projections

The theory needed to transform a spherical TEM wave into a cylindrical one is well
established. In this section that theory will be reviewed, and a method will be introduced that
handles the singularity for field radiated in the backward direction.

The geometry to be analyzed is shown in Figure 3. It consists of two circular cones of
half-angle u at angles of ~ above and below the plane of symmetry. The procedure for
analyzing the TEM waves that propagate on this structure is well known. Briefly, the potential
on such a structure, at a constant radius satisfies a two dimensional Laplace’s equation in
spherical coordinates of the form

sin 91
[ 1sin Ol V(O, @) + 1 V(e, +.) = o

do dO a42

When one makes the substitutions

6’ = 2 arctan
[1

(X2 +)J2)1A

2r

@ = arctan(yix)

(1)

(2)

which is the inverse of

x = 2rtan(0/2) cos(q5)
= 2rtan(0/2) sin(d)

(3)
Y

one gets the simpler expression

~2 82
— V(x,y) + — V(x,y) = o
ax2 ay2

(4)

This, of course, is just a two-dimensional Laplace’s equation in cylindrical coordinates, This
technique is equivalent to projecting a sphere of constant radius onto a plane. A diagram is
shown in Figures 4 and 5. Figure 4 shows a three dimensional view of the projection, and
Figure 5 shows a two-dimensional view in the y-z plane. Figure 4 is from [9].

This method has been described previously in [6], and has been implemented in a number
similar applications [7-10]. It does, however, have a small difficulty when one wants to know
the fields at $= T. At that angle, tan(f3/2) approaches infinity, so one cannot use the
transformation (3) simply.



Figure 3. The bent circular cone structure to be
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Figure 4. A 3-dimensional view of the stereographic projection, from [9].
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Figure 5. The stereographic projection in 2 dimensions.



Having established a problem, let us now offer a s-olution. If we rotate the structure 180°
about the y axis, then the angle that was formerly 8= ~, is now 8=0. By carrying out the same
transformation on the rotated structure, we can simply eliminate the singularity. A diagram of
this is shown in Figure 6. In looking at the diagram, it is obvious that the field in the backward
direction is much smaller than that in the forward direction, since the conductors in the projected
plane are much further apart. This is the expected result. Since the ordinary transformation is
called a stereographic transformation, let us call the procedure where we include the 180°
rotation to be a reverse stereographic transformation.

The net effect of the reverse stereographic transformation is to replace 0 with mfl. Thus,
after one has found the projection for the forward direction, it is straightforward to replace
0 with T-Oto get the reverse transformation. This point will be referred to several times later
in this paper.
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.4

(5)

III. First Case: Bent Circular Cones

We now apply the forward and reverse stereographic transformations to the case of bent
circular cones. Consider again the geometry of Figure 3. The intersection of the two circular
cones with a sphere of radius rOis two circles. These are then projected onto the plane using
(3). It is shown in [7] that the projection is again two circles, arranged as in Figure 7, with
radii a and distance between centers 2b, where

2 rO sin(/3)
b=

Cos(o!) + cos(/3)

270 sin(a)
a.

Cos(a) + Cos(p)

The propagation characteristics of this geometry are well known, The characteristic impedance
is ZC=~g2., where 20=377 Q and

~g = ~ arccosh (b/a) (6)

Since b/a = sin(@)/sin(a), the above simplifies to

[1fg=-$arccosh _ (7)

Furthermore, the electric field in the center of the projected plane, at (x,y) = (0,0) has been
derived previously in [11]. Thus,

Ey=-~v 1

b arccosh(b/a)
&

(8)

This field assumes a voltage + V on the top conductor and -V on the bottom conductor. The
above is now combined with (5) and (6) to get

Ey = -~ COS(CY)+ Cos(f?)
rO Tfg tanh(~~g) sin(p)

This is exactly the field in the center of the bent circular cones
coordinates we have

(9)

at 0=0. Thus, in spherical

EO(0=0,4=d2) = - ; Cos(cl) + Cos(p)

o Tfg tanh(r~J sin(~)
(lo)

Note that the return to spherical coordinates is trivial since we are at the polar axis. If we were
away from d=0 an adjustment would have to be made,
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In order to find the field at 19=T, we now need to invoke the reverse stereographic
projection. As was demonstrated in theprevious section, it is now only necessaryto replace/3
with r-~ in the above equation, Thus we find

EO(0=7r,@=7i-/2) = - ; COS(CY)- CoS(p)

o T~g tanh(~j”) sin(/3)
(11)

The front/back ratio, q, forthis feed may be found simply as

= E~(e=o)
~ = co%~)+ cow = @((&+a)/2)cot((P-~)/2) (12)

EO(O=T) Cos(a) - Cos(p)

This fully characterizes the bent circular cone feed.

The next step in the analysis is to specify the correct alignment of the feed with the edge
of the parabolic reflector. It was shown in [4] that the feed needs to meet the edge of the
reflector at the same point as a thin line charge would. A diagram of this is shown in Figure 8.
This height, bo, is shown in [4] to be (b2-a2)‘k, or using (6),

b. = b tanh (T~g) (13)

If we refer now to Figure 8, we find from simple geometry the angle from the center axis to the
edge of the dish, is

(14)

where we have defined&= F/D, the ratio of focal length to diameter of the reflector. Next, we
find (3 using (3) and (13) as

Having /3, we now find CYfrom (7) as

(15)

a = arcsin [1sin(~) (16)
cosh(~Q

Thus, we have specified all angles for a given ~g and .&.
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It is helpful at this point to provide an example for a typical configuration. Consider
once again the side view of an IRA as shown in Figure 8. Let us assume we are interested in
a 400 Q feed for a parabolic reflector with ~d=F/D =0.4. Using (14-16), we find ~0=64.010,
6=64. 14°, and a=3,68°, Substituting these values into (10-12),

E@(O=O,+=7r/2) = - I 0.479
r.

for the fonvard direction and

EO(0=7r,~=7r/2) = - ; 0.188
0

for the reverse direction, which says that the front/back ratio is ~

we find

(17)

(18)

= 2.55,
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IV. Second Case: Coplanar Conical Plates

A second case we would like to develop is that of two coplanar conical plates, This
geometry, which is shown in Figure9, has the advantage that it provides minimal optical
blockage of thedish, After invoting thestereographic trallsfornlation (2,3), thetwo-dimensiond
cylindrical problem becomes that of Figure 10(a), where

bl = 2rOtan(f?l/2)

bz = 2r0 tan(/32/2)
(19)

We now introduce a clockwise rotation of 90°, as shown in Figure 10(b). This geometry
conforms to one provided by Moon and Spencer [12], Figure 2,16. This figure is reproduced
in approximate form in Figure 11. The conformal mapping is

w(z) = sn-l(z/bl) (20)

where the function sn(z) is one of the Jacobian elliptic functions, as defined in [13], and the
notation sn-l (z) indicates the inverse sn function. Implicit in the definition of the elliptic
functions is a parameter k, which is

bl
k=—=

tan(D1/2)
1/2

= m

b2 tan(~2/2)

for our configuration. Thus, the notations sn(z) and sn(z \m) are equivalent.

The characteristic impedance of the structure in Figure 10(b) is now calculated by

Zc =ZO*
Av

(21)

(22)

where u(z) and v(z) are the real and imaginary parts of w(z) in (20), and ZO= 3770.
Furthermore, Au is the change in u from the first conductor to the second. From Figure 11, this
is 2K(nz), where K(m) is the complete elliptic integral of the first kind as defined in [13], 16.1.1
and 17.3.1. In addition, Av is the change in v around one of the conductors, or 2K’ (m), where
K’(m) =K(l-rn), Thus, the impedance of this structure is

Zc=zog

or expressed as a geometric factor,

(23)

K(m)
fg’——— (24)

K’(m)

If the feed impedance ZC is known, then m can be found with this equation, since tables of m
versus K’(m)/K(m) exist, for example in [13], Table 17.3.
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Figure 10. Projection of the copknar conical plates before (a) and after (b) a 9@ rotation.
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Figure 11. An approximation of the sn curves, w(z) = sn-l (z/bl). Note that a more detailed
diagram is available in [12].



Next, we need to find the field at the center of the structure in the projected plane. From
Figure 11, at (x,y) = (0,0) the electric field parallel to the plates is

V du(z)Ex(o,o) = - — —
K(m) h z.()

(25)

where again
now use the

the plates are charged with + V and -V on the right and left, respectively, We can
conformal mapping (20) and the fact that v(z)= O and y = O at the center, to find

The derivative is calculated using

u(x) = sn-l(x/bl)

an expression from reference

x

(26)

[13] equation 17,4.45,

sn-l (x/b I b2/a2) = a
/

df

o [(a2- L2)@2 -f2)]l/2

After taking the derivative of the above equation, and evaluating-it for z=O,

au(x) 1—= —
ax bl

(27)

we find

(28)

Hencey EX(O,O)= -V / [b] K(m)], or substituting in for bl and returning to spherical coordinates,

Ed(O=O,+=7r/2) = - I 1
rO 2 K(m) tan(/31/2)

(29)

where

tan2(f11/2)
m = (30)

tan2(/32/2)

Note again that the return to spherical coordinates is trivial since we are at the polar axis,

To find the field in the reverse direction, we once again invoke the reverse stereographic
projection, as described in Section II. In order to keep the notation orderly, we add an
additional subscript r to all angles and projections of-angles that are used in the reverse
stereographic projection. Thus, one may adapt the forward stereographic projection into the
reverse one as

(31)

for the angles, and
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b lr = 2r0 tan((7r-~2)/2) = 2rOcot(~2/2)
(32)

b2r = 2r0 km((7r-~1)/2) = 2rOcot(&l/2)

for the projections, Now it is simple to find the field for the reverse direction by replacing
angles and projections for the forward case with those for the reverse case, subscripted by r.
Thus we find for the field in the reverse direction

E~(e=7r, rp=7r/2) = -1 1

rO 2 K(m) tan(~l,/2)
v 1=-_
rO 2 K(m) cot(~2/2)

(33)

The equation for m remains the same for the reverse direction as it is for the forward direction.
Thus a front/back ratio for the feed may be simply expressed as

v = cot(p~/2) cot(&/2) (34)

Note the similarity between this front/back ratio, and that given previously for the bent circular
cones in (12).

It is now necessary to identify the point on the feed that will be in contact- with the edge
of the dish. As we have seen previously, this is not necessarily at the center of the plate, but
at a slightly lower position, y= bO. The angle from the plane of symmetry to bOis specified as
6.. We once again calculate this angle from simple geometry, using the focal length and
reflector diameter, to find

P. =
[1

1arc tan
2fd- l/(8yd)

(35)

Next, we need to find the correct position on the projection plane to correlate with this angle.
From Figure 11, which shows the transform in the projection plane, we see that if v(z)= %K’
the contour is circular, thus matching the edge of a circular reflector. This occurs at

where bOis the projection of PO. Using the stereographic transform (3), this becomes

(36)

tan (~o/2) = (1/Ji_) tan (/31/2) (37)

or
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PI = 2 arctan ( ~ tan(~O/2) ) (38)

Finally, since b2/bl = I/k, and using once again the stereographic projection (3),

(32 = 2 arctan( tan(~l/2) / k) (39)

Thus, we have completely specified all the relevant angles of the geometry for a given ~g and

J%

It is helpful at this point to once again provide an example. Again, let us consider the
case where ZC=400 Q, F/D=O.4, and D=l. Since ~g=l.061 is known, we can find m from
(24) and Table 17.3 of [13], which gives K’(rn)/K(nI) as a function of m. Interpolating from the
table, we find m =0,5645, and therefore k=m’A =0.7513. The angle POis calculated from (35),
so /3.=64.01°. The angles @l and /32 are found from (38-39) to be 56:89° and 71.59°,
respectively. The fields in the forward and reverse directions are provided in (29) and (33).
From Reference [13] Table 17,1 we find the complete elliptic integral K(m = .5645) = 1,913, so

E~(o=o,4=d2) = - I 0.4825 (40)
r.

Efl(e=T, g5=7r/2) = - I 0.1885 (41)
To

This gives a front/back ratio of q =2,56, Note that these results are very similar to those for the
bent circular cones of the previous section, This is to be expected for two feeds of the same
impedance. Note also that ~z-fll = 14.7°, which is about twice the value of 2a =7.36° in the
previous problem. This is also to be expected, since it is well known that a thin strip behaves
asymptotically like a rod whose diameter is half the strip width. This point is proven in
Appendix B of this paper.
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V. Compariscm of Prepulse Area to Impulse Area

Now that we can calculate easily the prepulse fields for two configurations, let us
compare the area of the prepulse to the area of the impulse. If they are equal, then that will
allow us to say certain things about the tail in the part of the waveform that-follows the impulse.
Recall once again the diagram of an ideal signal shown in Figure 2.

We use here the model for the bent circular cone, although as we have just seen, results
for the coplanar conical plates would be similar. Again, let us use a feed impedance ofi400 0,
and assume that the parabolic reflector is round.
integrating (11) to find

2FIc

The area under the prepulse is found by

A
P— =

[

EOd

V 2F COS(CY)- CoS(p)=-_ _
r. c mfg tmh(~fg) Sin(D)

The field on axis due to the impulse is found in [4] as

(42)

(43)

where ha is an effective height and ha(t) is an approximate form of the Dirac delta function,
Note that V in this paper is the voltage from the plane of symmetry to one of the conductors,
whereas in [4] V is the total voltage between conductors, Note also that there are some
theoretical problems in the near field with a radiating field proportional to 8(1) in the far field.
Thus, we use here ha(t) to describe the time dependence, where ha(t) is a function whose integral
is 1 but whose maximum amplitude is finite and dependent upon r, This problem is explained
in more detail in [1] and [4].

Since our reflector is round, the effective height is calculated in [4] to be ~a = D/2 TO,

After making this substitution and performing the integration with respect to time, we find for
the impulse area is

Ai=~~
r. 27rcfg

(44)

Not that this calculation was originally done in [4] for the limit of a long feed. In Appendix A
of this paper this result is extended to feeds of arbitrary length. The ratio of the prepulse area
to the impulse area is now easily found as
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I*1 = 4f~ [ Cos(a) - CoS(o)]

i tanh(m~g) sin(~)
(45)

Continuing with our previous example, with~d = 0.4, and Z. = 400 Q, we find this ratio
is equal to 1 to four decimal places. Hence for our typical example, we are for all practical

purposes at a point where the areas are equal.

We now examine the dependence of the area ratio-upon the feed impedance and the~d.
In Figure 12 we have plotted I~P/Ai I-1 versus fd for three different feed impedances For the
cases of either 200fl or 4000 feeds, almost any feed length provides an area ratio near unity.
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VI. Analysis

Our results indicate that for a typical case, the areas under the prepulse and impulse are
approximately equal. This suggests that if the prepulse and impulse areas are equal, or nearly
so, then the total area under the tail portion of the curve is also nearly equal to zero. This must
be true because the area under the overall waveform must be zero. What this means in practice
is that if the feed terminations on an IRA are tuned properly, it should be possible to reduce the
tail to something small.

We should point out, however, that the area calculations for both the prepulse and the
impulse have certain approximations built into them, The approximations in the prepulse
calculation include an assumption that there is no additional structure near the feed point,
something that probably will not be true in a real system that may require voltage standoff
protection for transmit mode, The approximation for the impulse calculation neglects the
contribution from the interaction OFthe wavefront from the reflector with the feed structure.
However, for large distances r to the observer on boresight (for which the impulse width + O
[1,4]), it is only for times such that these contributions can arrive at essentially the same time
as the wavefront that they should be included here (instead of in the tail). In an asymptotic
sense then a high-frequency approximation (i.e. geometrical theory of diffraction) is appropriate.

This leads to a correction to %a by removal of the integral of the portion of the TEM wavefront
which intercepts the feed structure. This can be defined as the optical blockage of the feed. Of
course, one may reduce the optical blockage of-the feed by using the coplanar conical plate feed,
but there will still be some coupling back onto the feed. As time goes on, the tail will, of
course, be influenced by the currents induced on the feed structure, as well as the change in the
currents (away from the simple, i.e. optical, currents) on the reflector.
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VII. Conclusions and Recommendations

Simple analytic forms have been generated for the prepulse associated with the TEM feed
of an IRA. These have been generated for two feed geometries, two circular bent cones, and
two coplanar conical plates. For the two geometries we found similar fields and frontlback
ratios for the same feed impedance.

The prepulse fields were compared to the main impulse field by comparing their areas.
The area under the prepulse was about the same as the area under the impulse, for either a 200Q
or 400!2 feed. Since the total area under the curve for the radiated field must be zero, this
suggests that the tail expected to occur after the impulse will probably have a small amplitude
if the matching circuit is tuned properly, An important next step in the development of the IRA
will therefore be to lay out the design principles for the matching network at the junction of the
TEM feed and the reflector.

It may seem fortuitous that the circular aperture area leads to the approximate
cancellation of the prepulse and impulse areas, However, in [4] it was shown that the result

of Ta = fieq / 2 applies not only to the circular aperture (with feed meeting the edge), but to an
infinite aperture as well, This implies reflection of all the fields reaching an infinite paraboloidal
reflector, Fortunately, a circular paraboloidal reflector, as a body of revolution, also permits
two orthogonal planes of symmetry (containing the axis) for use with the dual-polarization (and
impedance-transforming) feed discussed in [3].
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Appendix A. Validity of the Impulse Area Calculation

In this paper we have compared the area of the prepulse to the area of the impulse for
a typical IRA. The area under the impulse was calculated using some results from [4], however
those results were derived only for long F/D’s, The purpose of this appendix is to demonstrate
that the results in [4] are general for any F/D. In doing so, we will prove that a paraboloidal
reflector is a device that carries out the stereographic transform that is central to this paper.
Hence,- the reflector converts a spherical TEM wave to a planar TEM wave in a manner
equivalent to the stereographic projection used in section II.

Let us consider now the first method of converting -a spherical TEM wave to a plane
wave, that of the stereographic projection. Assume that a conical transmission line has on it a
potential V(O,~). Now if we define a polar radius V such that V= (X2+y2)’~, then according
to the standard stereographic projection defined earlier in (3),

* = 2F tan(O/2) (46)

The polar coordinate ~ remains unchanged in this transformation, Therefore, the stereographic
transformation may be carried out as

(47)

The electric field in this aperture is just the gradient of the above potential in polar coordinates.
Thus

~(”~) (g,(+) = -Vv

[

av I av= -iw=-l ——
4+d~ 1 0=2arctm(Y/(2F))

(48)

This is the aperture field calculated by using the stereographic transform. Let us now consider
the field generated by reflection off a paraboloid.

In order to calculate the reflected field, refer to Figure 13. Consider a ray emanating
from the focus and reflecting off-the paraboloidal surfac-e~ The field generated by the potential
V(O,+) at the reflector is

(49)

where rP is the spherical radial distance from the focus to the paraboloid, and the transverse
gradient is defined by
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(50)

These formulas are taken from [7]. A paraboloid is described by the formula [17]

2F
‘P =

(51)
1 ~ Cos(o)

Furthermore, we have from simple geometry T = rP sin(~). Combining this with the above
equation gives

‘I! = 2 F tan(O/2) (52)

a result that by now may look familiar, Thus, the field incident upon the paraboloid is

sin(0) av TO _ 1 IV ~+ (53)~(inc) (~,~) . -T ~
~ ~~

It now remains only for us to calculate the field reflected from the paraboloid.

In order to calculate the reflected field, we note that the angle of reflection is equal to
the angle of incidence, and that there is a reversal in sign at the conductor. Thus, we have

E$y = - ~$”’)
(54)

E:f ) . - E$’n’)

This leads to a field reflected off the paraboloid as

(55)

Furthermore, it simple to show using (52) that

av . av al!——
x a~ ae

(56)
.av*

m-

so the final expression for the reflected field calculated as a reflection from the paraboloid is

= ‘*Y4 v z = constant

This is the same result obtained by stereographic projection in (48), to within a minus sign,
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It is necessary now to propagate the ray from the surface of the paraboloid to some
aperture plane perpendicular to the z-axis. We note that this reflected ray propagates parallel
to the z-axis, and has a divergence factor of unity. This last point means that the field in the
ray is neither increasing or decreasing in magnitude. These results are basic results of geometric
optics, and can be derived using the techniques of any text on the subject, such as [19].
Furthermore, the total length (incident + reflected) of-all rays starting at the focus and ending
at some aperture plane is a constant, so there is no phase variation or time delay across the
aperture. This leads to the conclusion that equation (57) describes not just the field on the
paraboloid, but the aperture field as well.

Thus, the paraboloidal reflector is a physical device for carrying out the stereographic
transform. The significance of this is as follows. The results derived in [4] for the impulse
portion of the waveform were derived for a plane-wave over an aperture, In a practical case,
however, it is likely that one will have a spherical TEM feed with a reflector. We have now
shown the field on a spherical TEM feed to be equivalent to the planar aperture field used in [4].
Thus, the results generated in [4] for the planar TEM field are valid for our case of a spherical
TEM feed and a paraboloidal reflector,

Since a paraboloidal reflector is now shown to be a physical device for implementing the
stereographic transform of Section II, we might call this transform the Reflector Transform. In
the present context note that this result applies for early times (or high frequencies) due to
limitations associated with the feed and finite reflector size. Note that the stereographic
transformation gives an equivalent way to calculate the potential function for a spherical TEM
wave. It does not actually transform a physical spherical wave into a plane wave, In particular
the phase of the wave (spherical wavefront) has to be changed into a plane wave, This can be
done via a lens interposed between and connecting the- conical transmission line and its
equivalent (now actual) cylindrical transmission line. Examples of this are provided in reference
[16] Appendix E.

Summarizing, we can now say

lens transform = stereographic transform (including lens)
(58)

=- reflector transform

This gives us two general synthesis procedures for generating TEM plane waves from TEM
spherical waves. Note that these transformations work in both directions by reciprocity, i.e.
TEM plane waves can be transformed into TEM spherical waves (incoming).
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Appendix B. Asymptotic Forms

At the end of Section IV of this paper, it was pointed out that for feed arms that are
narrow in width, there is a simple relationship between the angular widths of the bent circular
conical arms and the coplanar conical plate arms. In particular, it was noted that if the angular
width of a plate were twice that of a circular cone, then the two structures would have the same
feed impedance. We would now like to prove that assertion.

Let us first consider the asymptotic form of the bent circular cones. The geometric
factor,.& as provided earlier, is

[1
fg = + arccosh - (59)

As CY+ O, sin(a) ~ a, so

f,+; arccosh(sin(~)/a)

This can be simplified further as

[1fg + + in 2siy) (61)

This is a simple asymptotic form for the geometric factor of a bent circular cone feed.

(60)

Next, let us consider the asymptotic form for the
earlier, the geometric factor is

K(m)fg. —
K’(m)

where m is defined as

.
I tan(B1/2) I

conical coplanar plates. As was shown

(62)

)2

I
.. .

m=
tan((32/2)

J
and the angles are as shown in Figure 9.

(63)

Let us now recast the above equation in terms of a center angle and a half-angle width
of the plates. Thus,
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PI = p-a

p2 =/3+&f

where CY’is the half-angle width of the plate, and ~ is the
expand (63) using these new angles, we find

tan((3/2-cY’/2) = tan((3/2) - tan(a’/2)
tan(~/2 +cY’/2) tan(~/2) + tan(a’/2)

If a -0, this simplifies to

tan(fV2-a’/2) ~ 1- (a’/2) cot((3/2)
tan@/2+cY’/2) 1 + (cY’/2)cot(/3/2)

+ [ 1- Q?’cot(p/2)] [

(64)

angle to the center of the plate. If we

1- tan(~/2) tan(a’/2)
1 + ~n(~/2) Qn(~’/2)

(65)

1- (cY’/2)tan((3/2)
1 + (cY’/2)tan(/3/2

1 + ~’ Qn(/3/2) ]

+ 1- CY’[ tan((?/2) + cot(~/2) ]

Furthermore, it is simple to show using [18] equation 403.02 that

tan(~/2) + cot(~/2) = -.-?..-
sin((3)

so we have

m= tan2(~/2-a’/2) ~ ~ _ 4CY’

tan2(~/2+a ‘/2) sin(/3)

(66)

(67)

(68)

It now remains for us to simplify the elliptic integrals in (62).

In order to simplify the elliptic integrals we refer to [13], equation 17.3.21. Using this,
we find

~ -~K’/K ~ m

E
(69)

as m -0. We now replace m with l-m to find

~-~K/K’ ~ l-m
16

(70)

as rn + 1. This simplifies now to

K

[!

16-
lln —

F“; l-m
(71)

as m + 1. Note that a similar expression may be found in Reference [14]. Since this is just our
~g, we may substitute the expression form (68) to find
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(72)

In comparing this result with (61), one gets the same geometric factor or impedance when
u’ =2cY. This proves that if a copkmar conical plate feed has an angular width of twice that of
a bent circular cone feed, then both feeds have the same impedance. This is true, of-course,
only in the limit of small a and if the center angle ~’s are the same.
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