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Abstract

The concept of a self-complementary antenna is important in antenna theory in that it has an input

impedance which is half the free-space wave impedance, independent of frequency. This paper general-

izes such antennas to include antenna amays with the same property. By imposition of additional sym-

metries associated with the two-dimensional space groups (discrete translation, rotation, and axial

reflection) one can make the array mdiate (at least normal to the array plane) with a frequency-

independent polarization. Symmetry also allows there to be two independent orthogoml linear polariza-

tions on boresight.
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I. Production

Antenna arrays have some useful properties, particularly When it comes to steering the beam (in

transmission and/or reception) without physically moving the antenna eIements. This is a commonly

used technique in designing narrow-beam antemas. It can also be used for radiating and/or receiving

fast-electromagnetic transients (timed array) [31. Here our concern is with planar arrays suitable for

illuminating a pIanar aperture just in front of the array with an approximate plane wave so as to focus the

aperture at infkity in some desired direction. As discussed in [3] it is very important that the eIements in

the array be connected together, so that for Iow frequencies (such that the wavelength is large compared

to the element spacing) the current can continuously flow from one element to the next. The elements can

be thought of as unit cells in a periodic array, and there are various possible shapes the cells and the

materials and sources therein can take [3 (and references therein)].

Symmetry plays a key role in the present discussion. For present purposes the array wiII be ana-

lyzed as though it were infinite in two dimensions. It wilI be taken as periodic in these two dimensions,

which together with the point symmetries (rotation and reflection) give space groups [11 ]. In addition,

the array wiII be planar, so that the symmetry of self complementarily can be applied, giving some new

simple results for antenna arrays.
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e II. Planar Complementary Structures

Consider some ensemble of perfectly conducting sheets, or more general sheet impedances,

together with sources (voltage or current) on a plane S which we take as the z = Oplane with coordinates

x and y from the usual Cartesian (x, y, z) system. in its original form [71 (also known as the Babinet

principle) one replaces perfectly conducting sheets by free space (or sheets of zero sheet admittance) and

conversely. For example, a disk becomes an aperture and conversely. Associated with the interchange of

electric and magnetic fields between the two complementary structures (duality), there is an interchange

of voltage and current sources, leading to the well-known relation that the product of the input

impedances (for a single source in each case) for the two stmctires is just .Z~/ 4 where

Zo=rM = free space wave impedance
&o (2.1)

Of course this relation can apply to antennas in uniform isotropic media other than free space by a substi-

tution of the wave impedance for such media.

o As discussed in [5,6, 11] the idea of a complementary structure can be generalized to include sheet

impedances (both scalar and dyadic). Using a superscript c to indicate the complementary problem we

have

w’)=; ( )is ~ ,s = sheet admittance (2 x 2 dyadic)

2 =(~) -
;$)(7,, S) = — y~

Zo ()r~,s = complementary sheet admittance (2x 2 dyadic)

=–1 -&[7°,s) = ?“ “y~ ()r,, s . ~dT

()o -1
~’ =

10
= 7r/2 rotation

T, = (x, y, O)= coordinates on z = O plane (S)

- = 2 – sided Laplace transform (over time)

s = Q + jco = Laplace - transform variable or complex frequency

(2.2)

Note that the inverse of the 2 x 2 dyadics is used in a two-dimensional sense since there are no z compo-

nents defined, e.g.,
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(2.3)

e

Here the transverse-to-z identity is written in 2 x 2 form, but it can also be written in 3x 3 form by inser-

tion of zeros for third row and third column.

The above relations are derived from the transformation of the fields to the dua~ fields in going

from the original problem to the complementary problem via

~q(~, t) = ~(~, f) + qjZO~(~, f) = combined field

(,F$) ~ f)= –qj~(~, f) = dual (or complementary) combined field

w(7,f)= zJq7,q , Fiq7,f) = -+q?-, f)

q = ~1 (separation index)

Combine this with

1(1, s) = Vs(z, s)” ~~(~,s) = surface current density on z = O pIane

(2.4)

(2.5)

where a subscripts denotes the tangential components of the field at S, in the case of the magnetic fieId
e

(discontinuous through S) this being taken at z = 0+ (the +Z side of S). Noting that since the fields are

symmetric [4, 11] with respect to S the surface current density also satisfies the boundary condition on S

as

z(a) =2Z “Ei,(zf) (2.6)

AppIying (2.4) through (2.6) for both original and complementary quantities gives the complementary

sheet admittance in (2.2).
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9 111, Self Cornplementarity

An important application of the idea ofcomplementarity occurs if the complementary antenna is in

some appropriate sense the same as the original antenna. such an antenna is referred to as self comple-

mentary, and in the simple form of a single source has an input impedance of ZO/ 2 (frequency

independent). The sense in which the complementmy antenna is the same as the original one is basically

that one can be transformed into the other by a geometrical operation which preserves distances between

p-oints, including combinations of rotation, reflection, and translation, i.e., the space groups [11].

A simple example is indicated in fig. 3.1. Here the operation is rotation by n/2 to rotate the original

antenna into its (self) complement. This is referred to as C2Csymmetry, a self-complementary rotation

group [11]. Rotation by z/2 gives back the original antenna. Note that the antenna conductors extend in

principle to infinity (but are truncated at some finite radius in p~actice). There are also indicated four

patches with sheet admittances of 2/Z. (or y~ =1) which rotate into each other on taking the comple-

ment, this value of admittance being itself its o}vn complement. As discussed in [5, 6, 11] there are also

special cases of dyadic sheet admittance which are self complementary. Such patches need not be self

complementary but can alternate with their complement on Tc/2rotation.

e Note in fig. 3.1 the contours Ce and C~ for integrating the electric and magnetic fields across the

(ideally small) source region to give voltage and current respectively. With 7r/2 rotation the role of these

two contours is interchanged (including an appropriate sign reversal) for voltage and current. It is possi-

ble to have self-complementary structures where the rotation angle @c is given by

$C=:, N=2,3,4,,,. (3.1)

giving CNC symmetry. The resulting antennas also have the symmetry of the subgroup C,V (N-fold rota-

tion axis). However, as discussed in [6] these are not in general self complementary as far as sources are

concerned. There are N terminals or N-1 ports (terminal pairs) for defining voltages and currents. As

discussed in [8] the resulting imp-edance matrix is still calculable (and frequency independent) based on

symmetry considerations. In the present paper our concern is centered on single terminal pairs which,

~vith two-dimensional rotation as the geometrical part of the symmetry operation, gives C2C as the sym-

metry of concern.

Another symmetry operation in the plane S to consider is reflection R. Defining the usual cylindri-

cal coordinates (Y, @, z) with

(3.2)x = ‘Y Cos($$), y = Ysin(@)
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Fig. 3.1. C2CSelf-Complementary Antenna
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m then consider lines in the (x, y) plane defined by constant p; these can also be considered as planes

perpendicular to S by extension in the h direction. Consider PI at @= z / 4, 5n / 4 as indicated in fig.

3.2. Reflection R1 through this plane gives the complementary antenna provided each perfectly conduct-

ing position reflects to a free space position and conversely provided PI is also a boundary between two

such regions. (Note that perfect conductors can alternate on both sides of PI, a more general situation

than in fig. 3.2.) In addition another plane P2 at @= 37r/4 , 77r/4 becomes such a reflection plane

(reflection R2). Again note that in these reflections the contours C. and C~ are interchanged. With these

constraints note that what has been produced is a special case of the C2Csymmetry discussed previously.

Now the planes PI and P2 defining reflection into the complement produce reflection symmetry planes

I’x (x= Oplane) and I?y (y= Oplane) in the original antenna. Besides rotation symmetry C2 the two axial

symmetry planes Px and PY give C2a symmetry (four group elements) and the self-complementary

property on z/2 rotation gives C2QCsymmetry (eight group elements). Note that the self-complementary

scalar sheet admittance 2 / ZO (or y~ = 1) replicates itself on 7r/4 rotation and has reflection symmetry

with respect to I?x and PY as well as P1 and P2. Furthermore, such patches need not be self complemen-

tary, but can alternate with their complements provided the reflection symmetry is maintained.

This reflection-self-complementary antenna has a useful property in that theelectnc field away

*

from S is p.olanzed in the y direction on both Px and PY . More generally the fields are symmetric with

respect to Px, and antisymmetric with respect to PY [4, 11]. If one restricts the observer to locations on

the z axis only one symmetry plane (Px or PY ) is required to assure a y polarization. However, the addi-

tional constraint of self complementarily makes both Px and Py symmetry planes, and gi\7es the nice

property of Z. / 2 input impedance. One can go a step further and use only perfect conductors and free

space to give a flat-plate cone (of infinite size) which has the additional nice property that the radiated

time-domain waveform is the same as the voltage waveform attached to the terminal pairs, the fields

being a spherical TEM wave [10].

There are other special cases of reflection self complementanty. As discussed in [8] one can have a

t~vo-port structure with the two ports separated on the same reflection plane. (This can be extended to an

arbitrary number of ports (collinear ports) on this reflection line or plane.) In this case there are some

special results for the 2 x 2 impedance matrix. In a more general sense one can construct various self-

complementary antenna structures with multiple ports (a finite number) involving rotation and/or

reflection. Depending on the case specifics there maybe certain requirements to match certain of the

sources at particular ports.
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Fig. 3.2. C2ac Self-Complemental Antenna

8



*
IV, Two-Dimensional Periodic Array Antennas

Now consider array antennas such as in [3] modeled as two-dimensionally infinite periodic struc-

tures. For this section the array need not be planar, but can have depth in the z direction. There is no

assumption that S (or any plane parallel to it) is a symmetry plane. In [91 such a structure is referred to as

a nefwork pafferrz. In the next section, when self-complementary planar structures are considered where S

is a symmetry plane, such a structure is referred to as a Lzyerin [9].

Begin with the two-dimensional translation group T2 givenby[111

2-—-

‘I’he two vectors II and ?2

dimensional space (plane)

as S). Then we have

.-
&“lz=o, /=1,2

(4.1)

(real and linearly independent) can be thought of as basis vectors for a two-

which we can take without loss of generality as any plane of constant z (such

(4.2)

By T2 symmetry we then mean that on each plane of constant z, whatever is at some point ~ is the same

at T + ~ for all integers pl and p2.

Now without loss of generality choose

gl = aix (4.3)

where a is some scaling distance. The choice of <2 (magnitude and angle with respect to El) gives the

different kinds of symmetry (five kinds of parallelogram systems in [9]) that characterize the unit cells in

our antenna array. The first symmetry system is based on a square with

‘i2=aiy=~zx6 (4.4)

This is the system of interest here since it is readily applicable to dual polarization (say in x and y direc-

tions independently) and in the next section is readily adaptable to self complementanty. Another

important system is based on unit cells of equilateral triangles, including the case of regular hexagons. In

o this case ~2 = u but ~2 has an angle of 7r/6 with respect to ~1. Examples of all the above as transient



antema arrays are given in [11. Note that equilateral triangles, squares, and reguIar hexagons are the

only regular polygons which can uniformly divide up the plane, completely filling it. The remaining

systems are based on the rhombus ( ~2 = a but ~2 at an arbitrary angle with respect to ~1), rectangle, and

oblique parallelogram ( Z2 arbitrary but not parallel or perpendicular to ZI).

The space groups (E2 in two dimensions) are formed by adjoining rotations and reflections to the

translation groups [11]. Of course, only rotations and reflections compatible with the particular type of

two-dimensional translation (seIected from the five kinds of parallelogram systems) are allowed.

IncIuding only reflections in planes perpendicular to S, then [91 enumerates seven symmetry classes. One

way to look at these different kinds of symmetries is to visua~ize the various decorative tile patterns that

have been developed over the centuries. Patterning antema arrays after these couId lead to many

strange-looking examples. Out of aIl these possibilities one needs to look for those with desirabIe elec-

tromagnetics properties.

Limiting ourselves for the present to square unit ceils, one can envision various compatible rota-

tions and reflections. The square itself has C4 symmetry and can admit four axial symmetry planes

giving C4a symmetry. Of course, any subgroup of C4a is then permissible. One can also have rotation,

reflection, and translation of the geometry ongoing from one unit cell to another in a systematic way.

However, this can also be considered from the point of view of a larger unit cell which can be shifted

periodically as in (4.1 ) to form the entire array. For the present let each unit cell of size a x a (square) be

identical, at least in geometry. As is usuaI in phased arrays (frequency domain), timed arrays can have

sources turned on at different times in the form of a line sweeping across the array (at a speed faster than

the speed of light c) to produce an approximate plane wave leaving the array with some arbitrary direc-

tion of propagation. As a special case all the murces on a plane of constant z can be turned on at the same

time to make lZ the direction of propagation. Note that this direction of propagation is the principal one

(main beam) since there can also be sidelobes (grating lobes) depending on a and each frequency in the

pulse.

The discussion in Section 111regarding polarization is applicable here as well. The unit ceil can be

designed with a symmetry pIane so as to make the eIectric field linearly polarized. Centering one unit

cell on (x, y) = (0,0), then I’x or I’y as symmetry planes gives this property. For the exampIe in fig. 3.2 {he

polarization is in the y direction in both time- and frequency-independent senses. Of course, the unit cell

with x and y both ranging between -a/2 and a/2 needs to be superimposed on this example with planes

PI andP2 intersecting the four comers of the square. With the structure terminated at the unit cell

boundaries, the resulting unit cell geometry is repeated by translation (per (4.1)) in both x and y direc-

tions. Then the symmetry plane, say I’x, is also repeated at x = O, i a, * 2a, ... giving an infinite number of

such “verticaI” symmetry planes. (In addition z = fa / 2, t 3a / 2, A .5a/ 2,... also become symmetry

9
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planes.) If one wishes an electric field with only a y component on I?x (i.e., the x = Oplane) it is sufficient

to maintain a symmetric field with respect to Px. The geometry having reflection. symmetry with respect

to J?x, it is also important that the sources (amplitude, waveform, turn-on time) also are symmetric with

respect to Px. As a special case all the sources can be identical, but at the present stage of the argument

they need only be symmetric with respect to I?x.

Similarly, if one wishes an electric field with only a y component on I?y (i.e., y = Oplane) it is suffi-

cient to maintain an antisymmetric field with respect to Py. this requires that the geometry have reflec-

tion symmetry with respect to Py (and with identical unit cells, reflection symmetry with respect to sym-

metry planes at y = O,* a, t 2a,... as well as y = *a/2, k 3a/2, k 5a/ 2,...), and antisymmetric sources

with respect to PY.

In this section the emphasis has been on geometrical symmetry in the context of the space group E2.

The array is based on the translation group T2 with squares as unit cells which is convenient for dual

polarization [1, 3], and which will be used later in the context of self complementarily. For operation in a

given linear polarization (y polarized here, but applicable to dual (x and y) polarization as well) there is

also the constraint that the unit cell have a symmetry plane (F’x or I?y). In addition the sources should be

symmetric or antisymrnetnc as appropriate with respect to this plane. (For plane-wave illumination of

o the aperture this constrains the scanning of the beam to be alm centered on the same symmetry plane if

the symmetry is to be maintained). With both I?x and PY as symmetry planes then the unit cell has C2a

symmetry (2-fold rotation axis with two axial symmetry planes). At the present stage the unit cells can

still have deplh in the z direction, such as the non-planar conical-TEIM launchers in [3]. So these symme-

tries ha~’e application to array antennas whether or not one includes the additional property of self

complementanty.

11
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v. Self-CompIexrtentary Arrays

In line with the previous discussion consider now a planar array as illustrated in fig. 5.1. This is

illustrated for the case that the array produces a y-poIarized electric field. Note how the volts-ge suurces

and associated currents are labeled with subscripts corresponding to the center ~,m of the unit cells,

these being the locations of the sources as well, where

%,m =wix+tia~y ,n, m=O, *l, &2,... (5.1)

Now all conductors, sources, and impedances are on S (the z = Oplane). The sources V$i(f) and associ-

ated currents 1$’~ (f) can then be considered as infinite-dimensioned matrices if one wishes. Note the

superscript y corresponding to the particular polarization with which these sources are associated. Of

course one can equally regard the currents as the sources. Note that in taking the complement as in (2.4)

the roles of voltages and currents are interchanged.

The unit cells have been given the seIf-complementary symmetry C2m discussed in Section III.

This is self complementary, not only under z/2 rotation, but also on reflection through the diagonal

planes I?l and P2. While one can have Z~ / 2 sheet impedances (and special dyadic ones as weII) with

C4a symmetry as in fig. 3.2, Iet us leave these out at present except for a special case.

At the corners of the unit cells, i.e., at

~= ;(~r) .~,m+~iz+~ly (5.2)

:}~~’r~is the question of how the perfectIy conducting sheets are interconnected in the ix directions. In the

: v directions these sheets are continuous across the unit-cell boundaries. In the N directions the free-

SIVICCregions are simiIarly continuous across the unit-cell boundaries. This leaves the comers for special

consideration.

Consider a unit ceII as in fig. 5.2A where the perfectly conducting sheets arc connected across the

corner to the adjacent sheets in the b directions. ModeIing these connections as little square regions of

perfectly conducting sheet ( y~ = m), the complementary array is illustrated in fig. 5.2B where these little

squares are now characterized by free space ( y~ = O) which corresponds to lack of connection (i.e.,

disconnection) of the adjacent perfectIy conducting sheets, now is the *y directions. On rotation abou t

the source point by z/2 or reflection through PI or I’2 (as in fig. 3.2) the complement is clearly not-a self

complement. So in transforming the sources as

12
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voltage source

. ● . . unit-cell boundary (typical)

❑ connection region (resistive)

Fig. 5.1, Planar Array with Square Unit Cells with C2a Symmehy
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A. Array with connection (zero impedance) at corners

B. Complementary array (disconnection at comers)

C. Self-complementary comer connection (resistive)

complementary resistor is
rota ted 7t/2 (like
complementary source)

a

Fig. 5.2. Connection at Unit-Cell Bound=ies

14
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2 (y)(f), p+’~c)(f) = z
u

*

l(Y/c)(f) = ~v @ l(f)

the impedances are not the same, but are related by the complementary relationship

(5.3)

(5,4)

Z2Em =2 -f

Next, as in fig. 5.2C, replace the above connection (fig. 5.2A) and discomection (fig. 5.2B) by the self

complementary resistive connection of value ZO /2. One can model this by considering again a small

square connection region as a sheet resistance of value ZO i 2. This is unchanged on taking the comple-

ment, but note that the edges of the square which contact regions of y~ = O,co are interchanged (thereby

changing the direction of the current) on passing from the original array to its (now self) complement.

Thus when symbolized by a resistor R = ZO/ 2, this resistor is rotated by 7r/2 on passing to the comple-

ment (just like the sources are rotated).

Note that there are special ideal cases in which such resistors are not required, specifically if no

9

currents pass through the conductive connections (and no voltage appears across the complementary

disconnections). Such cases can be achieved by imposition of appropriate translation symmetry among
(y)the sources in the array. Specifically one can have the voltages sources Vn,m(f ) independent of n or m (or

both). Independence of n (or identical sources in each row) makes the fields and currents symmetric with

respect to symmetry planes at x = O, k a/2, &a, k 3Q12, ... . Independence of m (or identical sources in

each column) makes the fields and currents antisymmetnc with respect to symmetry planes at

y= 0,*a/2, ka, k3a/2, ... . The first case allows scanning in the@ directions (E plane) and the second

allows scanning in the ix directions (H plane). However, scanning the beam in more general directions

does result in currents through connections, for which case the resistive connections may have some

advantage.

For true self complementarily we also need to consider the murces in more detail. As discussed in

Section III there are two ways to consider rotation by 7-c/2of the original array into its complement. With

the coordinate origin chosen at one source V~y/ then this source location remains fixed while the others
/

rotate into their complementary sources. In terms of the location of the sources we have in Cartesian

form

15



~,m=(na,mz,0)= source location

+ (c)
%,~ = (–ma, w, 0) = complementary source location

.

(5.5) a

H
0-10

=loo”;,m
001

where the 3 x 3 matrix is the three dimensional form of ~~ as in (2.2).

With the sources now indexed as above the complementary relationship in (5.3) now becomes

I!y\(f) = ~v.:~ch) , V:XcJ(f)=+L,m(f) (5.6)
Zo

Rotating another 7r/2 gives the original quantities (complement of complement) as

V:!;-m(f)=* L“k) =V?yi(f)

%-m(f) = A V(YJ)_m,n(f) = #Jf)Zo

(5.7)

So the array sources, when regarded as sca~ars, have C2 symmetry which is the same as two-dimensional

inversion, If we make the source relationship s.df complementary then we constrain that the sources be *

the same on 7r/2 rotation as

Continuing this rotation four times to complete the circle gives

v:y~(f) = V$j ~(f) = vym(f) = Vi:ln(f), ,

.#Jf) = &Jf) = ly-m(f) = #n(f)

(5.9)

This is a kind of C4 symmetry if we consider the sources as scakms and ignore their vector orientation

()
7Y .

Consider the second way, reflection through PI and P2 (fig. 3.2), wc have directly the relationship

for self complement (say using PI)

v(y) (f) = V:Y;(f) , pk(t) = I$:H(On,m /

16
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e which also gives (5.9) when reflection using I?2 is applied. As discussed previously, the application of

both rotation and reflection self complementarily leads to symmetry planes which assure linear polariza-

tion from the array of y-oriented sources.

However, things are more complicated than this. In general one can specify either a voltage source

or a current source at a given location, but not both. An exception can be found by replacing all sources,

except say the one at %,0, by 20 / 2 resistive loads and noting that with the convention used for power

outgoing from sources

(5.11)

That this is selfcomplementary can be readily seen by applying the previous derivation for the ZO/ 2

‘(cor) to the ~ ~ locations as well, In this case with only one sourceresistors at the unit cell comers at ~,m ,
(at fi,o ) we have

(5.12)

giving a completely self-complementary array. This can be generalized by placing a voltage source in

series with a ZO / 2 resistor at %,0 (which or course now drives an impedance of ZO). Since there is

o
nothing special about source location, and ~,o can refer to any source location in the array (translation

symmetry), then one can have every source location supplied with such a series combination of ZO /2

and a voltage source, each of which will see an impedance ZO) when all other voltage sources are turned

off, When more than one voltage source is used, however, each source sends, in general, currents

through the other sources. Nevertheless this is an interesting kind of self complementanty which may be

applicable to a scanning timed array.

A special case of interest has both self-complementary C2ac and two-dimensional translation T2

symmetries (with the square unit cells) applied to the sources as well as the geometry, i.e.,

VJy~(f) = V(y)(f), I$~~(t) = l(y)(f) for all n, m/ (5413)

Constraining the voltage sources all to be the same results in equal currents through the sources merely

due to the translation symmetry. Then the self-complementary relations in (5.7) reduce to

(5.14)

for ali the sources. This is a very simple and convenient resul t valid for all times and frequencies (for an

a
infinite array). As discussed in [1,21 the impedance seen by the sources can be calculated for both high

17



i
and low frequencies (early and late times) if the sources are excited in a plane-wave sequence such as for

launching a wave from the array in a particular direction (i.e., for scanning the beam). Now we see that
@

for the special case of the plane wave propagation perpendicular to the array (the z direction), in which

the sources are all in phase (or with identical waveforms, amplitudes, and turn-on times) as in (5.13), then

the impedance can be easily calculated for intermediate frequencies (and times) with the wavelength of

the order of the unit-cell size as well.

18
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0 VI. Dual-l?olanzed Self-Complementary Array

As mentioned previously translation symmetry in the sources, with V$~ (f) independent of n or m

(or both), implies that there are no voltages or currents across the connection regions in figs. 5.1 and 5.2.

The case of uniform V(y) as in (5.13) is such a case. This implies that we need not use ZO /2 resistors for

the connections in the 5X directions at the unit-cell comers. This leaves the comers free for placement of

x-polarized sources as indicated in fig. 6.1.

AS in (5.I3) the x-polarized sources are ideally constrained as

(6.1)V$~(f) = V(x)(f), l$~(f) = I(f) for all n,m/ /

-(cOr)where the n,rn indices now refer to sources positioned at the comers identified by ~,m in (5.2). These

are translated by a/2 in both coordinates with respect to they-polarized sources V(y). By rotating and

translating the array we can see that the V(y) sources are configured just like the V(x) ones. All the self-
-(COY)complementary properties are lhe same; the coordinate-center for 7c/2 rotation can be taken as ~,. .

This gives two ways of defining the unit cells, but with this high order of symmetry they are equivalent.

The transfer function from V(x) to ~(x) = E(x)~x in the far field is the same as for V(y) to E(Y)iy by

9
symmetry, being a constant for low frequencies (for an infinite array) and being a time integral at early

times. Note that in general we can have

v(~)(f) # v(y)(t) (62)

with independent \vaveforms giving a far-field polarization which can vary with time as one chooses.

19
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Fig. 6.1. Planar Array with C~ac Symmetry and Dual Polarization
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e VII. Concluding Remarks

Evidently self complementarily can be applied to the design of array antennas, applicable to both

frequency- and time-domain use. This is a special case of the two-dimensional space groups. For various

reasons, such as discuss-cd in [3], one may wish to use non-coplanar elements in the unit cells, but one

may use the present self-complementary result as an aid in the first-order design of non-coplanar cells.

The full self-complementary case with plane-wave illumination (focusing at infinity) is restricted to prop-

agation normal to the array, but for small angular deviation of the beam from the normal to S the

impedance results should not change much. There are lots of space groups to explore for designing

arrays with various properties. For example, unit cells based on equilateral triangles or regular hexagons

can also be configured for multiple polarizations [1]. This whole subject might by analogy be called

flnfemu crysfalbgrap,hy, Of course, a real antema array has finite linear dimensions so that infinite period-

icity is only an ap.proximation.

In its simplest foq-n as in fig. 6.1 the array antenna has the symmetry of a chessboard with two

colors of the squares corresponding to conductors and free space. Carrying the analogy further the \vhite

pieces can correspond to the V(x) sources and the black pieces can correspond to the V(Y) sources. Of

*

course, the pieces now occupy corners instead of squares (merely a translation). The two players then

each have different polarizations.

“For some minutes Alice stood without speaking, looking out in all directions over the

country-and a most curious country it was. There were a number of tiny little brooks running

straight across it from side to side, and the ground between was divided up into squares by a

number of little green hedges, that reached from brook to brook.

“I declare it’s marked out just like a large chess-board!” Alice said at last. “There ought to be

some men moving about somewhere-and so there are!” she added in a tone of delight, and her

heart began to beat quick with excitement as she went on. “It’s a great huge game of chess that’s

being played—all over the world-if this A the world at all, you know. Oh, what fun it is! How I

wish I was one of them! I wouldn’t mind being a Pawn, if only I might join—though of course I

should like to be a Queen, best.”

Lewis Carroll
Through The Looking Glass
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