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I. INTRODUCTION

Wide-angle biconical antennas have been used for about two decades to produce

both vertically and horizontally polarized electromagnetic fields for use in electromagnetic

pulse (EMP) simulation. Approximate theoretical models have been used in conjunction

with field mapping to provide a practical basis for testing and evaluating military systems

against the EM? threat.

In recent years, however, there has been a greater interest in the development of

biconical antenna EMP simulators that can deliver pulses with very fast risetimes. A major

element of the waveform design for this type of simulator is the resistive loading of the

antenna, which predominantly affects the intermediate- to late-time character of the radiated

field. The issue of resistive loading was initially addressed by Baum [1] who rendered an

approximate theory of a resistively loaded dipole. Wilton [2,3] has applied numerical

techniques to address the problem of a loaded dipole over a ground plane. In this study we

develop an analytical approach for predicting the interior and far fields of a resistively

loaded wide-angle biconical antenna.

Schelkunoff [4] appears to have been the first to develop an exact theory of the

biconical antenna in the absence of resistive loading. His method, although rigorously

correct, presented formidable computational d.ifllcukies at the time of its inception (1941).

The principal difficulties appeared to be the computation of the (3-dependenteigenfunctions

that are characteristic of the biconical antenna with perfectly conducting interior surfaces.

As shown in the appendix, this calculation requires the determination of the roots of

polynomial equations involving hundreds of terms. While this computation is feasible

today, it was virtually insurmountable in Schelkunoff’s time.

Because of these numerical problems, emphasis was placed on obtaining

approximate solutions in selected regimes. For example, Tai [5] developed a method for

small-angle bicones, which is also briefly summarized by Kraus [6]. Techniques relevant

to wide-angle bicones were developed by Smith [7] and Tai [8]. In all these cases,

however, the issue of resistive loading was not addressed perfectly interior conducting

boundaries were assumed.
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The purpose of this investigation is to theoretically evaluate the possibility of

rigorously solving the biconical antenna problem with resistive loading. It appears that, at

least in a formal sense, I have been successful inasmuch as the methodology leads to

closure on a solution. My method is an extension of the Schelkunoff formalism in the

absence of resistive loading. Since this case forms the basic building block for the method,

I provide a comprehensive discussion of Schelkunoff’s methodology [9] using Kong’s

formalism [10]. This review is rendered in section 2.

In section 3 I extend the theory for the case of a resistively loaded bicone. The

resistively loaded case is found to require additional terms in the antenna region, compared

to the lossless case, so that the interior boundary condition is satisfied. The resulting

equations do not lend themselves to analytical solutions in closed form. Closure is

achieved through the introduction of an orthogonal basis of radial functions, which

ultimately reduces the problem to one that can be solved in matrix form. The computational

implementation of this theory remains to be developed.

A key element in the computational algorithm is the evaluation of the @dependent

eigenvalues, ui, and eigenfunctions, Tu,(COS@) of the biconical antenna in the absence of
1

resistive loading. These entities are essential in determining the parameters of the matrix

equation leading to the determination of the fields. The computational considerations for

Tu (COS~) are presented in the appendix.
i

2. REVIEW OF SCHELKUNOFF’S METHOD USING

KONG’S FORMALISM

This section establishes the basic formalism that will be used in the general

trea(rnent of the resistively loaded biconical antenna of section 3. This material is extracted

from Kong’s text [10]. No attempt is made to reproduce the step-by-step derivation of the

results. The reader is referred to Kong’s text for more details. Wherever possible I have

used Kong’s notation, the notable exception being the use of ‘~’ for his “-i.”

This summary is rendered in a manner which highlights those changes that are

necessary to extend the theory flom the lossless case to the resistively loaded bicone.
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Figure 1 shows a model of the biconical antenna, and the corresponding coordinate

system. For the cases of interest only radial currents are present, with the accompanying

conditions

Hr=H@=E~=O , (1)

a~—=,
ag

(2)

lPolar Axis

Y

Figure 1. Geometric considerations for biconical antenna.
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Under the foregoing conditions, Maxwell’s equations reduce to

[ 1i3Er.$$(rEJ-~ = -jay+ H+ ,

where we have replaced a/&by jco.

In the air region, defined by the regime

r > L = mdius of bicone ,

the solution of equations (3) to (5) using separation of variables yields

(3)

(4)

(5)

(6)

(7)

(8)

(9)

where PN(COS@)is the Legendre polynomial of order N, h$)(kr) is the Hankel function of

the second kind of degree N, the bN’s are constants to be determined ffom the solution of

the problem, ZOis the impedance of free space= ~~, and

;N(COS6)= dPN(COS19)/d@. (lo)

It is important to note that the functional form of equations (7) to (9) will be the

same with or without resistive loading. The mathematical structure of the external fields

a
stems from the requirement that only outgoing waves be present outside the antenna, as

well as the condition of symmetry,
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H&- (3)+$(8) , (a)

E@(z- e) = E@(e) . (b) (11)

When equation (11) applies, only odd values of N are allowed in the summations of

(2)
equations (7) to (9). The f~st I%nkel function, hl , is given by

while the f~st Legenti polynomial and its derivative are given by

(12)

.
Pl=cose, (13)

P*l= –sin 0 . (14)

Using equations (12) to (14), the leading terms of H4, E~, and E, in the far field

(kr >> 1) become

Ho = (+1) g ,

-jkr
E9=zo(-b F)L=

Ilkr

-jkr
g =Jzo (-2b1P1) ~

(kr)2

●
(15)

ZOHo , (16)

. (17)

Examination of equations (15) to (17) shows that for practical purposes a determination of

bl will be sufficient to determine the fields in the test volume.

After some mathematical manipulation it can be shown that the interior fields, valid

in the region ~ < @< z – ~, can be written in the form

(18)
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where

J~o
E,=—

x2nkr ~
U(U+ 1) a~’#r)TU(cos @ ,

ZOVO(r) jZo
E= z L [rju(kr)l+u(

e Z#rr sin @+ 2nkr ~ “dr
Cos 6) ,

1 [pu(cos Q - pu(+s $)] ,TU=Y

fu=dTUldO ,

Io(r) =~ [jsin k(L-r) + Y?CCOSk(~-r)] ,
c

(19)

(20)

(21)

(22)

(23)

VO(r)= VO(L) [COSk(L - r) +JY~c SinCW – ~)] , (24)

20 h+

z== ~ = characteristic impedance of bicone , (25)

j~(kr) is the SphericalBessel function, and the au’s are constants, which, like the bN’s of

the exterior region, ae to be determined from the solution to the problem. The terminating

admittance Ytis likewise determined horn the solution.

In contrast to equations (7) to (9), in which the summation index is defined, the

values of u in equations (18) to (20) are determined from the boundary condition in the

antenna region. In the absence of resistive loading we require that

Based on equation (19),

solutions of the equation

which reduce to

Er(@)=Er(rr-@)=O . (26)

the specific values of u which will satisfy equation (26) are

TU(COS60)= TU(COS (z- O.)) = O ,

Pu(cos e.) – Pu(-cos e.)= o .

(a)

(b)

(27)
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The PU’s of equation (27) are not Legendre polynomials, but are Legendre

functions since u is not generally an integer. Appropriate analytical expressions for PUthat

are necessary to solve equation (27), and hence determine the values of u, can be found in

Schelkunoff [9], Abramowitz andStegor[11], and Erd&yi et al [12]. For the time being

we simply assume that equation (27) has been solved and the values of u determined.

Thus, the summation index of equations (18) to (20) is defined.

The complete solution to the problem is now

conditions at r = L. Using equation (23) we have

10(L)= YJ’O(L) ,

which when inserted in equation (18) gives

found by matching the boundary

(28)

YtVO(L)
H@(r=L) = ~zL sin ~ + & ~aU,jU, (kL) ?ti (COS@ . (29)

u’

Multiplying both sides of equation (29) by sin @?U, (COS0) and integrating from

@to Z–@gives

z –60

aU= 2?r
J~JJ~) ~

sin 9H@(r = L) T’’U(COS6) d8 , (30)
o

where we have used the normalization

Z-e.

J {

oifu#u’
sin 13?U(COS0) ?U,(COSd) dO =

NUifu=u’ “
(31)

@o

Equation (31) is a general property of the Legendre functions which satisfies the boundary

condition of equation (27), with Nu being the associated normalization constant.

Equation (30) provides a connection between the au’s and the b#s through

substitution of equation (7). We have

aU=~ .~~ , (32)
N=l

h:(kL)
~-e.

J
~ti = NUjU(ti) @ sin e ~U(COS0) :N(cos @de .

0

where

(33)
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We should also recall in passing that the functional form of Ho and E~ as given by

equations(18) and (20), respectively, ensures that for both exterior and interior regions the

following conditions will be satisfied:

H@(e) = H@ – e) , (a)

E~8)=Eg(n-$) . (b) (34)

If we now define au and bN to be the components of column vectors ; and;,

respectively, and ct~ to be the elements of a matrix ~, we can write equation (32) in the

compact matrix form

(35)

The second relationship between the au’s and bN’s is obtained by requiring

continuity of Ed at the boundary. From equation (9) we have

where

●

w
LE&r = L) = ‘Sk ~ b~G#L)P~(cos (7) ,

N=l

GN,fi)={:[rhY(kr)]}r=L~

(36)

(37)

Multiplying both sides of equation (36) by sin 19?’(COS@ and integrating fkom O to z

gives

b~ =
2N(N + 1) 2~k

r2N + 1 J’ZoG~(kL) ()
sin f3LE&r =L) ?~(cos (3)d9 y

where we have used the relationship

r {
2N+1 if ZV=N’

Sin6 de P~(COS8)PN(COS(?)= 2N(N + 1) .
0 0 ifN#N’

Using equation (20) applied for r =L in equation (38) yields

v~ (L)
bN=~&Ua#KN~ ‘

u c

(38)

(39)

(40)
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where the relevant constants are defined as follows:

P=
2N(N + 1) Fu(kL) ‘+0

Nu 2N+1 JGJ~) ~
sin e }N(cos e) iu(cos e) de , (41)

o

KN=-j
4N(N -i-1) ~

2N + 1 GN(kQ ‘~(cos 80) ‘

~JkL) ={$[’LW]}.
r=L

(42)

(43)

The derivation of equation (40) was based on the requirement that Ee (r = L) = Owhen O

lies outside the limits ~s 0< n- (30.

By identifying K~ as the @ component of the column vector 1? and /3~u as the

element of the matrix E, we can recast equation (40) in the form

$=i$+ (VO(L)IZC)2 . (44)

The termination impedance, Yt, can now be determined from equations (35), (44), ●
(29), and (7). This is accomplished by frost integrating equation (29) from @to Z– ~.

We have

We now substitute equation (7) into equation (45) to obtain

~ ~ ~ bJl;&L,PN,cme,‘r= ZCVO(L) ~ ~=1 o“

(45)

(46)

The foregoing expression can also be cast in matrix form by introducing the

transpose of the column vector ~ whose components are h~@L)P~ (COS@o). Thus, we

write equation (46) in the form

where $T is the transpose of $ and is a row vector.

12
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● In an actual computation we will truncate the series for u and the series for N after a

finite number of terms. However, the maximum number of terms used in the respective

series may differ since the number of terms required to describe the fields in the interior and

exterior regions may not be the same. This does not place any restriction on the theory or

the method of solution. It is convenient in this report to conceptually regard the u and N

series as being truncated after the same number of terms, say fi. Let us assume that this is

done so that ~ and ~ are now E x ii matrices and&~, I?, and $ are E-dimensional vectors.

We now substitute equation (35) into equation (44) to obtain

where ~ is the matrix

O=T-EX ,

and ~ is the identity matrix. The solution of equation (48) is

where ~‘1 is the inverse of 0.

(48)

(49)

(50)

Substituting equation (50) into equation (47) gives the following expression for the

admittance:

(51)

Examination of the terms of equation (51) shows that Ytis a function of the bicone angle

@, radial dimension L, and wavenumber (fkquency) k. For specified values of L and ~,

the admittance can be expressed as a function of fkquency al

Once Yt(co)is determined flom equation (51), the remaining calculation proceeds as

follows: We initially determine VO(L) from a knowledge of the source voltage VO(0).

Using equation (24) we have

V.(L) = (COSkL +jqZC sin kL)-%o (0) . (52)

Substituting equation (52) into equation (50) gives b’, and the external fields are then

determined from equation (7).
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3. SOLUTION WITH RESISTIVE LOADING

The deduction of the solution with resistive loading is not an obvious extension of

the lossless case. A fundamental aspect of the lossless case was that the interior fields were

made up of modes with index u determined from the solution of the interior boundary

condition

l?,(e~) =E,(z - ~) =0 . (53)

This led to equation (27) and the determination of the values of u.

When resistive loading is considered, the new boundary condition at the walls

becomes

l?,(f)())= J?3r(lr- e~) = ZJ) ~J~) (54)

where I@(r) is the waI1 current and Z@(r) is the surface impedance. The wall current is

given by

lo(r) = 2m sin @oH@(e~) . (55)

The existence of resistive losses requires modification of the functional form of the

fields in the interior region. In the absence of resistive loading, the interior fields are given

by equations (18) to (20) with the assumed noninteger values of u being determined horn

the solution of equation (27).

When the boundary condition of equation (54) replaces that of equation (53)

because of resistive loading, the structure of the fields given by equations (18) to (20) does

not appear to be sufficient in itself to solve the problem. I have not been able to find a

means to uniquely determine the values of u that satisfy equation (54) and the other

boundmy conditions using the field representation of equations (18) to (20).

It appears, however, that a unique solution to the problem can be obtained if one

adds to the field components of equations (18) to (20) additional terms involving integer

values of the summation index, which are also solutions of the basic equations in the

antenna region. These terms are necessary to satisfy the boundary condition of equation

(54) and do not exist in the lossless case.

The deduction of the (3dependence of equations (18) to (20) was based on the fact

that the two linearly independent solutions for H4 in the 0 dimension are derivatives of

14



● Legendre functions of the f~st and second kind, F’v(cos @ and Qv(cos (3),respectively

[9-12]. Inthe condition where

v=u#integer , (56)

the function QUsatisfies the equation

QU(COS@)=PU(-COS@). (57)

Using the result

Cos(n–e)=-cose , (58)

combined with equation (57) and the symmetry requirement

H@ - @ = H@(e) , (59)

led to the choice of

1(PU– QJ=2TU=Y L (Z’u(m @-Pu(-cos 6)) (60)

as the only candidate 8-dependent solution (compare equation (21)).

When we allow v to be an integer, the &dependent part of the solution changes as

follows. For the case where

v = N = integer ,

we have

PJcos 6) = ~ ‘-1)9 ‘N +‘) sin% (f) ,
4=0 (N– ~)!(~!)

‘P P
QJCOS @ = PN(cOS 6) ln(cot}) - ~ ‘-> ‘-1 .

m=1

(61)

(62)

Using the foregoing equations we easily see that

PN(-COS 6)= (–l)NPN(COS(9)

QN(-cos 6) = (-1)~+1 QN(cos @

9 (63)

. (64)

Employing the symmetry condition of equation (59) requires that only odd powers

of N be used for the P~ terms and even powers of N for the Q~ terms.

15



When integer terms are added to equations (18) to (20), the expressions for the

fields can be written in the form @

H=
10 (r) 1

@ 2n-rsin6 x‘z ~
a~~ (kr) f= (cos $)+&z z Z&em(h) fm (COSe) , (65)

m

jZo
E,=—

z
jZO

2zkr ~
u (u + 1)ati~(kr) TU(COS0)+ ~

x Mm+ I) z~’m(kr) rm (COSa ,(66)
m

E=
ZOVO(r) jZO

x
jZO

e ZC2nr sine + 2frkr ~
aUFU(kr) ~U(COS@)+ ~

x
i&Fm(kr) fm (COS@) ,(67)

m

where

FU(kr)= $ [rjU(kr)] , (68)

(69)

rm(COS$)= ~m(COS $) if ??2= Odd , (a)

rm (COS(1)= Qm(cos @ if m = even , (b) (70)

and the iim’sare additional constants to be determined from the problem in the resistively

loaded case. The index m is an integer.

We assume that at the boundary @= 90. In addition, we continue to retain the

equation

TU(COS~) = O , (71)

so that the noninteger values of u remain unchanged, and hence are known.

The relationship between the dm’s and ~ ‘S is determined from the boundary

condition of equation (54). Using equations (23) and (55) we have

[
Z@j% (L)ZC-l sink (L – r) + ~(L)Yt cos k(L – r)I

16



[

+ ZOr sin 90 X 1~~Ju(W$U(cos@o)+Zor sin 00~ ~~”mfm(cos 8.)=
u m

jZO

z2tir m
~(~ + 1) @#”m(b)rm(Cos 00) . (72)

There does not appear to be a simple way to relate the Zm’s to the au ‘s, but it can be

accomplished in matrix form by assuming that in the region

O<r<L , (73)

we can expand all the r-dependent functions in an orthonorrnal basis using a complete (and

as yet unspecified) set of functions @n(r)which satisfy the standmd conditions

where n and m are integers and &is the Kronecker delta.

The aforementioned procedure is accomplished by

equation (72) by r, (2) setting

y(r) =ZJZO ,

and (3) using the following relationships:

m
rycos k(L - r)= ~ fn~n(r)

n=O

(74)

(1) multiplying both sides of

(75)

(76)

(77)

(78)
n=o

17
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.

L&) = ~ ~mon(o ?
n=O

(79)

where the dn ‘s, ~n’s, gnu’s, grin’s, and hnm’s are constants determined from the

orthogonality condition of equation (74). For example,
.
L

&ml=Jfhwwww . (80)
o

Since the @n’sform a complete set, the substitution of equations (75) to (79) into

equation (72) yields

jvo (L)ZC-l dn + Vo(L)~fn + sin eo~ gnu7’:(coseo)au
u

By defining dn, ~n, au, and Zmto be components in the same dimensional vector

space, we can cast equation (81) in the matrix form

jvo (L) z:ldA+vo &)Yt ;+ Ga + 6: =;:

where

Gnu = sin eognu?u(cos 00) ,

tnm=SillOognmfm(cos‘o) ,

in.=&n) (m+ l)h~ ,

$ (82)

(a)

(b)

(c)

The solution of equation (82) which renders $ in terms of ~ is given by

i$’=~8+j Vo(L)z. -li+vo(U T f ‘

(83)

(84)

where

18



v=(1%-;)-1(7, (85)

L (i7-(5)-1),

$=(FLE)-lJ$.

(86)

(87)

Using equation (84), the determination of the admittance Yf and the constants

6,$, and ~ follows in a manner analogous to the lossless case considered in the previous

section (compare the analysis beginning with eq (28)). For brevity, some of the obvious

intermediate steps will be omitted. From equation (65) we have

y v(-)(L)
H@(r=L)=2> sine +$-- auju,(w)~, (Cos 9 + +z~ ZiJ”m(kL)~ (Cos0) (88)

u’ m

If we now multiply equation (88) by sin O ~ (COS@and integrate from 90 to

z- m, and then use equation (7) for H@ =L), we obtain the following result:

($= ma ($

where ~ is the previously defined matrix, and ~ is a matrix whose components are

(89)

(90)

From equation (38) we have the relationship which relates bN to the interior fields.

However, we must now use equation (67) for E~ Inserting equation (67) into (38) gives

~PbN= ~ p~pau + ‘NV.(L)z~l + ‘NmEm , (91)
u m

where

2N(2N + 1) Fm(kL) ““
~N~= —2N+1 JG#L) ~

sin e$~ (COS9)fim(cos 0) de . (92)

19



It is observed that equation (91) is similar in mathematical structure to equation

(40); the matrix equivalent becomes

~ =~ $+ K~VO(L)ZC-l+ ~ $ , (93)

which is likewise analogous to equation (44). ~is the matrix whose elements are given by

equation (92).

The final required equation for determining the unknowns in the system is found by

integrating equation (88) between ~ and Z- @. There results

(94)

where @is a column vector whose components are j~(kL)17n(COS60).

In summary-there are four unknowns in the problem: Yf, b, #, and ~ . These are

determined from equations (84), (89), (93), and (94). The simultaneous solution of these

matrix equations involves many intermediate steps which for brevity are not presented.

The final result is

where

(95)
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524=(1–-W2)-11, (g)

g = (T-W2)-1f) , 00

26=fl +ii1f3+jZc-1iti194 . (i) (96)

Once Yr is computed, the other parameters, a,& and ~, are determined from

equations (84), (89), (90), and (94).

4. CONCLUSION

In this study we have demonstrated that a methodology for calculating the fields of

a biconical antenna with resistive loading is theoretically and computationally feasible. The

technique draws on the modal analysis concept originally developed by Schelkunoff for the

case without resistive loading. However, the extension to the resistively loaded case is

considerably more complex ffom both a conceptual and computational vie~int.

The resistively loaded case is found to require the existence of additional terms in

the antema region (compared to the lossless case) so that the interior boundary condition is

satisfied. The solution of the interior boundary value equation appears to require the

introduction of an orthogonal basis of functions, @n(r),defined in the range O < r <L,

where r is the radial coordinate and L is the bicone radius. We have not as yet selected the

@.(r); however, this does not limit the theoretical analysis. Using the basis functions,

o~(r), a mati formulation is developed. In order to achieve a practical solution to the

problem, it will be necessary to assume a finite number of terms. This number has not

been determined, but will surely depend on the bicone angle 60 and radius L, and the

magnitude and radial distribution of the resistive loading.

In summary, the implementation of the technique developed in this investigation

requires the selection of On(r) and the evaluation of certain mathematical functions and

integrals which depend on @n(r). When this is accomplished it should be a relatively easy

matter to predict the near and far fields from a resistively loaded biconical antenna.
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APPENDIX: DETERMINATION OF THE ROOTS Ui AND

EIGENFUNCTIONS Tui

In this appendix I address the determination of the roots ui of the equation

Tupos o~) s+[Pups l%) – Puf-cos e~)] = o , (A-1)

where Pui is the Legendre function of order ui, and (2-Jis the bicone angle of figure 1 in the

body of the report, I also discuss the determination of the O-dependence of the function

TU(COS8)= + [PU(COS@ - PU(-COS e)] .
i i i (A-2)

Letting

z(.) = Cos @ ,

we write equation (A-1) in the form

~ Pu(zo) –Pui (–zo) = o .
[2i 1

(A-3)

(A-4)

Since ~i is not generally an integer, the complete series expansion for PU must be used.

This series can be deduced from the hypergeometric function [1] through the relationship

Pu(z~) =F(-u, u + 1; 1; 1+) , (A-5)

which is valid in the range I 1- zoic 2. This latter requirement is satisfied for the angles of

interest. The series formula for the hypergeometric function of equation (A-5) can be

deduced from the general formula (compare chapter 15 of the reference).

~(tl, b; C;Z())=
m (a)fl(b)n Zon

z-o (c)n z ‘

where (a)n, (b)n, and (c)n are Pochhammer symbols defined by the equation

r({ + n)
(on = r(5 $

(A-6)

(A-7)

with 17being the gamma function.
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Setting

a = -u , (a)

b=u+l, (b)

C=l, (c)

and using the properties of the gamma function gives

(a)n = (–u)(-u + 1)(-u + 2) ... (–u + n - 1) , (a)

(b)n = (u + 1)(u + 2) ... (u + n) . (b)

The resulting series expression for PU(z)is

(A-8)

(A-9)

Pu(zo) = 1 + ~ (- ‘1 ;.ZO)’ . (A-1O)
.

When equation (A- 10) and its counterpart for PU(-zO) are inserted in equation

(A-4), we have a polynomial of infinite order for the determination of the roots ui. Since

this is impossible to deal with, it is necessary to approximate PU(zO)and Pu(-zO) by a finite

number of terms.

In all cases equation (A-1O) is a well-behaved representation of PU(ZO).Figures

A-1 and A-2 show the behavior of PU(zO)and F’U(-zO),respectively, for selected values of

zo = cos @ calculated from equation (A-10) using 128 terms in the summation and

including double precision.

The need for double precision in the computation of F’u(zo)and PU(-ZO)arises from

the oscillatory nature of the individual terms in the series, which can become extremely

large for correspondingly large values of u. Thus, in the absence of double precision, we

would be faced with large round-off errors resulting from the subtraction of sequences of

two extremely large numbers. These uncertainties would be pronounced in the

determination of the roots of equation (A-4). - - ‘ ● ‘ “ “ ““ - ““

128 terms in the series of Pu(zo) and Pu(-zO)

problem.

For very lmge values of u, even 128

compute Pu(+zo). Fortunately, in this case the roots of equation (A-4) may be determined

using the asymptotic forms of Pu(fio). The asymptotic expressions [2] for the Legendre

functions also provide an excellent starting guess for the ZBRAC and RTBIS root finding

algorithms [3] which are used to solve equation (A-6).

me use or aotmle preclslon comlxned wm

appears to circumvent the aforementioned

terms may not be sufficient to accurately
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Several asymptotic expressions were examined, and the one which seems most

appropriate for this investigation is that rendered by Magnus and Oberhettinger [2]. The

asymptotic expression for the Legendre function of order u is denoted by ~U(cos 6) and is

given by

i I/i& cOsb+wl;(’s05-’>0y’u@$(A-”)Fu (Cos (3)=

Using equation (A-II) in equation (A-4) and recalling that

-Z() = Cos(?c- @) (A-12)

gives the following equation for the asymptotic roots Ei:

cos[(~ ++) @o- ~ -Cos[(u;+ -@– co)-:] = o . (A-13)

Using the formula

cosa-cosb=–2 sin ~(a+b)]sin[~(a-b)]

and letting

a=viOo–f ,

b=vi(z-OO)-: ,

V.=EJ ,
1 ~2

(A-14)

(a)

(b) (A-15)

(c)

reduces equation (A-13) to the form

sin(~f) Sin[’Vi(’--@O)] =0 . (A-16)

Since we are looking for solutions where ~i is not an integer, the solution of equation

(A-16) is given by

Vi(f-o,) =?nz , (A-17)

where m is an integer. Letting
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00= +0 (A-18)

gives

Ui==– — .
$0 ~

(A-19)

As observed from equation (A-19), every angle @ generates an infinite set of roots

with magnitudes increasing with the index m. Table A-1 compares the asymptotic roots

given by equation (A-19) and the exact roots determined from the numerical solution of

equation (A-4).

The asymptoticvalues appearto provide a good approximationat the smallervalues

of ui with excellent agreement occurring at the larger ones. This is consistent with the

theoreticalexpectations.

Table A-1. Comparison between exact and asymptotic roots

tlo(degrees) Root no.

15.0 1
15.0 2
15.0 3
15.0 4
15.0 5

30.0 1
30.0 2
30.0 3
30.0 4
30.0 5

45.0 1
45.0 2
45,0 3
45.0 4
45.0 5

60.0 1
60.0 2
60.0 3
60.0 4
60.0 5

75.0 1
75.0 2
75.0 3
75.0 4
75.0 5

Asymptotic value, ZZi

1.90000
4.30000
6.70000
9.10000

11.5000

2.50000
5.50000
8.50000

11.5000
14.5000

3.50000
7.50000

11,5000
15.5000
19.5000

5.50000
11.5000
17.5000
23.5000
29.5000

11.5000
23.5000
35.5000
47.5000
59.5000

Exact value u~

1.80156
4.25625
6.67405
9.04312
11.4272

2.44524
5.45228
8.45644
11.4999
14.4999

3.45397
7.48620
11,4812
15.4990
19.4997

5.48263
11.4999
17.4993
23.5000
29.5001

11.4870
23.4998
35.5005
47.5000
59.4999
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It should be noted in passing that Schelkunoff also obtained estimates for the

asymptotic roots [4] which agree with equation (A- 19) only in the limit where mm/~ >>

1/2. He did not attempt to generate numerical solutions relevant to our range of interest.

After the roots are determined it is also necessary to calculate the angular

dependence of the funchon

T’ui(cos 6)= +[Puj(cos 6) -Pui(-cos 6?)] (A-20)

which from equation (A-4) is observed to satisfy the condition

TU(COS 6.) = TU[COS(7T- t+)]= TM(+0S @O) = O .
i i i (A-21)

Figures A-3 to A-7 show plots of TUi(z = cos 0), P ~i(z = cos 6), and

PUt(–z = -COS 6) as a function of@ for the fmt five roots when ~ = 30°. Using equation

(A-1O),we can compute the angular dependence of TUi(z)from the expression

128(a)n (b)n 1
TU(COS @ = +~ ~ [(1 - COS 6)” -(1+ cos ~)n] > (A-22)

i ~=1 (ny

where the (a)n and (b)n are calculated from equation (A-9) with the ui’s given in table A-1

for ~ = 30°.

It is also of interest to examine the sensitivity of the behavior of TUi(cos 9 to the

choice of the asymptotic versus exact root as a function of ~. Figures A-8 to A-12 show

the comparison between TUiand T~~for the first five modes when @ = 30°. As expected,

the differences become smaller as m increases from 1 to 5.

Figure A-13 shows the comparison between the TUi’sfor the smallest root, which

occurs in the @ = 15°, m = 1 case. For this situation it is observed that the difference can

become quite large, indicating that the asymptotic approximation is not especially good. On

the other hand, figure A-14 shows the 60 = 75°, m = 1 case, which corresponds to a

relatively large root of 11.50 (compare table A-1). As observed from figure A-14 the

differences in this case are imperceptible.

●
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