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Abstract

Many high power microwave (HPM) sources utilize the TMO1(EOI)circular

waveguide, or the coaxial TEM mode as the output mode. If radiated directly, these

modes generate a doughnut-shaped radiation pattern with a boresight null. Mode

conversion techniques and antenna designs have been explored to remedy this

shortcoming, but mode conversion is not perfect (efficiencies are typically 50°/0 to

75%), and the antenna designs considered to date tend to be low gain, and do not

radiate a boresight peak (along the axis of the source). This paper describes a

concept for a novel class of reflector antennas. Designated the Coaxial Bearn-

Rotating Antenna (COBIL4), these antennas accept directly the guided mode of the

source and radiate a high gain, circularly polarized, pencil beam boresight peak.

Various cotilgurations of the COBRA concept will be presented including: single,

stepped paraboloidal reflecto~ dual reflector with stepped subreflector; and

configurations with coaxial feeds that drive directly the reflector / subreflector.
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1.0 Introduction

Many high power microwave (HPM) electromagnetic sources utilize the

T~l circular waveguide or TEM coaxial modes as the output mode. For example,

some MILO-type HPM sources generate RF energy in coaxial geometries. RF

extraction then is made by converting the coaxial TEM mode to a T~l circular

waveguide mode. If radiated directly, these non-standard modes generate a

doughnut-shaped pattern with a “target cone of protection” null-on boresight. To

avoid this, one often resorts to mode conversion techniques to change the coaxial

TEM or circular TMOImode to more useful ones, such as circular TEl, or

rectangular TEO1. The radiation patterns of these modes exhibit a peak-on boresight.

Unfortunately, mode conversion is not perfect (conversion efllciencies of between

50% and 75% are typical), and the addition of the mode converter adds weight and

length to the source. Other antenna designs have been considered, but they do not

radiate a pattern peak along the axis of the source (consequently the nature in which

the HPM is pointed becomes an issue), and exhibit low to moderate gain

characteristics. They also radiate linear polarization, which in some instances is a

liability since coupling to the aperture(s) of a target can be polarization dependent

(the circular polarization of the radiated field of the COBIW also could be a

disadvantage if the intended coupling mechanism is via a circularly polarized

antenna with the opposite sense).

This paper will,discuss ways to convert the less usefid modes described

above into more useful ones. The antenna designs resulting from these

considerations have been named Coaxial Beam-Rotating Antennas (COBR4).

These antemas accept directly the guided mode of the source and radiate a high

gain, circularly polarized, pencil-beam boresight peak field. Circular polarization,

while sacrificing peak electric field for a given power density, increases the

probability that the target is exposed to the optimal coupling polarization, provided
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the coupling is approximately linearly polarized. Also, since it is shared by the

orthogonal polarizations, the maximum power density one can realize before air

breakdown occurs is greater with a circularly polarized field than that achievable

with a linearly polarized field. Additionally, the antennas associated with the

COBR4 concepts discussed here can attach directly to the end of an HPM source

with coaxial or circular waveguide output, and radiate a pattern peak along the axial

direction of the source. Preliminary conservative computations indicate that the

COBIW will exhibit boresight circular polarization with a gain for each

polarization component that is -6.9 dB (for a four-step reflector, asymptotically

better for an increased number of steps) below that of a uniformly filled, linearly

polarized aperture.

The next section presents a discussion of the characteristics of circular

polarization. This is followed by Section 3, which is concerned with the

Iimdamental concepts of operation common to all COBRA geometries, and gives an

estimate of the radiated fieki and gain of a simple COBRA cotilguration with a

four-step reflector. In Section 4, other COBRA geometries are illustrated,

including: single, stepped paraboloidal reflector; dual reflector with stepped

subreflector; and confQurations with coaxial feeds that directly drive the reflector/

subreflector. The final section presents some concluding remarks, and discusses the

direction of fiture efforts in this area. An appendix is presented that computes the

radiated field of the COBRA aperture for the general case of N steps, computes the

radiated field of a linearly polarized, uniformly illuminated aperture, and presents

the definitions of normalized directivity we use in this paper.
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2.0 Circular Polarization

As we will show, the radiated field of the COBRA antema class exhibits

circular polarization. Circular polarization is defined as [1]:

“An electromagnetic wave for which either the electric or

the magnetic$eld vector at aj7xedpoint describes a circle at the

rate of the wave frequency. “

Furthermore, a circularly polarized wave will exhibit either left-or right-handed

circular polarization (LHCP or RHCP) depending on the direction in which the

electric or magnetic field describes the circle. Again, paraphrasing from [1]:

Left-Handed Circular Polarization (LHCP) -A circularly

polarized electromagnetic wave in which the rotation of the

electric$eld vector with time is counterclockwise for a stationary

observer looking in the direction of the wave normal (orji-om the

wave source). For an observer Iookingj?om a receiver toward the

apparent source of the wave, the direction of rotation is reversed.

Likewise:

Right-Handed Circular Polarization (LHCP) - A circularly

polarized electromagnetic wave in which the rotation of the

electric j$eld vector with time is clockwise for a stationary observer

looking in the direction of the wave normal (orj?om the wave

source). For an observer lookingj?om a receiver toward the

apparent source of the wave, the direction of rotation is reversed.

Figure 1 depicts the electric field distribution of a wave propagating in the +z-direction

at a particular instant in time. The figure shows that the magnitude of the field is
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Figure 1. A right-handed circularly polarized (RHCP) wave propagates in the +z-
direction. Its magnitude is constant, but the direction is rotating with
position as a left-handed helix.
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constant, but the direction is rotating with position. Shown in the figure is Right-

Handed Circular Polarization (RHCP), which in space (not time) is a left-handed helix.

The mathematical form of the time-harmonic [2], plane TEM, circularly

polarized wave that propagates in the z-direction can be expressed as:

E(t,z) = Re [EO(ax Tjay) e’(m’-k:)], (1)

which when evaluated at z = Oreduces to the following form

E(t,z = O)= E, (a, cos(~t) *aY sin(~ t)). (2)

The upper sign is associated with RHCP, while the lower sign yields LHCP.

Table 1 relates the values of the components of the electric field given in Eqn. 2 at

various instances of time for the two polarizations.

Figure 2 shows the rotation of the electric field vector as a fiction of time,

and at a fixed location in space, for a RHCP wave. Note that the observation

position is from a potential receiving site, and consequently the electric field vector

rotates counterclockwise when viewed fi-om this position.
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Table 1. Values of the components of the electric field given in Eqn. 2 at various

instances of time for RHCP and LHCP.

0,=3 RHCP RHCP LHCP LHCP

T
E= E, E= E,

o E, o EO o

X14 hE GE JZE hE——
2° 2° 2° 2°

lC12 0 E. 0 – E.

3X14 JZE JZE hE hE-— —— ——
2° 2° 2° 2°

n – E. o – E. o

5X14 JZE JZE hE gE—— —— -—
2° 2° 2° 2°

3n12 0 – E. o E.

7Z14 JZE JZE JZE JZE——
To 2° 7° To

2R E. 0 E. 0
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Figure 2. A RHCP planewave is propagating along the z-direction. The arrow
indicates the rotation direction of the electric field vector at various
instances of time and at a freed location in space. The observation
position is from a potential receiving site, and consequently the electric
field vector rotates counterclockwise from this perspective.
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3.0 Fundamental Concept of COBR4 Operation

The prior section discussed circular polarization, in this section we present

some fimdamental COBRA concepts, and show how the geometry of the antenna

transforms an azimuthally symmetric mode distribution of a source into an aperture

distribution that radiates a circularly polarized field with a boresight peak.

Figure 3 illustrates a paraboloidal reflector antenna fed by a conical horn

antenna located with its phase center at the focal point of the reflector [6]. The

conical horn is driven by the circular waveguide TMO1mode. As depicted in the

figure, the conical horn radiates a doughnut-shaped pattern, which is characteristic

of the driving mode. If the reflector were shaped conventionally, then the radiated

pattern also would also exhibit a doughnut-shaped pattern with a null-on boresight.

However, the surface of the paraboloidal reflector is divided into four quadrants (in

general N sectors) and stepped as shown in Figure 3b. The reflector surface is

“stepped” as indicated in the figure, so that each quadrant of the subreflector is

displaced from a nominal position by an amount required to produce the proper

phase shift in its incident field to produce the desired radiation characteristics

(boresight peak pattern and circular polarization). The scattering from the reflector

then produces a highly collimated, high-gain, on-axis beam with circular

polarization. The following paragraphs discuss the concept for the particular case

of a four step reflector driven by a conical feed horn antenna located at the focal

point (see Figure 3a). Other geometries are discussed in later sections, and the

derivation of the governing equations for the radiated field of a reflector with N

steps is given in the appendix.

3.1 Radiated Field of a 4 Step COBRA Aperture

For this COBRA example, the radiation characteristics of a four-quadrant

reflector with discrete steps in the surface height between the equi-angukir
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quadrants is illustrated. We assume the incident field is EP aP = EOaP, where EO is

the strength of the field. In Cartesian coordinates, the reflector incident field is

E, a, = E. cos(q)a=, and Ey ay = E. sin(q) aY. Due to the different path lengths

from the reflector focus, to the the reflector surface and on to the aperture plane in

front of the reflector surface, the steps in the reflector introduce a relative phase

shift in the reflected field of the N = 4 quadrants. Then:

1. Each quadrant is displaced from its opposing quadrant (I to III, and II .

to IV) such that there is a round-trip path length difference of A / 2

from the opposing quadrants. Because the fields in opposing

quadrants were originally x out of phase, the path length difference

between them brings the fields in quadrants I and III, and in

quadrants II and IV into phase with each other.

2. Also, the linearly polarized field radiated by quadrants I and III lags

by 7r/2 in phase of the orthogonal field radiated by quadrants II and

III. Consequently the aperture field radiates right hand circular

polarization (RHCP).

10



Stepped Paraboloidal
Main Reflector
~g 0.3 or 0.4 (standard)
D

D

Step thickness <<F
so shift of reflecting
surface gives
negligible defocusing

Doughnut-shaped
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Conical Feed Horn
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Figure 3a. The fundamental concept of the COBRA is shown: A paraboloidal
reflector antenna is fed by a conical horn antenna located with its
phase center at the feedpoint. The conical horn radiates the
characteristic doughnut-shaped pattern of the TMo1 mode, but the
surface of the paraboloidal reflector is stepped to produce a
circularly polarized radiated field with a bore-sight peak
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Figure 3b. The paraboloidal reflector surface is divided into four quadrants
and stepped by increments of Z / 8 to produce different path lengths
to the aperture plane.
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The boresight radiated field for the case N = 4 is found using the results of the

appendix. We write the far zone components of the electric vector potential on

boresight as

and

CIL(l-.-J;)](qb):&Y(4) = E&a2) ~nr ~nF,(N = 4) = EO(na2) j~r

where a = ‘~ is the radius of the aperture. The boresight radiated field then is

= ‘-Jb[l-<;][.x(~)+.y(l)](4)-jm&q EO(na2)~

[)
_j ~+~

= Eo(a’) e~r (J)[2 a, – jaY1

Equation (4) describes a right-handed circularly polarizedjield. Again drawing on

the results of the appendix, the normalized linear gain (ratio of the gain of COBFL4

boresight power density in a single polarization to that of a uniformly filled, linearly

polarized aperture) of the four-step reflector is d~(N = 4) = ~’ (4) = 0.203, which in

dB is d~ (N = 4) = –6.93 dB. The circularly polarized gain (ratio of the total

boresight radiated power density gain of the COBRA aperture to that of a uniformly

filled, linearly polarized aperture) is de:(4)= 2~2(4) = 0.405, or de(4) = -3.922 dB.
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The normalized gain of the circular aperture can be computed for an

arbitrary number of reflector steps (see the appendix). The table below gives the

boresight normalized linear and circular gains for several values of N.

Table 2. Normalized directivity for the linear and circular polarizations of the
COBRA aperture as a function of the number of steps N.

N d~ (iV)in dB dc(~) in dB Comment

1 -co -ccl Standard reflector gives

boresight null

2 -3.92 -3.92 One step gives linear
polarization

3“ -7.67 -4.66 First case of circular

polarization

4 -6.93 -3.92 Circular polarization

6 -6.43 -3.41 Circular polarization

8 -6.25 -3.23 Circular polarization

12 -6.12 -3.11 Circular polarization

16 -6.08 -3.07 Circular polarization

32 -6.03 -3.02 Circular polarization

co -6.02 -3.01 Asymptotic directivity

The case N= 1 is that of the standard reflector (with no steps), and the indicated

directivity means it radiates a boresight nuN For N = 2, the COBRA aperture

radiates linear polarization with a boresight directivity of d~ = –3.92 dB. The frost

incidence of circular polarization occurs for N = 3, and the aperture produces

circular polarization for all N >3. The circular directivity (dC ) is always 3 dB

higher than the linear directivity and means that the total power density in the

circularly polarized wave is twice that of each linear polarization. As N + m (the

case of a smoothly vaging surface profile, the normalized directivities approach

asymptotic limits of dc + – 3.01dB, and dL + -6.02 dB.
N-m N+.
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3.2 Surface Geomet~ of the COBRA Reflector

To produce the radiated field described in the last section, the reflector

transforms the incident field using steps in the surface profile of the reflector. This

creates a fractional wavelength path length difference from the focal point to the

aperture plane for the different quadrants. The change in the path length should be

small compared with the focal length of the reflector to ensure defocusing will be

minimal. However, a uniform step of the surface will not result a ~ one-way phase

difference in the paths associated with diametrically opposed sectors. The surface

profile of the step must be determined as follows.

Inspection of Figure 4a indicates that the step thickness is related to the

sector number and the location from the apex (p = O, 0 = OO). To determine this

dependence of the step thickness on position, consider the following. Let the origin

be at the focus of the reflector, then p is the perpendicular distance from the axis

(the line comecting the focus and the apex) to a point on the reflector surface, and

is the angle between the axis and the Iine connecting the origin and the surface

point. Figure 4a illustrates these quantities. A is the length of the optical path in

the presence of the step, while A’ is the length in its absence. To achieve the

e

proper phase relationship between opposite quadrants, the difference in path lengths

should be

A’– A= AI2. (5)

The unit vectors normal to the stiaces are indicated, and the angle of incidence =

angle of reflection =(3 / 2 from the surface normal. Now consider the expanded

view shown in Figure 4b. The path length difference is indicated by the bold line in

the figure. The thickness of the step, at the angle 9 then is given by

A’– A=7+1=LI2, (6)
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6/2 = angle of incidence
thickness = T(e) = angle of reflection
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Figure 4a. Geometry of a COBRA reflector: coordinate origin is at the focus,
and the angle 0 is measured from the axis of the reflector.
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Thickness of
Stepped Surface
at the angle 61

Extra Distance
Traveled by
Ray A indicated
by bold line

To Focal Point

Vector Normal to
-~ stepped surface

> Ray A

> Ray A’

/
\ Stepped

Paraboloidal
Paraboloidal Surface
Surface

Figure 4b. Geometry of a COBRA reflector: detail of the reflector surface used

● to help compute the thickness of the step as a function of the angle&
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where 1= ~cos((3). Solving for the thickness

.
A.

T = 2(1+ cOs(e))”

.

*

(7)

A more convenient measure maybe to specifj the step thickness along the path of

the vector normal to the paraboloidal stiace at the angle& for large reflectors this

length approaches the value ~cos(f3 / 2).

To demonstrate the dependence of the thickness ~ o%angle, we consider a

specific example. Operating at L-band (1 GHz), we have a 3 m (762 in.) diameter

paraboloidal reflector with a 0.375 F/D ratio, and N = 4 steps. The step thickness as

a function of the angle (3,for each quadrant ( I through IV ) is as given in Table 3

below for this case (N= 4).

Table 3. Reflector step thickness as a function of the angle& for each quadrant
(I through IV ) for this case N = 4: f= 1 GHz, D = 3 m (762 in.), and
F/I) = 0.375.

A A 3A

e ‘“ =Z(1+CoS(o)) “u = 2( I + cos(o)) ‘“” = 4(1+ cm(e))
~1

0° 0.0 cm 3.75 cm 7.50 cm 11.25 cm

15° 0.0 cm 3.82 cm 7.63 cm 11.46 cm

30° 0.0 cm 4.02 cm 8.04 cm 12.06 cm

45° 0.0 cm 4.40 cm 8.79 cm 13.2 cm

60° 0.0 cm 5.01 cm 10.0 cm 15.00 cm

75° 0.0 cm 5.96 cm 11.92 cm 17.88 cm

90° 0.0 cm 7.50 cm 15.0 cm 22.50 cm

Note that the values for quadrants III, and IV are arrived at by modifjing the nght-

hand side of(7); the round-trip path length difference (relative to Quadrant I) should

18
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be A / 4 for the second quadrant, L / 2 for the third quadrant, and 31/4 for the

fourth quadrant. These values are consistent with the path difference indications in

Figure 4b. In this example, the focal length is 112.5 cm, and the maximum angle is

& = 67.4°. Therefore, the maximum step thickness, which occurs in Quadrant IV,

is 7.U = 16.25 cm, which is 14.44% of the focal length. When the maximum step

size becomes a substantial percentage of the focal length of the antenna, defocusing

of the radiated beam could result. A reflector with a higher F/D ratio or longer focal

length should then be used.

4.0 Other COBRA Geometries

Section 3 demonstrated the fundamental concepts of the COBR4 class of

antemas. There, a single paraboloidal reflector was driven by a conicaI horn

antenna located at its focal point. This may be an inconvenient geometry for many

applications. This section describes a number of other geometries that utilize

Cassegrain-type cotilgurations of two reflectors with the subreflector driven by the

radiated field of a horn, or driven directly by the center conductor of a coaxial

transmission line. A good discussion and summary of the concepts of conventional

Cassegrain antennas can be found in [7]. All of the antenna types discussed below

transform an azimuthally symmetric excitation field into an aperture distribution of

the form discussed in the previous section, and consequently the following are

categorized as COBRA-type antemas as well.

4.1 Horn-Fed Cassegrain Configuration

A Cassegrain geometry is depicted in Figure 5a. There, a conical horn

antenna is shown opening through the apex of the main reflector. The aperture field

distribution of the horn is the TN$l mode, and it drives a stepped subreflector. The

subreflector is stepped, but each sector is hyperboloidal in shape and reflects the

incident field back to the main reflector. In addition, the stepped subreflector

19
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transforms the incident field distribution to the desired COBFL4 aperture

distribution required to produce circular polarization with a boresight peak.

A second Cassegrain conilguration is shown in Figure 5b. There, instead of

stepping the subreflector, the main reflector is stepped. The operating principles are

of course similar to those of the antema shown in Figure 5a.
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Source Delivers
RF energy in

Coaxial Geometry

TM ~1 Mode (
(Optional) A

Main
Paraboloidal
Reflector

Coaxial 4
Section

/

Highly
Collimated
Radiated

Beam

Circular Stepped

Conical Hyperboloidal

Horn Subreflector

Figure 5a. COBI&4 antennas with the Cassegrain configuration: Stepped
subreflector - the conical horn that opens through the apex of
the main reflector drives the subreflector with a TMO1circular
waveguide mode; the subreflector transforms the incident field
distribution and reflects the field onto the main reflector. The
main reflector then produces the desired circular polarized
radiated field with a boresight peak
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Figure 5b. COBIWantennas with the Cassegrain configuration: Stepped
main reflector - operates in a similar manner to the antenna
shown in Figure 5a, but here the main reflector is stepped.

@
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4.2 Center Conductor-Fed Cassegrain Configuration

Many microwave sources develop the RF in a coaxial geometry in the TEM

mode (also azirnuthally symmetric in nature). One would like to avoid the mode

conversion from coaxial TEM to circular TMO, as shown in Figure 54 but the

radiation efficiency for a simple truncated coaxial line is low. Another way to

establish the desired aperture distribution is to continue the center conductor of the

coaxial line through the apex of the main reflector and attach it directly to the

subreflector. This idea is demonstrated in the antenna concepts depicted in Figures

6a and b. Rather than illuminating the subreflector via a radiated field, the

subreflector is “driven” directly by the guided wave bound to the center conductor

of the coaxial line. The subreflector scatters this field back toward the main

reflector, and the stepped main reflector transforms the aperture field to the desired

form.

Two forms are shown in Figure 6. The first simply extends the center

conductor, preserving its circular cylindrical shape, out to the subreflector. The

second form shown also extends the center conductor out to the subreflector, but the

shape is tapered such that it becomes circular conical in nature. Each form may

have certain desirable attributes. The incident wave propagating on the circular

cylindrical conductor may bind more tightly to the conducting surface, and scatter

off the subreflector less easily. However, the quasi-TEM nature of the guided wave

on the center conductor may be well preserved. The second form, in which the

geometry of the center conductor becomes circular conical, may not preseme the

quasi-TEM form of the guided wave as well the first form, but this geometry may

bind the wave to the center conductor less tightly, and consequently scatter from the

subreflector to the main reflector more eftlciently. Note that the subreflector can

also be stepped for these cases, much in the manner depicted in Figure 5a.
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The single reflector case also can be utilized. In that case the center

conductor will exit the feed horn, which would be located in fi-ont of the reflector.

The center conductor can be of the proper shape and length to provide the required

illumination of the reflector, and/ or dielectric lenses can be used to make the

configuration more compact or efllcient.
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Subreflector fed
by circular cylindrical
conductor

Main stepped
paraboloidal
reflector

+
Coaxial
Feed

RF~

In +

Center conductor may have
a dielectric coating - Promote Hyperboloidal

Goubau-type guided wave subreflector

to subreflector.

Figure 6a. COBRA antennas with the subreflector driven by the center
conductor of a coaxial feed: the circular cylindrical center
conductor is extended to the subreflector.

25



s

Main Stepped Subreflector Fed
Paraboloidal

\

by CircuIar ConicaI
Reflector Conductor

Coaxial
Feed

in --+

Hyperboloidal
Subreflector

Figure 6b. COBRA antennas with the subreflector driven by the center
conductor of a coaxial feed: the center conductor is shaped into a
circular conical geometry and extended to the subreflector.

o
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5. Concluding Remarks

This note has presented some of the fimdarnental concepts of a new class

of reflector antennas. These antennas have been classified as the Coaxial Beam-

Rotating Antennas, or COBR4, because they produce a radiated field that

exhibits circular polarization. The discussion and analysis given here

demonstrates the nature of the radiated field, and presents a number of possible

antema geometries that can be used to establish essentially the same aperture

field distribution that yields the desired form of the radiated field.

A number of other types of geometries remain to be explored. These

include: (1) Dielectric-coated center conductor - Instead of driving the

subreflector with a bare conductor, the conductor is coated. This will help

establish a guided surface wave [8, 9] that travels to the subreflector closely

bound to the conductor. (2) The use of dielectric stepped reflectors - The use of

perfect electric conductor (PEC) steps dictates free space propagation to establish

the required path length differences for the quadrants. However, for some cases

the step heights required may be a significant portion of the focal length and

could defocus the boresight beam. The use of stepped dielectric coatings could

serve the same fimction as the stepped PEC, but would require smaller step sizes.

The defocusing could be less severe. (3) Lenses - Dielectric lenses have been

used as focusing elements and antennas for some time. Familiar examples

include Luneburg [1O] and Fresnel Lenses [11]. A lens also could be used to

condition the field from a horn antenna to radiate circular polarization directly, or

to drive a reflector. This would obviate the need to step the surface height of the

reflector surface. Many other antenna geometries can be considered as well.

Additional work is required to better analyze the radiated field of the

COBIU4 class of antema. Effort will include: analysis of the effect of

subreflector aperture blockage; total pattern calculations; and the rigorous

analysis of the center conductor-driven subreflector geometries. Also, the
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design, fabrication and measurement of a COEHU4 prototype would be usefid to

validate the analysis presented here.
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Figure Al. Feed horn aperture distribution, which also is the form of the main
reflector incident field. Assume the magnetude of the E-field is
independent of position.
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incident on the main reflector is then similar to the horn aperture distribution shown

in Figure A. 1.

We can write this incident field in cylindrical coordinates as EP aP = EOaP,

where EO is the strength of the field. In Cartesian coordinates, this is

E, a, = EOCOS(T)ax, and EYaY = E. sin(q) aY. This incident field illuminates the

stepped main reflector, which in turn introduces a relative phase shift in the

reflected field among the N sectors. Then, accounting for the amount of relative

displacement of the stepped reflector surface, the projected antenna aperture field

can be written as

E: = EOsin(q) e’ “(’) (Al)

and

E=”= EOcos(q) e’ ‘(”), (A.2)

where the phase ~((p) , is dependent on the round-trip distance from the feed horn,

to the reflector surface, and back to the antenna aperture plane; it is a function of the

variable (p. This (non-physical) aperture field has been approximated with the

following assumptions:

1. The illumination of the reflector is uniform in magnitude, p -directed,

and not dependent on the feed horn pattern;

2. Feed horn, to reflector surface, to antenna aperture path length

differences are not important - no x variation in the field;

3. Aperture blockage effects are negligible; and

4. Difiaction effects are not important.

Now assume that the reflector has a diameter D = 2a and is stepped in N

27c(n-1) 2X n
equal-angle sections. For

N = 9,,-1 ~ v ~ 9,, =—, we let
N
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27c@ -1)
Y&)= ~ for n=l,z,...>~. (A.3)

This corresponds to a counter-clockwise increase in the step thickness on the

reflector. We show later that for N >3, the counter-clockwise (positive z normal to

the reflecting surface at the apex) step size increase yields RHCP, while a clockwise

step size increase yields LHCP. In spherical coordinates the radiated electric field

can be expressed in terms of the electric vector potential [3] as

E(r) = jmsq a, x F(r) (A.4)

where

F(r) ‘~~.,,2([EA(@)x ii])ejk,’+jQ’d~, , (A.5)

IvkX= k sin(~) cos((p) and k, = k sin(S) sin(q), and q = p ~ is the intrinsic wave

impedance of the medium. The components of the radiated electric vector potential

can be computed in terms of the aperture distribution, they are:

9 (A.6a)

= ~~]~osM@).”‘w(Q’)e’kp’si”‘c04Q-Q’)p’tip’ d(p’
00

and similarly

=~~~%cos(@)e’w(”) e’kp’sin’c”s(’-%’@’@’. (A.6b)FY=F. aY e
00

With the expression for ~(q)) given above, the components can be expressed as

-jkr N ‘n;-’)~~sM@)e’kp’sin’cOq’-Q’)@@@(A-WF== Eo%~e’—
27rr ,,=1 Q“.1o
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9
and

- jkr N “i-’)~~cos(@) ejkp’sin’co<q-q’)p’~p’~v’.(A.7b)F== Eo~~eJ—
/:=1 Q.-I o

The above, when properly evaluated will yield the complete radiated pattern of the

COBRA aperture.

The expressions can be simplified considerably if one wishes to compute the

boresight field only (9 = O,q = O). For that case, the integrals are easily evaluated,

and the potential components written as

F, = Eo(mJ2)~gx(~) (A.8a)

and

F, = Eo(7ta2)~g,(j’V)o (A.8b)

where the factors ~x(N) and ~Y(N), which are fictions of the number of steps in

the reflector, are

~x(N) = *$e’2Xt-’)(cos(q,,_l) - cos(q,,))
II-

(A.9a)

and

1 N j2iT(n-1)
&y(N) = ~~ e N (sin(q,,) - sin(q,,_,)).

)1-

The above expressions can be written in closed form without the

summations. One writes the sin(-) and cos (-) terms as exponential

substitute for q,,-, and q,,, and groups like terms to obtain

~x(N) = &g{(l-e-’+)+(e-’=-’q~]~].

(A.9b)

(A.1O)

(All)
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Then one uses the properties of a finite geometric progression [15] to get the

following forms:

[

o

~=(jv)= 2/n

(–)2-N
6(N) e-” 2N

and

I
o

~y(N) = ()

~(N) e-J;

where the term which gives the magnitude is

, N=l

, N=2

, N23

> N=l

, N=2

, N~3,

(A. 12a)

(A.12b)

(A.12c)

Note that one must evaluate explicitly the first two terms (N= 1 and N = 2) using

(A. 11). Equations (A.8) and (A. 10) describe the boresight radiated field for the case

in which the reflector step thickness increases in the counter-clockwise direction.

By converting to the time domain, one can show this to be RHCP for all cases

where N 23. Note that the N = 1 case represents an ordinary reflector and produces

a null-on boresight, while the N = 2 case produces linear polarization on boresight.

To achieve LHCP one would adjust the reflector surface step distribution

2z(1 -n) 2n(l -n) –2nn
such that ~(~) = N , for – — ; thiS would‘~,,-1<~<~,,– N

N

give a discrete clockwise increase in the step thickness. For this case, it can be

shown that
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and

(0

> N=l

, N=2

, N~3

, N=]

, N=2

, N23.

(Al 3a)

(A.13b)

As before, we will observe that for N >3 the components are equal in magnitude,

and in phase quadrature.

Directivity of a Linearly Polarized Uniformly Filled Aperture

The radiated f=-field of a linearly polarized, uniformly filled aperture is

chosen as the standard by which we characterize the COBRA aperture. We let the

aperture field

E; a, = EO a, (A. 14)

uniformly fill a circular aperture of radius a. The boresight radiated electric vector

potential is then simply

()
E ~ -J e-jkr

F; = EO(na2)~= , — —
‘J4n 2nr

where the directivity of the uniformly filled aperture is well known to be

(A.15)

~ _ 4nA 4n(7ra2)
u-–= ~’ ~’ “ (A.16)
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Directivity of the COBRA Aperture

It has been shown that the radiated field of the COBRA aperture exhibits

circular polarization. When referenced to the radiated field of a uniformly filled

aperture, one can choose to weigh the ratio of power density in one of the linear

components of the circularly polarized field, or compare the total power that is the

sum of the powers in each polarization. We make the following definition.

D~ = absolute linear directivity of the COBRA aperture

For example, referenced to the x-component of the boresight field, the directivity is

1( )~ = 1 E=(R) 2 4np
L 7 q PRU’

(A.17)

where PR”~= total radiated power. Also,

‘~ = directivity the COBR4 aperture based on total power density

Then,

1 E:
where PR”~= —— is the total radiated power of the aperture. These values can be

2?’1

normalized to the directivity of a uniformly filled aperture; we define the

normalized directivity figures of merit to be

dL
DL

=K=<2(N)

and

dc = + = 2~2(N)
u

(A.19)

(A.20)
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for N23 on boresight. The last relations are found simply by forming the ratios

indicated, then substitution for the indicated quantities, and reduction to simplest

form.
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