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Abstract

This paper considers the general design of dielectric lenses for transitioning between

t’arious sphericaI waves. inciuding plane waves as special cases. such as one may wish to have

in antenna and transmission systems for fast-rising electromagnetic pulses. For tran.sitioning

sphericaI and plane waves through a single boundary surface, this surface is a prolate spheroid

or one sheet of a hyperboloid of two sheets. For the case of two spherical waves this surface

is a fourth order polynomial equation. For multiple media with two (or more) boundary

surfaces these solutions can be appIied to each boundary to generate various lens designs of

interest.
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1 Introduction

In transitioning between various spherical waves, a general technique involves a lens in

which the propagation speeds (in general different) in two or more media are used to con-

trol the arrival times on the wavefronts of interest. In uniform dielectric media spherical

wavefronts, including plane wavefronts as limiting cases, are of interest. Such lenses have

application in TEM transmission systems such as coaxial waveguides (cables) [2], and anten-

nas such as IRAs (impulse radiating antennas) [1]. In these cases one requires that pulses

with very fast risetimes (compared to cross-section transit times) be treated as waves (in

general three dimensional). The problem is then one of mat thing these waves from one

region to another with a minimum of distortion and reflection.

In this paper we treat the lens from an equal-time point of view, matching from spherical

wavefronts in two uniform dielectric media along their common boundary. This introduces

some reflection in general at the boundary, and so such lenses are not ‘tperfect” transitioning

devices for TEM waves in the sense of [5]. However, in some cases the reflections can be

small and the wave passing into the second medium can usefully approximate the desired a

dispersionless TEM wave. In a more detailed consideration, such as in [2] one needs to

consider the paths of the conductors (for the desired TEM wave) through the lens medium

and the resulting transmission-line impedances in the various media to optimize the matching

of the waves.
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2 Diverging Spherical Wave to Plane Wave

In [2] the general problem of launching a plane wave (in a medium of low permitiivity)

from adiverging spherical wave (inamedium ofgreater permittivity) h= been considered.

There the specific problem involved a coaxial guiding system. However, the result for the

lens shape is more general, as it relies only on the equal-time requirement, and not the

impedance considerations for the transmission structure. Here, the result is extended.

As in Fig. 2.1 we have a spherical wave propagating outward from

On the lens boundary we have

Zb – Zlo = rb Cos(ob)} Wb

The equal-time requirement to some aperture plane

— —. .

(~,z) = (0,%)

= rbSh(db)

(z= ,za) is

<%rb + /62 [2= – 26] = constant

(2.1)

(2.2)

= V6[%bo – -%]+ ~[%z– Zbo 1 (2.3)

where the constant has been evaluated by considering the ray along the z axis, ZbObeing the

z coordinate of the intersection of the lens boundary with the z axis. Rearranging

where 1 is the convenient scaling length as in [2].

= ~sin-l(dt,) = [Zb j ‘bo +1] cos-l(db) (2.5)
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e Converting to cylindrical coordinates (2.2) gives

(;)2= (?)2+[’’;”0 +’12
which with (2.5) gives

(:)2[+%;z’o +,]2= [$jzb;zbo +,]2

as the equation for the lens boundary.

A. Case of Cl > Ez

This is the case considered in [2]. It corresponds to Fig, 2.1A, Rearranging (2.7) as

(2.6)

(2.7)

(?)’++fjzb;zbo +[1-:1 [2’;2’012=0
This is the equation of a prolate spheroid [4]. It interects the z axis at

z— Zbo

[ (1

-1

1
=0,–21+ ~

Cl

o It reaches maximum cylindrical radius W~~~=at

a - major radius

-

b ~ minor radius

Another common parameter of a prolate spheroid is the eccentricity

(2.8)

(2.9)

(2.10)

(2.11)
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It has foci on the z axis at

(2.12)1
–a[l + a] = –1

[
1– Q

,2— Zbo= 61 ?
–a[l – a] = –

{
1+ ;

the first of these being the Iaunch point for the spherical wave, and the second being a focus

for the reflection (ideally small) of the spherical wave from the lens boundary.

As indicated in Fig. 2.1A one need use only a certain portion of the prolate spheroid for

the lens. In particular the lens boundary for z – ZbO< –a where the lens radius is maximum

is not useful for focusing in the forward (+z) direction. In an angular sense 191is maximum

on the boundary at

I$$m==‘-4[:-’1’)
There are some limiting cases. For el /cz near 1 we have

which is a sphere.

B. Case of e2 > Cl

Now consider the

permittivity medium

For large Cl/e2 we have

(2.13)

(2.14)
m

(2.15)

converse case in which one is launching the spherical wave from a low

into a plane wave in a high permittivity medium. This corresponds to

Fig. 2.lB. Rearrange (2.7) as

= [:-’]{[’b;zb”+[~+q-’
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This is the equation of a hyperboloid of two sheets [4].

the positive z direction.

This body of revolution about the z axis intersects

intersection being as in (2.9)). For large positive z this

Here we consider only the sheet in

the z axis at ,z~, (the other sheet

surface is asymptotic to a circular

, +[fi+,]-’+~((zb;”bo)-’ ~
“b — “b.

(2.17)

This cone has apex on the .z axis at ZCgiven

~=—zb.

by

r- 1-1
.-——— II4 Q+ll

1 Lv~I”J

(comparable to (2.10)) with a half-cone angle

1

([ 1)
6C= arctan Q – 1

5

Cl

● as indicated in Fig. 2.1 B.

There are some limiting cases. For cz/el near 1 we have

Zc — .“bo

[
+–~,0c+Oas2 + 1+

El

For large e2/el we have

Zc — .“bo ‘ii’

1
+0, Oc+—as Q+cc

2 cl

(2.18)

(2.19)

(2.20)

(2.21)

which is a plane of constant z(= “bO).

C. Some Comments

As a practical matter one is often concerned with launching a plane wave into a medium

of permittivity Co (free space). For a transient dispersionless wave in medium 1 we need

a constant (frequency-independent and lossless) Cl which is physically then required to be

larger than Coso that the frequency-independent propagation speed is less than c, the speed

of light. Such a situation implies Case A, the prolate spheroidal lens. For special cases where

7
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one wishes to launch a plane wave into a medium of permittivity C2 > co (such as earth,

water, etc.) then the hyperbo~oidal lens may be of interest. e

The reader can note that the wave-propagation can be reversed. Then in Fig. 2.1 a

plane wave is propagating in medium 2 in the –z direction. On passing through the lens

boundary it k converted into a spherical wave converging (focusing) to z = ZIOon the z axis

in medium 1.
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3 Plane Wave to Diverging Spherical Wave

Now consider the complementary problem (to that of Section 2), the launching of a

diverging spherical wave from anincoting plane wave asillustrated in Fig. 3.1. In this case

the spherical wave in medium 2 is propagating outward from

F’= & (r,, O,) = (0,0,), (W,,z) = (0,2,.) (3.1)

which is actually located in medium 1. Matching the plane and spherical waves on the lens

boundary we have

~b – .%, = rti cos(6’b), ~b = rb sin(~b) (3.2)

The equal-time requirement is now from a source plane (z = z.) to an aperture sphere

(rz = r.) which gives

= ~[zbo – z.] + -&[r.- (Zbo - 22.)] (3.3)

where the constant is evaluated by considering the ray along the z axis, zb, again being the

z coordinate of the intersection of the lens boundary with the z axis. Rearranging

firb – fi[zb - .z~o]= @

t - zbO– ,z~O (3.4)

where 1 is now redefined (compared to Section 2) as the distance (along the z axis) between

the lens boundary and the virtual focal point of the spherical wave.

Comparing (3.4) to (2.4), note that they are the same except for the interchange of

subscripts 1 and 2. With this relationship then (2.7) is rewritten for the present case as

where the only difference is the inversion of the ratio of the permittivities.

9
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A. Case of Cl > e2

This case is illustrated in Fig. 3.1A. Note that, due to the interchange of the permittivities

in (3.5) as compared to Section 2, the corresponding boundary is a hyperboloid of two sheets

(as in Fig. 2.lB). The corresponding equation is

(32=[VI{[-+[6+T1]2-[E+n-2} ““’)
where here we consider only the sheet in the positive z direction. Again this sheet is asymp-

totic to a circular cone with apex at z. given by

[[ 1
–1

ZC— Zbo
=—

f
:+1 (3.7)

with a half cone angle
~

([ 1)/3.=arctan ~ – 1 2 (3.8)
C2

In a similar manner all the formulae of Section 2B can be simply converted to the present

a case.

B. Case of e2 > Cl

This case is illustrated in Fig. 3.2B. Again due to the interchange (from Section 2) in

the permittivities in the lens-boundary equation this is a prolate spheroid given by

(3.9)

It intersects the z axis at

[fl

–1
z— ~bo ~=,

1
–21+ ~ (3.10)

’52

The maximum value of 132on the boundary is

@bm===arctan([~-1]’) (3.11)

In a similar manner all the formulae of Section 2A can be simply converted to the present

case.

● 11



C, Some Comments

Note that in both cases illustrated in Fig.

range of angles 62 centered on the z axis. In

3.2 the diverging spherical wave has a restricted ●
particular for finite permittivities & < n/2, i.e.

the diverging rays do not fill a half space (with boundary as a plane of constant z).

Again the wave-propagation direction can be reversed. A spherical wave in medium 2

propagating toward ,220on the .z axis is converted into a plane wave in medium 1 propagating

in the —z direction.

12
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4 Diverging Spherical Wave to Diverging Spherical

Wave

A. General Considerations

The more general case, as indicated in Fig. 4.1, has a spherical

propagating outward from

F, = Zl,i,, (~1, dl) = (O,%), (Q, z) = (UZIO)

/1= /?&– zlo

wave in medium 1

(4.1)

There is also a spherical wave propagating in medium 2 outward from a position in medium

las

F’2= Z2J’2, (T2, 02) = (0, @2), (~> z) = (0? 40)

& = 26, ,— .220 (4.2)

e Here, as before, z~o is the intersection of the lens boundary with the z axis (symmetry axis),

a subscript b on coordinates applying to the lens boundary. Introduce a convenient scaling

length as

L-j= [ 1
& +.f?;2‘1

which follows the usual focal-length formula.

Relating the coordinates on the boundary we have

zb – 210 = T’IbCOS(6j6) = Zb

(4.3)

zbo+ 41

These are manipulated into the form

(4.4)

a 13
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Zb — .?$o= rlb Cos(dlb) –/1 = r2, ccIs(192,)

= ~b d(6~b) – l?~= ~b d(6jb) – &

For the equal-time condition we have the time from ZIO~Z to the lens boundary as

and from there to the spherical wavefront of radius r2 (centered on 220~Z) as

t2= @[7-2b – r2]

Then we set

to = -tI + t2 = constant (for fixed r2)

= -r,,+ @[r2 - r.,]

●
= @ll + @[r2 - ~2]

where the last form is found by evaluating the time along the z axis as the ray path.

have

as the equal-time condition. Note the symmetry in this equation with the interchange

(4.5)

(4.6)

(4.7)

(4.8)

So we

(4.9)

of the

subscripts 1 and 2. By clearing the square roots one finds that this is in general a quartic

equation (including fourth powers of coordinates).

For convenience (4.9) can be put in parametric form by normalizing distances to 10 and

permittivities to ~ as

n = 1, 2, X s parameter

15
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Varying x generat$s the lens surface, noting that for each x there are two equations with

coordinate unknowns (26 – z~O)/10 and IUb/lo. One still needs to specify cl/62 and 11/12 (or e

ll//.) to give a particular lens surface. Note the particular point common to all Iens surfaces

26 =26., ~b=o, x=() (4.11)

To simplify the computation of the surface shape rewrite (4.10) as

1
{[‘z ‘b–260 +/.]2+W:}*

Then eliminate ~b as

‘$;‘t: = &{[zb – Zbo +~2]2 – [Zb‘Zbo +fI]2}

(4.12)

(4,13)

where we also have

These combine to give

Note the special cases

Zb = Zbo (4.16)

{
‘= :::[[:]’-[:]’]-l ~[:]’-2[;l’]

16
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Then from (4. 12) we have

Since this is the same for

(4.17)

both values of n we can average them (for greater symmetry in

the expression) giving

[1
Zb—Zbo2 &+/~zb-zbo— & – & /0 (4.18)

At this point with (4.15) we have explicit representations for ~b and ,?!b– z~, in kITTM of x.

Now we can see that in general ~b has terms ranging from x through X4, while .Zb– zb, has

x and X2 terms. Carrying the substitution a little further gives

~b2 .&)

[1z ~[21’-:[:l’]x2+-lo;:1:/,)[[:l+-[:]*]X‘/’–/1/()Cl

[1
~b—Zbo2

—

.&
(4.19)

with the x term explicit. Since W? must be positive then sign of x depends on the coefficient

of x in the above equation. This information can be combined with (4. 16) to see if the X2

root exists (in which case the lens surface crosses the z – .ZbOplane). With (4.15) and (4.19)

one can carry the analysis further to eliminate x and obtain a quartic equation relating ~b

and Zb. This is found in Appendix A.

Assuming that the coefficients of x in (4,15) and (4.19) are non zero, then we have

~bibo[%]2=~[:l’-$[:l’]-’%$[[:l[:l’]’]
+O(x)xas x + O

+O(x) as x -+O (4.20)

17



If this expression is positive

to the left (near the z axis).

2= — Zbo

thelens surface is concave to the right and if negative concave

Fitting this to a sphere, the center is at z.r, with *

/, - ‘E[$wi]-’[[:r-[ :l’] (4.21)

To illustrate this solution consider a special permittivity ratio ez/el = 2.26 and let &/ll

be a parameter, giving the family of lens surfaces in Fig, 4.2.

B. Special Spherical Lens Surface

As a special case choose

fit, = &l?, (4.22)

which can be described as equal electrical distances to the two wave centers in terms of the

respective medium permittivities. Then (4.9)gives

[ 1 [212=[’b;,””+’12+[32‘b;Izb”+1 2 +

This is conveniently a quadratic equation which can be rearranged as

[[zb– Z~o]+&]2+~;=&

which is a sphere of radius to centered on –lor= as in Fig. 4.3.

Noting that

(4.23)

(4.24)

(4.25)

then only one parameter ratio needs to be specified to constrain the relative permeabilities

and relative wave centers (foci). Note that

(4.26)

18
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c.Maximally Flat Lens Surface

Another special case is found

representation of ~b —ZbOas

(4.27)

by setting the coefficient of x in (4.15) to zero in the

This makes ~b – z~Oproportional to X2 near the z axis, a case which can be referred to as

maximally flat. With this constraint only one parameter ratio needs to be specified to specify

e
the relative permittivities and relative wave centers (foci).

Now the Only kHJ.2 k Zb – zbO is proportional tO x’ as

Zb — Zbo

lo
=;42:11 [[:]* -[:]*]X2

1
2X2=—- (4.29)

which is negative for real x indicating that the lens surface is concave to the left, never

crossing the zb = zbOplane. Then (4.19) becomes

and x is positive, Near the z axis (small X) we have

(4.30)

(4.31)

The curvature of the lens surface at the z axis is zero (infinite radius of curvature).

21
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Figuie4.4shows thelens surface with 12/11 (and hence cz/cl)as a parameter. Note from

(4.30) the symmetrical roles of 41 and /z, so that a particular value of 12/41 corresponds to e

the same value of n/42.

D. Nearly Matched Permittivities

Consider now the case that

&2
—=l+v, pl <<l (4.32)
61

where v can be positive or negative depending on which permittivity is larger, Such a case

can occur when one medium is free space (air) and the other a low density dielectric (such

as foam polyethylene).

For small x the leading term in (4.15) gives

Zb
“bO=[l+ 0(v)]X+O(X2)a sv~OandX~ O
f?rJ

(4.33)

Note that we are taking v + O before x ~ O. Similarly from (4.19) we have

~b2
[1=/O(~!ll)[V+O(V2)]X+O(X2)asv -+0 and ~ ~ o

●
z-

(4.34)

which means x takes the sign of v/(12 – /1). Combining these gives

(4.35)

This is the equation of a paraboloid which (for positive/l and /2) is concave to the right for

positive v/(lj –/l ), and to the left if negative,

As a limiting case let /2 = ca so that the second wave (in medium 2) is a plane wave,

giving

asv~Oand X+O (4.36)
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Assuming v positive the lens surface is concave to the right. For a fixed lens surface

(4.37)

so that small v implies large 10 (focal length), For comparison, if this surface were a reflector

[3] we would have
~j

= 4F (4.38)
~b —zbO

F s focal length

24



@

5 Diverging Spherical Wave to Less Divergent Spher-

ical Wave to

Now let us combine the

Plane Wave

results of previous sections to have three waves in three media.

As illustrated in Figs. 5.1 and 5.2 there are three regions, the second (middle) one being

the lens and the first and last (third) having the same electrical properties in the examples.

This defines two lens surfaces designated 1 and 2 (superscripts). These may intersect at

(5.1)

depending on the choices of the various parameters. While there are many possible combina-

tions of medium parameters, our primary interest has medium 2 as a lens with C2> el = C3.

Tracing the ray back we have a ray specified parallel to the z axis (plane wave) in

medium 3. In medium 2 this corresponds to a ray on a radial from F2 = 22012.+ As discussed

in Section 2 for e2 > e3 this corresponds to a prolate spheroid for lens surface 2. For e2 < e3

●
this corresponds to one sheet of a hyperboloid of two sheets, In medium 1 the ray is on

a radial from T’l = ZIO~Z. As discussed in Section 4 lens surface 1 is in general described

by a quartic equation. For a specified set of /l, /2, the lens thickness (z~~) – Z$)) and the

permittivities, the two lens surfaces are determined.

The examples in Figs. 5.1 and 5.2 are determined by first specifying ez/el (= 2.26) with

(2)
e3 = El, Then choosing 1 determines 220 from zbO as

Then choosing

Choosing 42/n

1 = 2[:)– ,z~o

Zjl) and 42 gives the lens thickness on axis

(’) – & = / –/2zb

then determines /l, 40 and lens surface 1.

(5.2)

(5.3)

25
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6 Transmission of Waves Through Lens Boundaries

In passing through the lens boundaries, while the equal-time requirement is met, not all

of the wave is transmitted, Associated with the” discontinuity of the medium parameters

there is in general a partial reflection of the wave at each lens boundary. As discussed in

the previous section one can have a dielectric lens of permittivity Cz separating two media

of permittivity Cl. With common permeabilities p. the media have wave impedances

{

Z.= ~forn=l,2
en

(6.1)

As illustrated in Fig. 6.1, consider the simple problem of two planar lens surfaces with

normal wave incidence. Except for the curvature of the lens surfaces in Section 5, this

corresponds to the transmission and reflection of the ray along the z axis. At lens surface

1 there is a transmission coefficient (for the electric field) using the usual one-dimensional

formula.

T1 =
2z~

ZI+ Z2‘2’W+W
At lens surface 2 we similarly have

This gives an overall transmission coefficient of

(6.2)

(6.3)

(6.4)

This applies to the first portion of a transient wave reaching medium 3. There are reflec-

tions at the lens boundaries which can appear in medium 3 at a later time due to multiple

reflections. Since media 1 and 3 have the same constitutive parameters, T2 < 1 represents

the relative power transmission (at early times) from medium 1 to medium 3.

Ideally one would like T to be one, such as for the ideal lenses discussed in [5], this being

accomplished by controlling the permeability and/or medium inhomogeneity and anisotropy

28
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as well as special angles (e.g. Brewster angle) at the lens boundary. In the present case one

sacrifices ideal performance for simplicity of the lens medium. If the two permittivities are e

only slightly different so that as in (4.32) we write

For small u we have

T=~osh-2~n((~)’)) =cosh-2(~ln(l+~))

1
= 1 – #n2(l + v) + 0(4n4(l+v))= 1 – ~v2 +O(V3) as v ~ O

So, for small v, not much is lost in transmission through the lens. The fractional

removed from the initial wave by the lens-boundary reflections is

1– T2= ~ln2(l + v) + O(ln’(1 + v))

= ~Z/2+ 0(v3) as v -0

(6.5)

(6.6)

power

(6.7)

o
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a 7 Plane Wave to Diverging Spherical Wave to More
—

Divergent Spherical Wave

The considerations in Section 5 can readily be extended to lenses for going from a plane

wave through a lens in which the wave is spherically expanded to a third medium in which

the rate of spherical expansion is even greater as illustrated in Figs. 7.1 and 7.2. Begin with

a plane wave in medium 1 where a ray is parallel to the z-axis. In medium 2 the ray is on

a radial from ?2 = Z20r2. As discussed in Section 3 for C2> c1 this corresponds to a prolate

spheroid for lens surface 1. For 62 < Cl this corresponds to one sheet of a hyperboloid of two

sheets. In medium 3 the spherical wave is described by the ray on a radial from 7“ = Z30rz

As discussed in Section 4 lens surface 2 is in general described by a quartic equation. For a

(2)
“)) and the three permittivities, the two lensspecified set of 12, ~3 the lens thickness (Z60 – Z60

surfaces are determined.

Note now that

With our primary interest in e2 > Cl = C3, the two lens surfaces have closest approach near

‘1) – ‘2) III some cases the z axis may be in a region wherethe axis where one can choose Z60 – z~o .

there is no wave (e.g. inside a conductor such as the center conductor of a coaxial structure

(cable)). In such cases we can have .z~~)> z~~) and the intersections of the two surfaces

described as in (5.2).

.
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8 Concluding Remarks

The case of a single lens surface separating two media of different permittivities gives

rather simple results, allowing only for prolate spheres and hyperboloids (one of two sheets),

provided one of the two waves is a plane wave. With two surfaces separating three media

the situation is in general more complicated. The surface matching two spherical waves is

described by a fourth order-polynomial equation. Here we have considered some interesting

examples of this, in particular where the first and third media have the same permittivities,

and the wave in either medium 1 or 3 (but not both) is a plane wave. However, the results of

this paper are more general in that they can be applied to a wider set of situations involving

three different permittivities and/or three spherical waves as well. Utilizing the general

results in Section 4 and Appendix A one can go from a spherical wave in one medium to

another spherical wave in an adjacent medium, and then on to another, etc,
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Appendix A: Non-Parametric Form of Lens Surface

Section 4 considers the general case of a lens surface matching two spherical waves. There

the general solution is cast in terms of a parameter x. From (4.15) and (4.19) this is

zb —zbo

& ‘~~2~~1{[[:1’-[:1’1x2+2E[:l’-$[:l’lx}
[?l’+[zbizbol’=l,!,, :: ‘[ [ 1 -H:]*]X2

21~1,

‘10(12 – 1*)
[[:]* _[y]x

Rewrite this in the convenient form

Zb — Zbo
– CIX2 + C,x

[#i2+i’bizb012=@2+@
with the four constants as above.

Solving the first of (A.2) for # and substituting for X2 in the second gives

[%12+[Zbizbol’=:zbizbo+c1c4ic2c3x
Solving for x we have

C1 {[~]2+[zb;ozq2}-c,c4:c2c3zb;ozbo
x = C~C4 – C’C3

which can be placed back in the first of (A.2) for both X2 and x to give

Zb — Zbo

& c: {c1{[:]2+[yq2}-c3zb;fl}2
= [CIC~ – C,C3]2

+ C2 {C,{[;]2+[’7J’]2}-C3Z7’}ClC4 – CZC3

(Al)

(A.’)

(A.3)

(A.4)

(A.5)
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With the four constants given, this is a fourth order equation relating ~b/.& and (zb– %bO)/~o.

The special combination of constants reduces to ●
UI C4 – C2C3 ‘“2 [[:]’-[:1’][[$-w]=(1,-e,)’

‘:~[~]i-:[:l’]k[:l’-%[:l’l–(1?’–l?,)’& C2
lo {!A[Q]4-;[%I*}

‘/2–/1& C2 (A.6)

With Cl, C2, and C3 from (Al) this gives the constants in (A.5).

A special case treated in Section 4 is the special spherical lens given in (4.22). This

corresponds to the combination in (A .6) being zero. Another special case is the maximally

flat lens surface in (4.28). This corresponds to C2 = O.
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