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ABSTRACT

Proper characterization of the radiated field along the axial direction of a TEM-

fed symmetric paraboloid reflector antenna is important for assessing the impulse

response performance of these antennas. The challenging issues in this task is the

evaluation of the edge diffracted fields from the rim of the reflector and the spherical

TEM-launcher’s blades. It is the objective of this study to investigate the effect of the

edge diffracted field of the reflector and the scattering from the TEM-launcher’s blades

using PO/PTD diffraction techniques. As a result, with a general spherical incident

fieid representation, closed-form formuks are obtained for both the PO field and the

PTD fringe field of the reflector and the transverse blades. Useful information are

extracted from the results. A specialization of these results to a prescribed radiation

characteristic of the TEM-launcher is also considered.
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Nomenclature and listof symbols

All vectors are represented by boldface symbols except the unit vectors, which are

represented by Italic symboIs topped with a hat such as 6. Three types of coordinate

systems are used in this report: the antenna coordinate system (ACS), the feed coor-

dinate system (FCS), and the local coordinate systems (LCS) defined for each point

on the edge of the reflector and the edges of the TEM-launcher’s blades. Quantities

that has a subscript “~” are related to the FCS. Primed symbols are related to the

LCS, except that r’ in the radiation integrals refers to the position of a source point.
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E, H electric and magnetic fields

r the position vector of an observation point

h a unit vector normal to the surface of the reflector or that of a blade,
pointing to the incident- wave

o, 4 polar and azimuthal angles in ACS

d~, #f polar and azimuthal angles in FCS

0[, 4; polar and azimuthal angles, in LCS, of an incident ray

0’, # polar and azimuthal angles, in LCS, of an observation point

~, ~ (spherical) unit vectors in ACS

~~, d~ (spherical) unit vectors in FCS

~~, ~~. (spherical) unit vectors, in LCS, associated with an incident ray

~’, ~’ (spherical) unit vectors, in LCS, associated with an observation point

D, F the diameter and focal length of a symmetric paraboloidal reflector

d. the subtended angle of the reflector

Fe, G@, G4 diffraction coefficients of PTD

ET, H& the &components of the incident field:

Eef, l?d~ the ~f- and if-components of the feed electric field

p, @ the reflector aperture parameters

UWB Ultra Wide Band

PO Physical Optics

PTD Physical Theory of Diffraction

GO Geometrical Optics
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Chapter 1

Introduction

The goal of this study is to determine the axial-field of a TEM-fed symmetric parabo-

loid reflector antenna for ultra wide band (UWB) radar applications. An example of

the TEM-fed reflector antenna is depicted in Figure 1.1, in which the TEM-launcher

is assumed to have four blades although in practice other numbers of the blades may

be used. In order to accurately predict the performance of the TEM-fed antennas, it

is necessary to characterize not only the scattered field of the reflector, but ako that o

of the TEM-launcher’s blades. The diffraction techniques of Physical Optics (PO)

and Physical Theory of Diffraction (PTD ) [1, 2, 3] are chosen for analysis because

they are accurate and versatile.

The general formulation. of PO/PTD is presented in Chapter 2. This technique

is applied to characterize the scattered field of the reflector in Chapter 3, and that

of the TEM-launcher’s blades in Chapter 4. As a result, with a general spherical

incident field representation, closed-form formulas are obt airied for various axial field

components. These formulas provide useful information on the

the reflector edge and the launcher’s blades, and will facilitate

of the time-domain response of these reflector antenna systems.

diffraction effects of

the characterization
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Figure 1.1: A possible configuration of the TEM-fed reflector antenna, It is assumed in this drawing
that the TEM-launcher has four blades although in practice other numbers of the blades may be
used.
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Chapter 2

PO /PTD diffractionanalysis

Consider the scattering problem shown in Figure 2.1, in which a scatterer with a

curved edge is being illuminated by an incident field. It is assumed that the scatterer

is electrically kwge that the method of moments is not easi}y applicable to obtain the

numerically exact solution for the scattered field. Analysis of reflector antennas, for

example, falls into this category for typical applications. In this situation, one has

to resort to approximate methods, We will focus on the application of the high
@

frequency diffraction techniques such as Physical Optics (PO) and Physical Theory

of Diffraction (PTD ) to the TEM-fed reflector antennas in this report. The general

formulation of the PO/PTD analysis is summarized in Section 2.1 and Section 2.2.

For purpose of presenting a readily applicable formulation, special attention is given

to the definitions of the elements that are required to construct the PO field and the

PTD fringe field. The time convention e~wt-1s assumed and suppressed. All formulas

are presented for observations made in far-field zone.

2.1 Physical Optics

In Physical Optics, the current on the scatterer surface is assumed to be

-p =

{

2fi x IF, in the lit region
o, in the dark regicm

(2,1)
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Figure 2.1: A scatterer with curved edge

The PO scattered field, EpO, is generated by

~(f -EpO(r) = ‘~kzo 4rr

HpO(r) = ~~ x EpO
20

edge

and the local tangential wedges.

the PO surface current JpO:

~+) ~JpO(w’r’~~ (2.2)

(2.3)

k rq=Wm, 20 =—
PO

(2.4)

where k is the free space wave number, 20 is the free space impedance, and the

operation (I – ++) in (2.2) is read ‘(the transverse-to-i components of”.

2.2 Physical Theory of Diffraction

The PO field (2.2) and (2.3) has taken into consideration part of the diffraction effect

caused by the edge of the scatterer. In order to improve the accuracy of PO, the

other portion of the edge diffracted field is modeled by a “fringe field” in the Physical

Theory of Diffraction using asymptotic techniques. The total scattered field in PTD

consists of the PO field and the fringe field:

7



The key idea of PTD is as follows. It is assumed in PTD that, in the high frequency o

regime, edge scattering is a local phenomenon, and therefore the diffracted field of a

curved edge can be approximated by the sum of those contributed by the differential

edge elements. Based on the same locality principle, each edge element is modeled

by a local tangential straight wedges [see Figure 2.1). With these assumptions, the

problem of determining the edge diffraction of a scatterer that has an arbitrarily

curved edge is reduced to that of a straight wedge, which is a canonical problem

with exact solution. The key issue of PTD is to obtain a high frequency asymptotic

development of the fringe field radiated from a differential edge element of a straight

wedge (the “Elementary Edge Wave” by Ufimtsev).

In this report, the PTD of [1, 2, 3] is extended to the whole angular range of [0, 2r]

for the incident azimuthal direction. This extension is valuable for practical appli-

cations because the restriction on the orientations of the local coordinate systems is

lifted. In order to facilitate PO/PTD analysis of reflector antennas, the general PTD o

fringe field formulas are specialized to scatterers with thin edges, and the resultant

fringe fields Efr and I-If’ are:

(2.7)Elf’(r) = -&f x Efr

where F6, Go, and Gd are usually referred to a-s the “diffraction coefficients”. Notice

that a prime is attached to the unit vectors in (2,6) in order to emphasize that these

vectors are defined with respect to each local coordinate system, and may vary along

the edge of the scatterer. The fields E& and H~ are also defined with respect to
$

the local coordinate systems. The integrals in (2.6) and (2,7) are one-dimensional,

along the curved scatterer edge L. Compared to the two-dimensional PO integral
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performed over the scatterer’s surface, the fringe field integrals only increase the

computation time marginally. The diffraction coefficients are functions of the angles

of the incident waves (the “incident angles” 6; and ~~) and those of the observation

point (the “observation angles” d’ and 4’)

Fe
-2sin$

I
2

sin 0’

Precisely,

sin 8’

(

Cos gcose’cos#+~coso: 1+2 COS; z

Go =
i )–6(&)

o

(

4;
Cos - Cos

2
;+ Cos ~

)
c(q${)sin #

.(

4:Cos ; Cos ; + Cos ~
)

G6 =

Cos ~ =
2

sin 0’ cos # – cot e:(cos 6’ + Cos 0:)

sin O:

1“rl–p
–1</J<l

2’

()
; A–; ,—. p>l

:(A+ ;), /LL<-l.

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

where the incident angles t9~and ~~, and the observation angles t9’and ~’ are defined

with respect to the local coordinate system associated with each edge element along

the curved edge of the scatterer. The definitions of the incident and observation

angles are depicted in Figure 2.2, in which it is seen that for a thin scatterer the local

tangential wedge is simply a half plane, and that the z-axis of the local coordinate
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Figure 2.2: The incident angles and observation angles that are required in the calculation of the
PTD fringe field.

system is defined to be tangential to the edge of the scatterer, while the z-axis is

situated on the tangential half plane, pointing “inward” at a right angle to the edge.

As an example, the diffraction coefficients for incident angles t?; = 60° and ~ = 80°

are plotted in Figure 2.3.

2.3 P()/PTD field for axial observation

In reflector antenna analysis, the z-axis is usually defined

or the axis of the antenna. This convention is used in this

to be along the boresight

report.

When the observation is made along the axis of the antenna at

r = &

we have i = i and the general far-field formulas (2.2) and (2.3) reduce to

(2.16)

(2.17)
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Figure 2.3: PTD diffraction coefficients for 0[ = 60° and ~{ = 80°. (a) Fe. (b) G@. (c)G@. The
diffraction coefficients are plotted for 0’ c [0, i80°] and ~’ c “[O,360°] ‘ ‘
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Hpo(r) = ~; x Epo
Zo

b

(2.18) o

These equations define the axial PO fields that are of our interest. Notice that the

surface E may represent the reflector surface or that of the TEM-launcher’s blades.

Similarly, the fringe fields (2.6) and (2,7) can also be simplified for axial observa-

tion:

Hfr(r) = & x Elfr
z~

(2.20)

The edge L may represent that of the reflector or the edges of the TEM-launcher’s

12

blades depending on the context of application.



Chapter 3

Analysis of the reflector

The previously published asymptotic formulas for the PO field of symmetric (body of

revolution) reflector antennas [4, 5, 6] are singular for boresight (the axial direction)

observation, and are not useful for solving our problem. In this chapter, the PO/PTD

diffraction technique presented in Chapter 2 is applied to determine the axial field

of a symmetric paraboloidal reflector, Closed-form formulas are derived for both the

PO field of the reflector and the fringe field from the edge of the reflector.

3.1 Axial PO field in closed-form

Let us consider the reflector antenna geometry Figure 3.1, in which a symmetric

paraboloidal reflector (denoted by “Z”) with a circular aperture (denoted by “A”) is

illuminated by a feed situated at the focal point of the paraboloid.

The steps that lead to the closed-form evaluation of the integrals in (2.17) are

detailed in the following.

3.1.1 The feed and the coordinate systems

There are two coordinate systems in the geometry shown in Figure 3.1: the antenna .

coordinate system C = {i, ~,;} and the feed coordinate system C’ = {;~, ~j, i?~},

with the origins of both systems situated at the focal point of the paraboloid. The

13
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-T-7A ‘ef’ector !./\

-!I ~,”<-refle~tor
edge L

at-h Ire

Figure 3.1: Antenna geometry and the coordinate systems.

unit vectors of the two systems are related by

A point on the reflector surface can be represented either by the C-coordinates (z, y, z)

or the Cj-coordinates (Zj, yj, zj). These coordinates are related by o

Xf=x, gf=-y, zf =—2 (3.2)

The spherical coordinate systems, S = {f, ~, ~} and Sf = {+j, ~f, ~f }, that correspond

to C and Cf respectively can also be related in a similar manner:

The feed coordinate systems are convenient in describing the field radiated by the

feed. In this study, we assume the feed pattern:

14
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With the help of (3.3) and (3.4), cme obtains the incident fields on the reflector:

- ‘kr
Einc = e ~

[(ho, A3, -d)+& E@,(7T - e,-~)]
r

(3.7)

~inc
= ~~ [-JE,,(. -6,-IO +W.-64)])] (3.8)

Equation (3.S) will be used in the next section to construct the PO current. Notice

that Eef and E4, are the feed pattern functions in unit of volts,

3.1.2 PO current and the Jacobian

Let us assume that the reflector surface is described by the function

2= f(x, v) (3.9)

It is convenient to evaluate the integral in (2.17) using the variables defined on the

planar aperture A [7]. For example, one may use p and +, which are related to the

Cartesian coordinates by z = p cos ~, y = p sin@. In this situation, the area element

d~ in (2.17) has to be replaced by

d~ = Jpd$dp (3.10)

where

J= [($)2+($)2+,]”2 (3.11)

is the Jacobian. The unit vector that is normal to the reflector surface and points to

the illuminated side of the reflector is

i= p.[+g)++;)+q (3.12)

For a symmetric reflector, equations (3.11) and (3.12) can be further reduced to

15



With the help of (3.14) and (3. S), it is

a symmetric reflector can be written as

easy to show that the PO current (2.1) for

JPO
= $-’.; .+ (iJ:O +~J$O + iJ:O)

J:o =

(

af
sin @sin q$— – cos/j sin@

tip )
‘ lil~f + Cos # “E@f

J:o =

(

aj
- sin 0 cosf$— + cos dCOS~

ap )
“E4f + sin ~. Eof

J:o = ?&6

f

(3.15)

(3,16)

(3.17)

(3.18)

It must be mentioned that the coordinates r, 6, @in the above equations refer to a

point on the reflector surface. When used in (2.17), however, a surface point becomes

a “source’) point, and symbols that are more suitable for representing a source point

should be used in place of r, d, ~ in order to avoid confusion with the coordinates of

an observation point.

3.1.3 Axial PO field of a symmetric paraboloid

Applying (3.10) and (3.15) to a symmetric paraboloid with focal Iength F’ and diam-

eter D:

(3.19)
X2+ y2

z =
‘F+ 4F

one obtains the specialization of (2.17):

E~~ = –jkF’
~-jk(+-2F)

?’ “l:,,,:J2”(~J:0+~JF)~+,n:j @020)
where

o

9, = 2 arctan ~ (3.21)

16
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0 is the subtended angle of the reflector (see Figure 3.1). To further reduce (3.20), a

feed radiation pattern must be assumed. For example, using the feed model

[

[ 1~fA(Of) cos #j – ~j13(6j) sin ~j , z-pol feed

~jA(@j) sin #j + ~j~(oj) cos #j , y-pol feedEfeed = ‘-jk’f— .
rj & !~jA(@j) - dj~~(~j)] , RHCP feed

(3.22)

~ [%A(%) + dj~~(%)] > LHCP feed

in (3.20), one obtains

~-jk(r+-2F) 1 A(Oj) + B(Oj)
d (COS6j) (3.23). (-jw) “Jo,d, 1 + cos~jE:,; = ~- r

where

t=

i, z-pol feed

:C.?. y-pol feed

%, RHCP feed

~, LHCP feed

I

(3.24)

is the polarization vector. Notice that the sense of circular polarization has been

reverted upon reflection from the reflector, The integral 1 in (3.23) is easy to evaluate

numerically since it has a slowly varying integrand and a finite integration interval.

Nevertheless, there are several functional forms of A(6j) and II(@f) that allow closed-

form evaluation of 1. For example, when the COS90feed model is used:

A(8j) = (COS8/)q’ , ~(ej) = (COS~j)q’ (3.25)

one may use the formula [8]

/

Tn p-l ~n-2

—dr = ~–7+
l+T

— – 000+ (–l)’% + (–l)nlog(l + r~3.26)
n n— n–2

to calculate 1 for integer q’s.

The validity of (3.23) can be justified in two ways. Firstly, we find that for large

focal length F, equation (3.23) is consistent with a closed-form formula previously

17



derived for the axial field of a circular disc that has uniformly distributed surface o

current. This comparison is detailed in Appendix A. Secondlyl the field computed

using (3.23) is compared with the result obtained by numerical integration, For

example, using the antenna configuration D = 10J, F = 5A, and an x-polarized

COS96 feed with ql = 4.3, and qz = 2.8, one obtains Egg = –i~O.606 x 10-5volts/J at

the point ? = ;106A, It is observed that the amplitude of the axial PO field (3.23) has

k~-dependence, which becomes singular at the high frequency limit- (k + m). This

behavior is consistent with that predicted by the Geometrical Optics (GO). Equation

(3.23) provides a more accurate quantitative characterization of this singularity. To

further illustrate the k~-dependence of the axial PO field, a paraboloidal reflector

with D = 1 m and F/D = 0.4 is analyzed over a frequency band, and the r&ult is

plotted in Figure 3.3.

3.2 Reflector edge diffracted field

The PTD fringe field along the axial direction of a symmetric paraboloidal reflector

is evaluated in this section.

To specialize these general formulas for a paraboloidal antenna, consider the ,ge-

ometry depicted in Figure 3.2, in which F is the focal length and D is the diameter

of the paraboloid. The edge of the reflector is indexed by the angular parameter ~,

and a local coordinate system C’ = {~, ~’, ~} is erected for each edge point P’ in the

manner as depicted in Figure 3.2. The observation point P is situated on the z-axis,

at a large distance r from the origin. In the following, eIements in the integrand of

(2.19) are considered in sequence.

● The phase factor ejks+r’: Since the rim of the reflector share the common z-
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Figure 3.2: Geometry of the local coordinate systems for a symmetric paraboloidal antenna.
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coordinate

Z() = –F” m-

D2
m- ()=1–=

(3.27)

(3.28)

the phase factor e-j~~”r’ in (2.17) has the constant value ejkgo.

● The incident and observation angles: It is easy to show, using the geometry of

Figure 3.2, that the incident angles (with respect to the local coordinate system

C’) of the ray field coming from the focal point of the paraboloid are

(3.29)

and the observation angles (again, wit h respect to the local coordinate system

C’) are

(3.30)
m

where i9~is the subtended angle of the reflector and has been defined in (3.21).

● The diffraction coefficients: Applying (3.29) and (3,30) to equations (2.8), (2.9),

and (2.10), one obtains the diffraction coefficients:

8,
l–sin~

–Fe =G&=
6j’G@=0

Cos —
2

(3.31)

● The unit vectors ~ and ~: & and & in (2.19) are unit vectors evaluated at P

from the point of view of the local coordinate system C’. For a rim point P’

that has the coordinates

20
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* it is seen that

~’ = isin@–jcos~ (3.33)

~’ = icos$+$sin$ (3.34)

● The incident fields: Let r. be the focus-to-rim distance:

r. = F“m+ (3.35)
~z

mf
()

=1+= (3.36)

The incident field for an edge point that has the spherical coordinates (r, (3,~) =

(ro, r - 0,,@) can be obtained from (3.7) and (3.8):

Fjinc = -~ [PE6,(os,-@)+d~,, (~s,-ti)] (3.37)

Hint
= +* [4Z?,(L-W +h,,(e.>-w] (3.38)

The inner products of these incident fields with the unit vector

give the field components ET and H~:
I

(3.42)

(3.43)

When all these details are assembled together, one arrives at the axial fringe field:

e-jk(r+z~) 1 6

() 6.
E:fl = “-sin: l–siny .

r 22

: J2”[JL37,(e,,–-+) – Ckq@.,–+)]d+— (3.44)

21



with ~ and & defined in (3.33) and (3.34) respectively. Equation (3.44) can be further

simphfied if the feed patterns are known. Two examples are given in the following.

3.2.1 The point source model (3.22)

Using the feed model (3.22), one can calculate the integral in (3.44) and obtain

~-j~(r~z~) 1
E~fl = fi. ~ ‘~sin$

(’-sing)
. [A(ds) - B(6,)] (3.45)

where the polarization vector ~ are identical with that appears in the axial PO field

(3.24). The validity of (3.45) has been justified by comparing with numerical inte-

gration. For example, using the antenna configuration D = 10J, F = 5A, and an

x-polarized COSQ0 feed with ql = 4.3, and q2 = 2.8, one obtains the axial PTD fringe

field E&fl = —i0,877 x 10-8volts/A at the point ? = 2106A. It is observed that the

amplitude of the axial fringe field (3.45) has k“-dependence. To illustrate this feature,

a paraboloidal reflector with D = 1 m and F/D = 0.4 is analyzed over a frequency

band, and the result is compared with the axial PO field in Figure 3.3. Notice that the

relative smallness of the fringe field is mainly due to

embedded in the factor [A(O,) – B(19~)]of (3.45).

3.2.2 For circularly symmetric incident field

the “difference” characteristics

It is obvious from (3.44) that for circular~y symmetric incident field (l?ef = Edf ) the

EEW’S cancel with each other and result in a vanishing axial fringe field.

3.2.3 For a prescribed TEM type incident field

Assume that the TEM-launcher produces on the edge of the reflector an incident

field that is tangential to the edge of the reflector. Furthermore, for simplicity, let

o

m

us assume that this tangential incident field possesses the symmetry that the field

22
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Figure 3.3: Absolute values of the amplitudes of the axial PO field and the axial fringe field for a
paraboloidal reflector with D = 1 m and F/D = 0.4 using an x-polarized cosg O feed w;th ql = 4.3,
and qz = 2.8. Lines: closed-form formulas, dots: numerical integration.
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cm the @ c [~, 27r]portion of the edge is the mirror image of that on the IJ c [0, r]

portion, including the polarizations. In this situation, (3.44) reduces to

Notice that the fringe field vanishes if the pattern function Il@f is circularly symmet-

ric. In other cases, the integral in the above equation has to be evaluated using a

prescribed pattern function. Formulas for other TEM-launcher configurations can be

obtained using a similar procedure, as long as the symmetry and the pattern func-

tions can be properly identified. One may find discussions on the characteristics of a

TEM feed in, for example, [9].
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Chapter 4

Analysis of the transverseblades

In addition to the effect of the reflector rim diffraction studied and presented in a

previous chapter, we investigate the diffraction effect of the spherical TEM-launcher’s

blades in this chapter for purpose of characterizing the axial field of a TEM-fed\

paraboloidal reflector antenna.

4.1 Classification of the blades

For convenience of discussion, let us first identify two ways that the blades may be

placed: the “transverse” case and the “parallel” case. These two geometries can

be distinguished from a front-view of the reflector as shown in Figure 4.1. In the

transverse case, the projections of the blades on the reflector aperture reach maxi-

mum. In the parallel case, the projections reach minimum (straight line segments,

precisely). The diffracted field for these two types of

tions. Multiple diffractions and interactions between

not included.

● The transverse case:

blades need separate considera-

te reflector and the blades are

With the assumption of a local plane wave impinging on the blades, the GO

field of the reflector+ blades system is singular because, even with all the rays
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that hit the blades blocked, there are still infinitely many rays traveling along o

the axial (caustic) direction. The diffracted field along the axial direction caused

by the blades is vanishing in general. The exception occurs when the edges of

the blades are so placed that the axial direction sits on

that situation, there are infinitely many diffraction points

the Keller’s cone. In

along the blade edges,

and hence a singular diffracted field is resulted. These considerations reveal the

difficulty of using GTD type analysis for the transverse blades.

On the other hand, since the PO current on the blade faces and the incident fields

on the blade edges are well defined based on the assumption of an impinging

plane wave, one may construct the PO/PTD scattered field in a straightforward

manner.

b The parallel case:

The PO/PTD analysis is not as applicable in the parallel case because the com-

bination of grazing incidence and observation along the grazing diffracted ray

results in the ‘iUfimtsev singularity” situation, in which the PTD diffraction

coefficients become singular.

As for GTD analysis, a consideration on the blade geometry and the situation

of edge-on incidence shows that observation made along the axial direction is

on the incident and reflection shadow boundaries of both edges of each blade.

This demands the use of uniform theories in order to avoid the shadow boundary

singularities pertaining to the GTD diffracted field. Even when this is done, the

usefulness of the resultant diffracted field is diminished by the singular GO field.

It is seen that the PO/PTD technique can be applied to analyzing the transverse

blade, while neither PO/PTD nor uniform GTD’s are easily applicable to the parallel

26



FRONT VIEW

(a) “TRANSVERSE”

Figure 4.1: Two ways to place the

(b) “PARALLEL”

blades: (a) the “transverse” case, (b) the “parallel” case,

blades, We present the PO/PTD analysis of the transverse blades in this report.

The goal is to obtain closed-form formulas for the PO field and the PTD fringe field

scattered from the blades.

4.2 Geometry of the transverse blades

Consider a paraboloidal reflector with diameter D and focal length F as shown in

Figure 4.2. Assume that the condition D < 4F is satisfied since a deep reflector is not

typically used with a TEM-launcher feed. For a point P. on the edge of the reflector,

let us define the plane of the blade as the plane which contains the line segment OF’O

and the tangent of the reflector rim at F’.. Next, let us imagine a cylinder having the

z-axis as its axis and a diameter D. We call this cylinder the “0~-cylinder”, since it

contains the collection of the rays that are launched from the focal point at an angle 0.

with respect to the negative z-axis and reflected by the paraboloid (see Figure 4.2).

The intersection of the t93-cylinder and the blade plane is an ellipse. A transverse
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blade is the portion of the intersection ellipse that subtends an angle $h on each side o

of the line segment ~; The curved edge of the blade is called the (?~-arc.

It is seen that the geometry of a blade can be completely determined by specifying

the point PO (which corresponds to the aperture angle ~ as shown in Figure 4.2), and

the half angle of the blade, j)k, It is not difficult to see that the blade is enclosed in

a (typically thin) isosceles triangle PI – O – P2 “where PI and Pz are situated on the

tangent of the reflector rim and symmetric to PO. The acute angle of the isosceles

triangle is situated on the focal point of the paraboloidal reflector, and the bisector

of the acute angle passes through the reflector rim at P.. The half length of the base

of the isosceles triangle, d, is a convenient parameter that is related to the blade half

angle by

d = r(Itan ~h (4.1)

where r. is the focus-to-rim distance defined in (3.35).

It is convenient for later discussion to identify the coordinates of the points Po, PI,

and P2:

D
P. = i~cos@+jj~sin#+2z0

where Zo, the common z-coordinate of the reflector rim points, has been

(3.27). All the points on the blade share the same unit normal vector:

‘ = +:cos”)++:sin”)+’(-%)

(4,2)

(4.3)

(4.4)

defined in

(4.5)

which is pointing toward the reflector, and useful in the construction of the PO

current.

o
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,paraboloid
/

Rlane of intersection
t e blade ellipse

Figure 4.2: Geometry of a transverse blade.

4.3 The incident field

The field incident on the blades must reassumed before one can calculate the PO

field andthe PTDfringe field of the blades. Inthisreport, weassume afeed (primary)

field and calculate the field reflected by the reflector using Geometrical Optics (GO)

analysis, This reflected (secondary) field, which is found to have a uniform phase

front, are taken as the incident field on the blades.

Precisely, if we assume the feed fields:

(4.6)

then thereflected field at the point (p, ~,z) = (rf sin of, 4, z) as obtained from GO
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analysis is

Notice that the superscript “inc “ in (4.7) is used to denote the field incident on the

blade instead of the reflector, and the distance r: is a function of e~:

2F
rj =

1 + Cosej
(4.8)

In a previous chapter the feed model (3,22) has been used to determine the PO and

fringe field from the reflector. Substituting this model into (4.7) one finds that the

depolarization effect produces a complicated expression for

blades. This complication can be avoided if one assumes a

namely,

the incident field on the

symmetric feed pattern,

(4,9)

The assumption (4.9) will be used throughout the rest of this report because it sim- 0

plifies the analysis and facilitates extracting useful information from the results, Nev-

ertheless, (4.9) is not so restrictive as it may appear to be. It is riot only because the

TEM-iaunchers produce rather symmetric field patterns, but also because the half

angle of a blade is usually as small as several degrees, within which the asymmetric

feed pattern can not be experienced completely. In other words, a blade sees only the

portion of the field pattern that is “local” to its vicinity, and hence the application

of a symmetric pattern that mimics the field in the blade’s vicinity becomes a good

approximation. Using (4.9) and (3.22) in (4.7) and recalling the transformation (3.4),

one obtains

30
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where the polarization vector ~ is+efined in (3.24). Equations (4.10) and (4,11) are

the assumed equations of the incident field on the blades.

4.4 The axial PO field of a transverse blade

Using the incident magnetic field (4.11), one may write the PO field (2.17) as

where 6. is the subtended angle of the reflector (see Figure 4.2) as defined in (3.21). In

order to further reduce the PO field, let us parametrize the blade using the parameter

[0, 1] in the manner that t = O corresponds to the tip of the blade and t = 1 to

curved edge of the blade. More precisely, we relate each t value to an arc, the

“~j-arc”, which is the intersection of the blade and the “Oj-cylinder”. The ~j-cylinder

is an imagined cylinder that has z-axis as its axis, and contains the collection of the

rays that are launched from the focal point at an angle Oj with respect to the negative

z-axis and reflected by the paraboloid. The parameter t and the angle 19fare related

by

9j = 2 arctan ~ (4.13)

It is seen from this equation that

ej : ()+03 as -t : 0+1 (4.14)

The reason of using this parameterization is that for each t value, the angle Of is

constant, and therefore the two-dimensional integral in (4.12) can be reduced to an

one-dimensional integral. We elaborate on this reduction in the following.

Let us set up a pb-axis that starts off from the tip of the blade, 0, and follows the

bisector of the blade as shown in Figure 4.3. The variable @ is related to t by
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Figure 4.3: Parameterization ofa transverse blade.

m
F%=—

2 sin 0,
(4.15)

Next, let us define a function L(@~; 6,), which gives the arc length between [–~~, ~k]

for an ellipse with semi-axes 1 and sin 6$ as shown in Figure 4.4, With these defini-

tions, one finds immediately that the length of a Of-arc is given by pb TL(@~; d,), and

the area element d~ can be cast into

(4.16)

Notice that integrand of the integraI in (4.12) is expressed as”a function of the variable

@j; it is convenient to rewrite dt as

4F
dt = —.

d6f

D I+cosllf
[4.17)

with the help of (4.13), Inserting (4.16) and (4.17) into (4.12), one reaches the final
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L

Figure 4.4: Definition of the function L(@k; 0,).

form of the PO field scattered from a blade:

with

(4.19)

Comparing (4. 18) with the PO field (3.23) of a reflector with symmetric feed patterns:

It is clear that the PO field of the blade tries to cancel that of the reflector in a fraction

determined by the function j(~k; d,). This is a manifestation of the “blockage” or

“shadowing” effect of the blade. In a conventional treatment of the blockage in PO

analysis, the current on the reflector surface that is under the projection (or, the

shadow) of the blade is set to zero, It is interesting to calculate

blockage predicted by (4,18), and compare it with the conventional

achieve this, let us write the exact form of the function ~(+~; 0.):

“f(@h; ~s) = ; 1+’
sin2 @+ sin4 es COS2@

(J )

~ d+

sin2 * + sin2 t93COS2@

the amount of

treatment. To

(4.21)

and plot it in Figure 4.5. When @k <<1, which is almost always the case, j(~k; 6,)
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Figure 4.5: The function ~($fi; O,) (solid lines) and its linear approximation (dots),

be approximated by

a

(4.22) o

As plotted in dotted Iines in Figure. 4.5, it is seen that (4.22) is a very good approxi-

mation when ~~ is small (say, less than 5°) and when the F/D ratio of the reflector is

not unreasonably large (less than 2, for example). Independently, however, one finds

that the right side of (4.22) is exactly the ratio of the projection”of the blade on the

x-y plane to that of the reflector. These results provide a satisfactory j ustificat ion for

the conventional treatment of the blockage,

4.5 The fringe field of a transverse blade

The PTD fringe field of a transverse blade is constructed in thk section. As a sum-

mary, we start with the determination of the locaI coordinate systems and the incident

angles, which are used to the construct the diffraction coefficients. Using the diffrac-

0
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a local

coordinate
system

Figure 4.6: Local coordinate systems defined ontheedges ofa blade.

tion coefficients and the unit vectors associated with an axial observation point (in

terms of the local coordinate systems), we are able to formulate the fringe field, and

reach a simple closed-form formula. This procedure is presented in the following,

4.5.1 The local coordinate systems

The first step in calculating the PTll fringe field is to erect local coordinate systems

along the edges of the scatterer. Figure 4,6 depicts one possible way of setting up

the local coordinate systems for a transverse blade. Notice that based on our PTD

formulation, it is required that the z’-axis is tangential to the edge of the blade,

and the d-axis is situated on the blade and pointing inward at a right angle to

the edge. For convenience, let us call the local coordinate systems along edge 1 as

C( = {&, ~~, ~[}, and that on edge 2 as C; = {ij, jj, i~}. It is not difficult to

formulate these local coordinate systems by inspecting Figure 4.6:

(4.23)

(4.24)

Since the vector h and the position of the points PI and F’z have been found in (4.5),

(4.3), and (4.4) respectively, the local coordinate systems are therefore determined.
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4.5.2 The incident angles and observation angles

In order to construct the diffraction coefficients, we must first calculate the incident

angles and observation angles, For that purpose, let us recall that the incident field

on the blade has been modeled as a plane wave that trave~ along the z-axis. The

incident angles are determined by the relative orientation of the incident rays and the

local coordinate systems. Precisely, the following procedure:

leads to the solution:

where the angle 4P as defined by

+, ()2d
= arctan —

D

(4.28)

o
(4.29)

(4.30)

is the half angle of the blade’s projection on the x-y plane, as Figure 4.3 shows. For

example, if F/D = 1 and d/F’ = 0.1, one has 19{,1= O& = 151.458°, ~~,1 = 80,035°,

and ~~,2 = 279.965°.

Since the observation are made along the z-axis, which is the same as the direction

of the incident ray, one obtains the observation angles immediately:

$’1 = z – $;,l, $’* = $:,1+ 7r

6’2 = r – $;,2, 4’2 = #;,2+ 7r

(4.31)

(4.32)
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4.5.3 The diffraction coefficients

Have found the incident angles, one may

results are

Fe,l = Fe,z

Ge,l = –Go,

apply them in (2.8), (2.9), and (2.10). The

2 = –2 Cos8:,1

(4.33)

(4.34)

(4.35)

These formulas have been validated by comparing with the results obtained from

direct numerical evaluation of the definitive formulas (2.8), (2.9), and (2.10), In

order to construct the fringe field, we need to collect one last piece of information:

the unit vectors ~“s and ~’s associated with observation points along the antenna

axis, in view of the local coordinate systems.

4.5.4 Unit vectors associated with axial observation

The unit vectors

transformations:

using the known

(4.31), (4,32). As

~“s and ~“s can be constructed with the Cartesian-to-spherical

Cartesian unit vectors (4.23), (4.24) and the observation angles

a result, one finds that
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Now we are in the position

4.5.5 The fringe field

The fringe field of the blade

~fr,l
~lade, and that from edge 2,

1

to construct the PTD fringe field for a transverse blade. o

is the sum of the fringe field from edge 1, denot-ed by

(4,42)

Each of the fringe field components is constructed by an integration of the equivalent

edge currents (composed of the incident field and the diffraction coefficients) along

the corresponding edge of the blade. Since all the ingredients involved in each “edge”-

integral have been determined, the evacuation of these integrals are straightforward.

The details of this procedure is tedious and is omitted here. Combining the resultant

formulas, one obtains for the observation point z = r:

where the angle VP has been defined in (4.30) and the polarization angle ~fr is given

by

{

i cos2$ + jsin 2$, x-pol feed
-~ sin 2@+ j cos 2*, y-pol feed

*r
Pf = ~-’-

9
~ ej’W, RHCP feed

Y
5+2-e-S2$, LEICP feed

Notice that Z@-dependence of the polarization vector. This is

(4.44)

resulted from the

summation of the two fringe field components. For the same reason, the sense of

circular polarization has also been inverted compared to that of the PO field (4.18),

(3.24).
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Chapter 5

Conclusions

The radiated field along the axial direction of a TEM-fed symmetric paraboloid re-

flector antenna is studied using the techniques of Physical Optics (PO) and Physical

Theory of Diffraction (PTD). As a result, with a general spherical incident field rep-

resentation (3.22), closed-form formulas are derived for

● the PO field of the reflector (3.23),

● the P’TD fringe field from the edge of the reflector (3.45),

● the PO field of a transverse blade (4.18), and

● the P1’D fringe field of a transverse blade (4.43).

Specialization of these general results to a prescribed incident field generated by the

TEM-launcher is also considered (3.46). The parallel blades are not treated in this

report due to complications involved in the PO/PTD and GO/GTD high frequency

diffraction techniques. We propose conducting hybrid method such as the POHM

(Physical Optics Hybrid method) in the continuation of this work.
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Appendix A

Comparison of the axialfield

formulas: paraboloid versus disc

A paraboloid becomes less curved as its focal length F increases; for large l’, it tends

to be a fiat disc. In this situation, the axial PO field (3.23) of a paraboloid, shall

be similar to that of a circular disc. Fortunately, a closed-form formuIa for the axial

field of a circular disc with uniformly distributed surface current has been derived

previously [10]. This formula is valid for both near- and far-field observations. In this o

appendix, we wilI specialize the disc formula to far-field observation and compare

with (3.23) for IaFge F. This comparison serves as a justification of the validity of

these independently derived formulas.

The geometry of a circular disc is depicted in Figure Al, in which the uniformly

current is y-oriented. The closed-form formula for the axial field of the disc is [10]

Jysc {( ).ZOJY 1
= 1 ~-ikz+

‘T jkz

1

[

Z2
Z2 +~2 + ~2 jk~~” – 2TI’-”-} ““’)

40

where a is the radius of the disc, and JY represents the current. Notice that thk

formula is valid everywhere along the z-axis, including the near and the far-field. For

purpose of comparison, let us simplify (Al) for far-field observation:



.x4

.J’y
uniform

current Jy

t / ‘ *z

cirf&ly

Figure A. 1: Geometry of a circular disc with uniformly distributed surface current.

~dix ‘~ j~[(&-l).-jkz++(z2+~_~)e-jk(.+.2/2.)]

++pkz(l-e-’ka2’2z).ZOJY
=

- ‘w’-k)e-jkz(-’~)

z>ka2 /2

kz~ 1

()

ka2 ._ jkz

$Jy ’ –jzo *2—.

For a paraboloid with large focal length ~, the approximations

(A.2)

(A.3)

can be applied to (3.23), and the result is

eJk(’+2FJ D2
E;: w $jkF’ ~ “p (A.4)

On the other hand, the PO current (3.17) produced by a y-polarized feed (3.22) is

found to be

(A.5)
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for large F. Combining (A.4) and (A.5), one obtains

(A.6)

Now we are in the position to compare the formulas for the disc (A.2) and the

paraboloid (A.6). One observes that the apparently different phase terms, e-~~z

and e-j~(r+~) } are actually identical because the origins of the coordinate systems in

Figure 3.1 and Figure A.1 are offset by a distance F’. Secondly, notice that although

the decay factors I/z and I/r are different due to the different coordinate system

origins, the difference between them becomes indiscernible at far distance r >> F.

Therefore we may conclude that the formtdas for the disc (A.2) and the paraboloid

(A.6) are consistent with each other,
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