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Abstract

In this note we begin the development of two types of Impulse Radiating Antenna (IRA).

o

These two designs include a 23 cm diameter reflector IR4, with an F/D of0.38, and a solid
dielectric-lens IIU4, or dielectric-immersed lens IIU. This latter design is a Transverse
Electromagnetic (TEM) horn immersed in a dielectric, with a prolate spheroidal lens interface to
air. The reflector IR4 consists of a paraboloidal reflector, fed by a conical 4-arm feed, whose
combined input impedance is 200 Q. The lens IR4 was constructed from a solid block of
polyethylene, conical in shape, and capped by a prolate spheroid. It can be short, because of the
prolate spheroidal lens. In addition, since the TEM feed is filled with dielectric, it will provide a
better match to 50 Q, when compared to an air-filled TEM horn with a lens. Since there are
fewer dielectric interfaces with this design, there will also be fewer reflections, which reduces
Fresnel loss.

The technique for calculating the step response antenna pattern involves calculation of the
line integrals of the quasistatic potential over the aperture. The resulting step responses are then
convolved with the derivative of the driving voltage to obtain the overall waveshape. The
reflector conjuration was calculated using a 4-wire approximation to the aperture. The lens
IIU was calculated under the assumption that the aperture was that of a TEM horn built with
circular plates.

The antenna pattern measurement technique involves using two identical antennas, and
we present here the relevant equations for the signal processing. In particular, signal processing
techniques are described for extracting the single-antema response from the 2-antema

*

measurement. The actual measurements will be presented in a later paper, which will be Part II
of this note.
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L Introduction

This report summarizes the design and analysis phase of the development of a Reflector o

IRA and a Solid Dielectric Lens IlL4. We consider first the Reflector ~ including design
equations, the specific design chose~ boresight and off-boresight radiated field, and received
voltage for two identical antennas. Next, we consider the same set of issues concerning the lens
Ill& and we also consider the possibility of approximating the elliptical surface with a spherical
surface. In addition, we consider adaptive noise filters as a technique to enhance our calculation
of the antema step response. Finally, we consider signal propagation through cables, including a
simple model of skin effect losses.

We begin with the Reflector IIU.

IL Reflector IRA

We will be building a reflector IRA with a diameter of 23 cm and an F/D ratio of
jd = 0.3778. Below we describe the design equations required.

A. Design Equations

The most interesting portion of the design of the reflector IRA deals with the feed arm
angles, as shown in Figure 1.A. 1. The center angle is specified as

o

P=
[

1
arctan

2~d -1 I (8jd ) )

Furthermore, the feed impedance of TEM feed is [1]

fg = ‘(m)
K(l -m)

(2.A.1)

(2.A.2)

where K(m) is the complete elliptic integral of the first kind. For the usual case of the feed
impedance being 400 Q, we have m=O.565291. Having solved for m and P, one then finds the
remaining angles as [1]

[PI = 2 arctan ml/4 tan(p / 2)]

P2
[

= 2 arctan m-1’4 tan~ J 2)]
(2.A.3)

The angles for fd= 0.3778 are now simple to determine. We find fll, P and % are 59.69, 66.99,

74.70 degrees, respectively.

*
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Figure 1.A. 1. Angles for specifying the feed arm configuration.

B. Construction Details for the Reflector IRA

Having specified the feed arm angles in the previous section, all that is lefl is to specifi
the antenna’s F/D ratio and its diameter. For this antenna we used fd = 0.3778, with a diameter

of 23 cm. A four-arm design was chosen, so the input impedance of the antenna is 200 Q. The
paraboloidal reflector is made of a honeycomb form of a material called Nomex, which is both

o

lightweight and very sturdy. The Nomex honeycomb is covered by a fine copper screen.

The design drawings for the antenna are shown in Figures 2.B. 1- 2.B.2. Pictures of the
resulting antennas are in Figure 2.B.3. Initial Time Domain Reflectometry (TDR) measurements
indicate a much smoother match to the input line than what was achieved previously in [2].

We have built two impedance matching networks to match the antemas, which have a
200 C? input impedance, to a 50 Q cable. First, we used the standard balun, which uses two
100 Q cables connected in parallel at the input and in series at the output [2,13]. This balun,
shown on the left in Figure 2.B.3, requires a fairly large geometry at the apex to maintain the
double gap that is required. A second design, shown on the right in Figure 2.B.3, has a single
100 Q cable connected between the 50 Q generator and the 200 !2 antenna. The effect of this is
that there are two impedance discontinuities, which reduce the total voltage incident upon the
antenna feed arms by 11O/O. However, we believe that the smaller apex geometry may still result
in a higher radiated field. Both reflector IR4s can be configured with either impedance matching
network, so we can experiment with two identical hntemas in either conjuration. We also plan
to compare configurations with and without feed-arm terminations.
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Figure 2.B. 1. Reflector ~ side view.
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Figure 2.B.2. Reilector W feed arm sheet metal layout.
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Figure 2.B.3. The reflector IRAs as built, showing two impedance matching networks. The
standard balun, with two 100 Q cables, is on the lefi. The modified impedance transformer using
a single 100 Q cable is on the right.
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C. Reflector IRA Radiated Field on Boresight

Let us consider the fields that will be radiated by the reflector IRA on boresight. Recall
that a single pair of feed arms has an impedance of 400 Q, and two orthogonal pairs of arms are
used. The reflector has an F/D of 0.3778, with a diameter of 9 inches, or 22.9 cm. The antenna
is driven with an integrated-Gaussian step fimction, with a derivative risetirne (final value
divided by peak derivative ) of td = 50 ps and peak voltage VOinto the 50 Q balun feed cable.

The methods used for calculating the radiated field are the same as those used in [2].

The radiated field E(t) on boresight at a distance r is shown in Figure 2.C. 1. Note that the
plot is normalized to

used here takes into
second pair of arms.

the peak step voltage VOinto the 50 Q section of the balun feed. The theory

account the voltage amplification of the balun, as well as the effect of the
This correction was described earlier in [2, Section 5].

3
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Figure 2.C. 1. Radiated Field for the reflector IIU to be built

To calculate the received voltage after the signal passes through two identical reflector
IRAs, we can predict that response with the theory of [2]. The result is shown in Figure 2.C.2.
The ~o antennas are assume to be in each other’s far field, using the same driving voltage as
before. The received voltage is normalized to V#. where r is the distance between the

o antennas.
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D. Reflector IRA Radiated Field Off-Boresight

We next consider how the fast part of the waveform varies as a fimction of angle. The
theory was developed in considerable detail in [3], for the case of round conical feed arms.
Although we have in this case flat-plate feed arms, we can use the theory for round conical arms
of the same impedance as a good approximation. The theory of [3] was developed for only two
feed arms, however, and we have four arms in the current design. Thus, some extension of that
work is required.

When the conical geometry is projected onto a plane, we have an aperture field that is
created from four conductors, as shown in Figure 2.D. 1. The potential function is calculated by
adding the potential for two two-wire problems, including translation. The potential function for
a single pair of wires, where the charge centers are located at (x=O, y/a= 1), is

= 2 j arccot(<l a) = in
[)

~-ja
W2(~

~+ja
(2.D.1)

where a is the aperture radius. Here, < = x + j y is the location in the Cartesian coordinate
space. This potential fimction is plotted in [3, Figure 2], so there is no need to repeat it here.
The complex potential for the four-wire case is just a sum of two two-wire potentials that have
been shifted and resized, i.e.,

w~(() = w2((z+ti)/@ + w2((z -@/ W) (2.D.2)

This function is complex, i.e., has both real and imaginary parts. Let us therefore set

u(O = Re(w4 (~) , V(O = Im(w4(g)) (2.D.3)

We can plot contours of constant u andv,and these are shown in Figure 2.D.2, for the upper
right quadrant. The conductors correspond to a contour of constant u.

+V$2

o
–VJ2

o +Vo

‘Vr-fu
–V. –V.

Figure 2.D. 1. The apertures for a two-wire and four-wire contlguration.
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Figure 2.D.2. Contour map for W4(~. Increments for u and v are m’10.

To calculate the radiated field, we need the aperture fields and the norrnaliied aperture
potentials. The aperture field, as usual, is

-(2VO) du(x, y)
‘+,y) = Au

3y
(2.D.4)

.

a

where 2V0 is the voltage between the top and bottom conductors, and Au is the change in u

between the two conductors.
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The normalized potentials are integrals over linear paths in the aperture field. We need to
calculate these because the radiated field is proportional to them. The normalized potentials for
the H-plane calculation is

#o(x) = -— J(2;.) q(~)
Ey & (2.D.5)

where the contour Cl(x) is a vertical line cut through the aperture plane, as shown in

Figure 2.D.3. To simpl@ this H-plane integral, one merely substitutes (2.D.4) into (2.D.5),
generating

(2.D.6)

We can now calculate U(XJ) as the real part of the potential fimction given in (2.D.2). Note that
the value of U(XY)is a maximum when it cuts through the conductors. At this point, the value of
u(xy) is U. = Zfg where& is the relative impedance for a single pair of arms located on opposite

sides of the circle (typically 400 fY 377 !2). Note also that for values of x that cut through the
conductors, the normalized potential is unity. This normalized potential fbnction is plotted in
Figure 2.D.4, for a few different values offg

c2(y

Figure 2.D.3. Locations of Cl(x) and C2(Y).

11
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Figure 2.D.4. The normalized potential fimction @@@) for a few different impedances.

The normalized potential for the E-plane is expressed as

(2.D.7)

where C2@ is a horizontal linear cut through the aperture plane, as shown in F@re 2.D.3. To

evaluate this, we require the Cauchy-Riemann relation for analytic finctions,

which allows us to recast the integral as

(2.D.8)

(2.D.9)

This is a particularly simple fo~ because the edges of the circular aperture are also lines of
constant v. Thus, the normalized potential is evaluated analytically as

12
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Vg Iypa < llti~(e)(y) = ~

else
(2.D.1O)

Note that we show a very abrupt transition between the two values, but it is actually more
smooth. This transition occurs as C2@) passes through the two wires, and if the wire is thiq an

abrupt transition is an excellent approximation. We have plotted the normalized potentials for a
few ~pedances in Figure 2.D.5.
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Figure 2.D.5. The normalized potential fhnction @(e)(y) for a few different impedances.

With the normalized potentials calculated, we can now calculate the radiated field as a
fimction of angle off boresight in the H and E-pkmes. The H-plane and E-plane are the planes

that are perpendicular and parallel to the dominant radiated field on boresight, respectively. In the
H-plane and E-plane, the field radiated by a step voltage of magnitude 2V0 across the aperture is

@)(r,e, t) = ()-(zn) ()cot(e) ~(h) cl
‘step iY

r 2?r a sin(e)

() [)

(2.D.11)

‘step ‘e)(r, 8, t) = *L
-(2VO) 1 ~(e) Ct

r 2zsin(0) a sin(0)

13
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In Figure 2.D.6 we have plotted these for our case of diameter = 2 a = 22.9 cm. Time plots of
these two step responses sre shown for a few difFerent values off-boresight in the H and E-planes.

@
Note that we cannot plot the step response at 0°, because it is a delta fimction there, with infinite
magnitude and zero width.

To obtain a radiated field, we convolve the step responses with the derivative of the
driving voltage. To drive the antenn% we assume an integrated Gaussian with a peak magnitude
of V. and a risetime of td = 50 ps. Note that the effect of the balun is to double the voltage,

generating a voltage drop across the aperture of (2 VO). Thus, we are consistent with earlier

calculations.

We have plotted the time response at 0= 0°, 2.5°, 5°, 10° and 20° away ftom boresight in
the E and H planes, in Figure 2.D.7. Note that the H-plane response falls off more rapidly at
wider angles, because the antenna aperture is more broad in the direction perpendicular to the H-
plane (y direction) than perpendicular to the E-plane (x direction).

14
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Figure 2.D.6. Step response of the 4-armed reflector W in the H-plane (top) and the E-plane
(bottom).
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E. Received Voltage for Reflector IRA

Next, we consider the received voltage when two identical reflector Ill& are used, one
transmitting and one receiving. We furthermore assume that one of the antennas maybe pointed
at an angle off boresight, in either the E or H planes, as shown in Figure 2.E. 1. This configuration
is of interest because it will be used to make antenna pattern measurements.

Transmit Receive

[

Antenna Antenna

... .............--— .—— ——— .......

-1)

[

e9............................................................-....—..........................
Figure 2.E. 1. Configuration for antenna pattern measurements.

To make these predictions, we need an expression for h(t) both on and off-boresight.
Thus, we need to compare the fast portions of the radiated field, as calculated two different ways.
The field radiated on boresight is just

E(r, t) =
1 2 W (t)

27rcfgr
h(t) 0 ;

~
h(t) = a 2 60(t–2F/c)-— 1z;[~(t)-U(t-2F /c)]

(2.E.1)

where the feed impedance of a single pair of arms is expressed as j& where fg = Zfee~ZO, and

2.=376.727 Q is the impedance of flee space. Furthermore, a is the reflector radius, F is the

focal length of the reflector, and r is the distance out the to the observer. In additio~ da(t) is an

●
approximation to the Dirac delta fimctio~ u(t) is the Heaviside step finction and the “o” operator
indicates a convolution. The incident voltage, V,nO is the incident voltage onto the 50 Q feed

17
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line, and Zfeed as defied here refers to the impedance between two arms. Normally, Zfeed =

400Q. o
To obtain the off-boresight h(i), we simply replace the delta finction above with a

smeared-out version of the delta fimction. To obtain the smeared-out versio% we note that the
fat portion of the radiated field on boresight is just

2V0 afi
‘step (r, t) = — qt)

r 2zcfg
(2.E.2)

Furthermore, the off-boresight step responses in the H and
sectio~

()i (2VO) cot(e)
ZStep(~)(r,(3,t) = ~ ~ —

27r

‘step ‘e)(r, 0, t)
()

(2VO) 1
=*i&———

r 2X sin(0)

E-planes are, from the previous

()

~(h) Ct
a sin(e)

()

~(e) Ct

a sin(d)

(2.E.3)

where the normalized potential fimctions CD(h)(x) and CD(e)(y) are defined in section 2.D.
Comparing the above two expressions, we find they are equivalent on boresight when we replace
the delta fimction in (2. 1) with a smeared-out delta fbnction defined for both the H- and E-planes.
These delta fimctions are just o

c fg

(1

/j(m(Q t) = ~cot(e) m@) as::’*,

()
de)(e,t) = %sc(o) a+~) Ct

&a a sin(e)

(2.E.4)

Thus, we find new expressions for the antenna step response, h(t),in the H- and E-planes as

dc fg
/Jh)(t, 8) = a 2 ~Cd(o)

~

c fg
—Csc(e)h(e)(t,o) = a 2 ha

c C;:qu( t)- U(t- 2F/ c)]1-cC;”e)[Z@)-24(/-2Fk)] 1
(2.E.5)

These can now be used in the standard expressions for the radiated field. In general, for our
problem we will use the boresight expression for the transmit antenna and the above off-boresight
expressions for the receive antenna.

18
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●
We can now calculate the received voltage as

V%!?.(L @) = ~ ~;fg ~ h(t) o h@@) ~ wnc(4
dt

V(?ec(t,’) = ~z~fg r h(t) o hqt,e) . %fc(t)
dt

We have calculated these for a few angles off-boresight in Figures 2.E.2 and 2.E.3.

(2.E.6)

19
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Figure 2.E.2. Received voltage in the H-plane for the reflector IIQ with two identical antemas.
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Figure 2.E.3. Received voltage in the E-plane for the reflector ~ with two identical antennas..

21



.

IIL Lens II&4

A. Design Equations

A sketch of the solid dielectric IRA is shown in Figure 3.A. 1. The antenna was built horn
high-density polyethylene, which has a dielectric constant of 2.31. The lens in front will convert
the spherical wave to a plane wave in the aperture, which is suitable for high-gain radiation. We
investigate here the shape of that lens.

The interface is an ellipse of revolutio~ as described in [4, Section 3]. A diagram of the
relevant parameters is shown in Figure 3.A.2, which shows a sketch of the lens through a radial
slice. Note that in cylindrical coordinates, we denote the radial coordinate as ~ where many
other authors use p. We do so in order to avoid a possible conflict in meaning of p to indicate
charge.

$4]1Soliddislscwic
Lsns

Figure 3.A. 1. A solid dielectric lens IRA.

Surface of Lens

Y

I El >&z
I
I
1 4+Z
r ------ ------ ------ ------ -----
I
I
I
I
I
1
1 r
I
I
1
I
1
I
1
1

-4? 0 z

Figure 3 .A.2 Elliptical interface for converting a plane wave to spherical wave.
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e Let us derive now the equations that deiine the surface. In the Y–z plane the equation of
the surface is derived from transit-time considerations as

We firther expand r in its z and Ycomponents as

r2 = (4+Z)2+Y2

Combining the above equations, and making the substitutions

&r = “&lf&2

rE2
9 =— = 1+-

&l

we&d

(1+2)2 +Y2 = (4+qz)2

(3.A.1)

(3.A.2)

(3.A.3)

(3.A.4)

● This is the equation to be solved.

Continuing from the above equations, we can simpli~ the description of the surface stiU
fiu-ther. With some rearrangement, including completing the square, we find

y2 +z2+2t

—z = o
l–q2 l+q

Y2 [) t2 ~2
—+ z+—
l–q2 l+q = (l+q)2

If we now make the substitutions

a

b

r
1

1— ——=
a &r

(3.A.5)

(3.A.6)

23
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we arrive at the final equation
●

✠

(3.A7)

This surface is immediately recognizable as a simple ellipse with major axes of a and b, and offset
in the z‘ dwection by -a

Note that all rays in the first medium originate at one of the focuses of the ellipse. To
prove this, we note that the distance from the center of the ellipse to its focus is given by [5]

~2 =a2_b2

/q + /
d=*—

(3.A.8)

l+q = –&+l

Note that we have indicated the focal distance by d instead of c, to avoid a conflict with the

symbol for the speed of light. The focus is located at a distance of (a + d) = f from the interface,
thus proving that the rays originate at a focus of the ellipse.

Note also that when there is a reflection from the interface, it reflects back toward the
other focus. This property can be used to “smear” out reflections from the surface that can
bounce off the source and re-radiate. The idea here is that late reflections should be damped out.

Q

Let us now consider the error in time delay that is incurred when the prolate spheroid is
approximated by a sphere. A diagram of the spherical approximation to the ellipse is shown n
Figure 3.A3. There is a certain maximum radius Ymm that we wish to allow. To see where the

prolate spheroid intersects the maximum radius, we consider the equation of the ellipse. The
value of z = ZPcorresponding to the maximum radius is

i

Y-z
‘P = –a+a l–

bz

(3.A.9)

As an example, we assume &r= 4 and I = 26.25 cm, and Ymm = 11.25 cm. From (3.A.6) we

finds= 17.5 cm b = 15.16 cm c=8.75 cm SOZP=-5.77 cm.

Next, we identfi where the maximum radius intersects the sphere, from the equation of
the circle. The equation for the circle is

24
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✎

(2+1)2 + y = ~
~2

4?2 (3.A.1O)

Zs = -~+m

Continuing our example, we find ZS= –2.53 cm. The error in time delay is calculated using the

emor in path length, ze = 2P – ZS, corrected by the error in square root of the dielectric constant

along this path, ~ – 1, which should have been air instead of dielectric. The electric path error

is therefore

te =
&-l

(2s - Zp)
c

(3.A.11)

In our example, this works out to 108 ps. This is probably too large a time difference if the goal
is a 50 ps Full Width Half Max (FWHM) radiated impulse.

Under what circumstances, then, will the spherical approximation be valid? While it is
difficult to summarize for all cases, in general, the spherical approximation improves for smaller

Y~~b and for largers.

Ellipse

,..’

Feed
Point

J
r

-a *ZC -c o

Y

Circle centered at
(-,0), with radius t

b

c a
z+a

< e~

Figure 3.A.3. Spherical approximation to the ellipse.

25



.

B. Construction Details for the Lens IRA

The Lens IRA was built from a high-densitypolyethylene,whose dielectric constantwas
9

speciiied by the manufacturer to be 2.31. Although we had considered lexan (a polycarbonate), it
was impossible to ver@ its propagation properties at the frequencies of interest.

The dimensions for the lens IlL4 are shown in Figure 3 .B. 1. From the diagram we find

‘max

Ymar

= 2.31

= 11.Oin = 27.94 cm

= 7.39 in = 18.77 cm

= 6.63 in = 16.84 cm
= 5.00 in = 12.70 cm
=4.35in = 11.06cm
=3.61 in = 9.17 cm

= 4.45 in =11.30cm

where all of the above symbols refer to Figure 3 .B.2. The final design of the lens R is shown in
Figures 3.B.3 - 3.B.6

Figure 3 .B.7 shows the completed dielectric immersed lens IlL4 ready for testing. The
design gives us the flexibility to optimize the impedance taper of the TEM expansion section and
to move the point source location for optimum focus. This is accomplished by removing covers e
which surround the point source. In additiom the design provides for changing the impedance of
the transmission lime transformer sectio~ if desired, and installing a 50 Q input cable for initial
TDR measurements.

Figure 3 .B.8 shows the component parts of the solid dielectric lens IRA. AU plastic parts
are made of low density polyethylene to maintain a uniform dielectric constant. The parts listed
from Iefl to right areas follows:

1. coaxial transmission line matching section with nickel-zinc Ferrite isolator cores and
connector.

2. upper and lower covers with mounting screws and nuts.
3. lens cone assembly with attached mounting fixture and polyethylene through bolts.
4. triangularcopper TEM tapered transmission line electrodes.

The lens has a prolate spheroidal surface which is difficult to machine accurately.
Accuracy of the aspheric surface was a primary concern, since any deviation born the design
shape degrades the radiated pulse risetime. The ideal calculated surface was compared to the
measured surface. The actual surface was measured using analog dial gauges with an accuracy of
0.076 mm (0.003 in) . The maximum deviation from ideal is 1.6 mm (0.062 in.) for the first lens
and 1.2 mm (0.046 in) for the second lens. The RMS deviation is 0.28 mm (0.011 in) for the first

o
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e lens, and 0.41 mm (0.016 in) for the second lens. These numbers are both well below our RMS
deviation specification of 0.5 mm (0.02 in). For polyethylene, with a dielectric constant of 2.31
and index of refraction of 1.51, the deviation from ideal should lead to a risetime degradation of
less than 10 ps, which is sufficient for our purposes.
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Figure 3 .B.5. Lens IRA with top and bottom mount covers removed.
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Figure 3 .B.6. Lens-cover assembly, filly assembled.
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0

Figt Jre 3 .B. 7. Completed 9-inch diameter solid dielectric lens ~ ready for testing

*

Figure 3 .B. 8. Component parts for the 9-inch diameter solid dielectric lens IRA
*
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C. Lens IRA Radiated Field on Foresight

Letusneti consider theradated field on foresight forthelens~. Weusethe theoryof
[2] with a td = 50 ps integrated Gaussian driving finction.

E(r, t) =
ha r

[

dv(t)
—- 2t,cF[v(t)-P’(t -2q/a)]

2rrcfgr dt 1 (3.C.1)
2

? = - air - to- dielectric transmission coefficient
I+@

where t is the length of the horn out to the end of the lens, r is the distance out to the observer,
and ha is an effective height fimction that depends upon feed impedance ~g). Note that fg =

ZYee/ZO refers to the normalized impedance of the feed enzbetied in the dielectric material. For

optimal radtatiou Zfeed x ~ = Z~2=377/2 Q At this feed impedance, each m of the

TEM horn has an angular width of 90 degrees, and ha -0.85 x radius of aperture.

Because of the dielectric material, we have included two modifications to the above
radiated field that are not normally included. F~st, we have modified the round-trip transit time,

c/2/l&, to include the dielectric. Second, we have adjusted the leading coefficient by a

o
factor of q the air-to-dielectric transmission coefficient. (It should be pointed out that the above
transmission coefficient is different from that used in [2]). To clari~ the calculation of the
transmission coefficient, let us extend the conductors beyond the end of the dielectric, as shown in
Figure 2.1. We know that the field radiated from the extended aperture (in air) is

E(r, t) =
ha W..(t)

2xcfg2r dt
(3.C.2)

Furthermore, the various parameters in the aperture extension can be related to the corresponding
parameters in the dielectric as

v~ = VI
2

lrffg2 = s. gl
1+1/& ‘

(3.C.3)

where the subscript 1 refers to quantities embedded in the dielectric, and the subscript 2 refers to
quantities in the extended aperture. The voltages are related by the dielectric-to-air transmission

coefficient. Substituting (3 .C.3) into (3 .C.2), we find

E(r, t) =
ha r dv~(t) 2

T =
2~cfg1r dt ‘ l+g

(3.C.4)
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This is in exactly the same form as (3 .C. 1), noting that V1 and jgl refer to the quantities in the

dielectric. Note also that t is just the transmission coefficient from air to dielectric. ●

“1 ‘ fgl
“f

2’ g2
>

... ,.’ v
El = &r E2=1

Figure 3.C. 1. Extended aperture for calculating the field radiated from a solid dielectric lens IIL4.

For clarity, we derive the receive mode characteristics. If the aperture were in air, the
received voltage would be

Since the antema is embedded in dielectric, the received voltage must be adjust by the air-to- 0
dielectric voltage transmission coefficient. Thus, we have

v,,=(t) = ha ?Einc(t) , z = 2
l+&

(3.C.6)

Thus, we see that the net effect of embedding the antenna is to replace h(t) with rh(t), where h(t)
is the impulse response in reception or the normalized step response in transmission. Note that
implied in the above rule is that the round-trip transit time must also be adjusted.

Finally, we note that in (3.C. 1) we have expressed the radiated field in terms of the voltage
launched onto the antenna. This is somewhat unusual, since we would normally express the
radiated field in terms of a port voltage. We used the antenna voltage because we expect to
experiment with the impedance taper (born 50 S2 to about 124 Q. It is unclear exactly how this
taper will be built, so we will add this feature to our model when we decide the ultimate form of
the transition.

Thus, we drive the antema with a t~ = 50 ps smoothed step. The radiated field on

boresight is shown in Figure 3 .C.2, normalized to v~r, where VO is the peak voltage on the

antenna. The received voltage after passing through two identical lens IIWs is predicted using the
theory of [2], and is plotted in Figure 3 .C.3.
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D. Lens IRA Radiated Field Off-Boresight

Let us now consider how the f~t part of the waveform varies as a function of angle. The ●
theory was developed in [6] for an air-filled aperture, using an approximation to the normalized
potential. The development in [6] was a linear approximation of a theory that was worked out in
[3]. In this note we use the exact potential fimctioq and we correct for the dielectric material.
The aperture is shown in Figure 3.D. 1.

Figure 3.D. 1. The geometry for curved plates, two-arm and four-arm configurations.

The first step in the procedure is to establish an aperture field as a derivative of a complex
potential. The potential fimction we use is a

(3.D.1)

where sn(w~m) is one of the Jacobi elliptic Ilmctions, and arcsn is its inverse. The relationship

between m and a is

1- sin(a) 4
tan(a) = l~m~~ , m = [1cos(a)

The characteristic impedance of the configuration is Z= = ZOjg, where

K(m)

‘g = K(mJ

(3.D.2)

(3.D.3)

In this equatio~ K(m) is the complete elliptic integral, and ml = l–m.
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9
The radiated field is calculated in a manner analogous to the equivalent calculation with

the reflector IIUl in Section 2.D. The only difference is a different aperture field, which changes

the normalized potentials, O@@) and O(e)(y). To clari~, the aperture field is

–V. i%f(x, y)
Ey(x, Y) = ~

dy
(3.D.4)

where V. is the voltage between the top and bottom conductors, and Au is the change in u

between the two conductors. The normalized potentials are

where the contours Cl(x) and C2@) are as shown in Figure 3 .D.2. Due to symmetry

considerations, when a = 45°, O(h)(x) = ~(e)(y). Since that is the case of interest here, we only

have to calculate @@). Note that for values of x that cut through the conductors, the
normalized potential is unity. This normalized potential function is plotted in Figure 3 .D.3 for
J*. = 0.5 in air

o
b

wc2(y

Figure 3.D.2 Locations of Cl(x) and C2(y).

With the normalized potentials calculated, we can now calculate the radiated field as a
iimction of angle off boresight in the H and E-planes. The field radiated by a step voltage of
magnitude V. across the aperture is
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Figure 3.D.3. The normalized potential finction @h@) for~g = 0.5.

qr,e, t) = ()-v-. ()?2 Cot(q ~(h) .A
‘step iY —

r 27r a sin(t9)

‘step (e+r, e, 1)
()

- v-. T.2
.Q -

()

~(e) c~

r 2xsin((3) a sin(0)

2
T2 =

1+1/&
= r@ = dielctric-to-airtrans. coeff.

(3.D.6)

Note that the potential VOis defined to be the voltage in the dielectric. Because of this, we have

included the dielectric-to-air transmission coefficient, r2. (Recall that 7 is the air-to dielectric

transmission coefficient. We have plotted these two step responses for our case of a = 11.3 cm.
Tne plots are shown in Figure 3.D.4 for a few different values of 6 off-boresight in the H- and E-

pkmes. Note that we cannot plot the step response at 0°, because it is a delta iimction there.
Note also that there is little difference between the H-plane and E-plane plots. The only
diiTerence is at wider angles, where the difference between cot(@) and l/sin(@ becomes apparent.

To obtain the radiated field, we convolve the above step responses with the derivative of
the driving voltage. To drive the antenn~ we assume an integrated Gaussian with a peak

magnitude of VO and a risetirneof td = 50 ps. The time responses are plotted for a few angles

away from boresight in the E and H planes, as shown in Figure 3 .D.5.
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o E. Lens IRA Received Voltage Off-Boresight

We now calculate the received voltage for the lens IIQ just as we did for the reflector
IRA in section 2.E. The configuration is once again as shown in Figure 2.E. 1. A before, we are
interested in this configuration because it will be used to generate antenna patterns.

We need an expression for h(t) both on and off-boresight. To find these, we compare the
fast portions of the radiated field, as calculated two different ways. The field radiated on
boresight, is just

E(r, t) = 1 ~(t) ~ ‘inc(t)

27rcfgr dt

h(t) =
[

ha T Sa(t) - 2t1c&[u(t)-u(t- 2t,&/ c)]1 (3.E.1)

2
T = = air-to-dielectric transmission coefllcient

1+~

ha = 0.85a when fg & = 0.5

where 11 is the length of the horq r is the dktance out to the observer, and ha is an effective

o
height fi,mctic)n that depends upon feed impedance (@. Note that fg = ZY,,~ZO refers to the

normalized impedance of the feed embetied in the dielectric material. For optimal radiatio~

Zfied x ~ = Zd2 = 37712 fl The incident voltage, Vjnc, is the incident voltage onto the

straight section of the TEM feed.

To obtain the off-boresight h(t), we replace the delta fimction above with a smeared-out
version of the deita fimction. To obtain the smeared-out versio~ we note that the fast portion of
the radtated field on boresight is just

‘step(r,O = ~ ‘a r a(t)
r 2zcfg

Furthermore, the off-boresight step responses in the H and E-planes are

‘h)(r, 0, t) =
()

– V.

()

72 cot(o) ~(h) Ct
‘step iY —

r 27r a sin(o)

‘step ‘e)(r, 0, t)
()

– P-. T2
.*~—

[)

~(e) cl

r 2zsin(@) a sin(d)

2
Z2 =

1+1/&
= .~ = dielctric-to-airtrans. coeff.

(3.E.2)

(3.E.3)
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where the noxmaliied potential fimctions @(hI(x) and O(e)(y) are defined in the previous section.
Comparing the above two expressions, we find they are equivalent on boresight when we replace

m

the delta function in (3.E. 1) with a smeared-out delta fimction defined for both the H- and E-
planes. These delta fimctions, in the E- and H-plane, are just

Cfgfi
#o(g, t) = ~

()

cot(e) m(h) c *
a a sin(6)

Cfggdqe, t) = ,.

u

Csc(e) de) c *
--’-’7)

(3.E.4)

Thus, we find new expressions for the antenna step response, h(t),in the H- and E-planes as

[

Cfgg
h(h)(t, @ = ha h

()

cot(e) O(h) c t - *[U(*)- U(*- *,,)]
a a sin(e) r 1

[

cfg~

()

Csc(q de) c*

1

h(e)(t, 8) = ha h - co~~o) [u(t)- ti(t- trt)] (3.E.5)
a a sin(tl) r

2e1J&r
*r* =

c

These can now be used in the standard expressions for the received voltage. As before, we have,

F’(!4C(*34 = 2 ~:fg ~ h(t)o h(h)(t,e) O ‘vnC(*)
dt

(3.E.6)

~(~e~(*, 0, = 2~ jfg ~ h(*) o h(e)(t,o) . ‘~nC(t)
dt

These received voltages are calculated for a few angles off-boresight in the H-plane and E-plane,

in Figures 3.E. 1 and 3.E.2, respectively. Since O(h)(x) and O(e)(Y) are the same for our special

case of a = 45°, the two pattern cuts are very similar. The only difference between them is the
factor of cot(o or csc(@ in (3. E.5).
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43



0.2,. I I I

‘vrec(t)/vo o. ~5 I B~resight ‘
(meters)

0.1

0.05

0 - \

‘Vrec(t)ivo

(meters)

o 1 2 3 4

0.2,. , , I I

0.15

0.1

0.05

0

0 1 2 3 4

0.2,. I I

‘vrec(W’o

(meters)
0151--’i20”o+

0.1 I I I
!

0“0Di2an=
o 1 2 3 4

Time (ns)

0.2
I

0.15 I 9= 2.5°

0.1 -

0.05

0 \

0.2

0.15

0.1

0.05

0

0 1 2 3 4

!

e= 10.O

!
!

? I

I
J !

(

o 1 2 3 4

Time (ns)

Figure 3 .E.2. Received voltage in the E-plane for the lens IIQ with two identical antennas.



o IV. Adaptive Noise Filters

h this section we consider improved methods for filtering noise from our data. Our first
attempt at solving this problem was to use a modified Butterworth filter, but some small
oscillations remained. We consider here additional methods we can try to obtain better results.
The problem we wish to solve is actually a ve~ old and well-known probleW and has been
considered by many authors. We cannot describe aIl the methods that are available, but we have
selected two that are easy to implement and have led to good results in the past.

The problem can be summarized as follows. One measures an input and output to a linear
system as x(t) and y(t), both in the presence of noise. The actual measured waveforms are then

Xm(t) =

Ym(o =

x(t) + nx(t)

Y(t) + ~yw
(4.1)

waveform. Let us denote the frequency domainwhere the subscript m indicates a measured
versions of these waveforms with capital letters, e.g., Xm(o) and Ym(co). If the noise terms were

zero, then one could calculate the impulse response as

H(a) =
Yin(@)

= HJo)
Xm(a.?)

o If there is noise, then one can add a Iowpass Butterworth filter, as

(4.2)

(4.3)

This is essentially what was done in Phase I. Note the problem however, that if Xm(o) has a null,

then we will be dividing by a number close to zero. This will generate a peak in H(cu) that may
not be physical. This peak will show up as a high-frequency oscillation in the time domain. We
explore here alternative noise filters that adapt to the actual data to avoid nulls.

The simplest adaptive filter is suggested by Riad [7]. He proposes a filter of the form

.

G(a) =
1

1+
0(0)

lxm(a]2

(4.4)

where @(en) is a positive finction of frequency. For most values of X’(o), G(a) is very close to

unity. But for values of frequency where Xm(0) becomes small, G(o) becomes large, thus

tending to offset any peaks in the final output H(o). The Iimction @(@ is most often taken to be

*
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a constant,i.e., cD(@= k. The value of L is then optimized for a given set of data. Another form

that has been studied is O(O)= y 04, where again yis a number which must be optimized. 8

Another adaptive titer is suggested by Nahman[8]. The details of the derivation are
somewhat lengthy, so we merely quote the result. The filter one chooses depends on the

uncorrected response as

G(n, y) =
lXm(nj2

(4.5)
lXm(n)2 + ylC(n)2

where we have converted to the dlscretized form of the transfoxq with index n. The sequence
c(k) is the backward difference operator

c(k) = V2 = {1,–2,1,0, ...,0} (4.6)

which in the frequency domain has a magnitude of

iC(nj2 = 16sin4(xnl N), n= O,...,l–l (4.7)

Once again we see that ifXm (n) is small, then the smoothing filter C(n) becomes importan~ and

G(n, y) becomes large. Note also that there is an error in equation 73 in Reference [8]. It is

easily demonstrated by carrying out the math from the step above it, that one gets the result of *
eqn. (5.5) in this paper.

The approach taken by Nahrnan is similar to that taken by Riad. To see this, all one has to

do is divide eqn. (4.5) by lXn(n]2, and one obtains a result in the form of eqn. (4.4).

Finally, we note that there area variety of least squares-related [9,10] and parametric[11]
algorithms. While these may be of interest at a later date, it is likely that the simple algorithms
suggested here are sufficient for our requirements.
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V. Cable Response

Since cable losses are a significant factor in the design of all our antennas, we consider
here a model of pulse propagation along a cable. The simplest model is provided by [12], and it
assumes that losses are due primarily to skin effect losses on the center conductor. In this case,
the propagation constant along the cable becomes

, . Jp4+.~jsc (5.1)

where L and C are the inductance and capacitance per unit length of the line, and K is the portion
of the series impedance due the skin effect. This is found to be

where a is the radius of the center conductor, cr is the conductivity of the wire, and ~0 is the

permeability of free space.

After propagating though a cable, it is shown in [12] that the transfer finction is just

where

(5.3)

(5.4)

and &o is the characteristic impedance of the line, ~ = Jm. Transforming the above transfer

fimction into the time domai~ we find the time domain impulse response of the cable to be

The step response is just the integral of the above impulse response, so we have

{

erfc(@Z) t >0
g(t) = ~

tso

(5.5)

(5.6)

o where the complementary error fimctio~ erfc(t), is defined as
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erfc(t) = 1 - erf(t) = 1 – — J; :’
-X2 &

*

(5.7)

o

We can now plot the impulse response and the step response, j(t) and g(t). We have done so in
Figure 5.1.
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Figure 5.1. Cable propagation step response (top) and impulse response (bottom).

It is interesting to calculate the Full Width Half Max of the impulse response of the cable.
By locating numerica~y the half-voltage points onj(i), we have foundthei~~ tobe

t~H&f = 1.8xfl (5.8)

If this value is small compared to the risetime of the source, then propagation losses
effect can be ignored.

As an example, we consider a 50 Q cable with silver-coated center

(c= 6.1 X107 rnho/m), and a center conductor radius of a = 0.1 mm. From the above equations,

we find K = 2.3x104 Q sec-1’2/m. Assuming cable lengths of 1 m and 2 w we have P = 1.3 ps
and 5.2 ps, respectively. We have convolved the resulting impulse responses with the derivative

due to this

conductor
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of a driving voltage for which td = 50 ps (Recall that t~M = 0.940 td for a Gaussian

impulse). The resulting impulse responses are shown in FQure 5.2. Afler propagating about 2 ~
we have lost about half of the peak of dV7dt. Since we do not have 2 m of cable in our antemas,
the data suggests that other effects are required in order to model the problem completely.

1

0.8

Normalized
dl%it 0.6

0.4

0.2

0

I’”””/ \’””:”””” ‘“’Original Signal

\
/ \

/ 1 1 m cable

o 100 200 300 400

Time (ps)

Figure 5.2. The original signal and the signal after propagating through one meter of cable. The
peak values are 1.,0.747, and 0.563, and the t~HM widths are 47.0, 51.8, and 56.3 ps.

49



“t)

r.

VI. Conclusions

We have provided here the design and predictions for a reflector IR4 and a dielectric- 0

immersed lens IIL4. The dielectric-immersed lens IR4 with aspheric lens provides the
advantages of reduced Fresnel losses, better match to 50 Q, and shorter physical length than
previous lens IIL4 designs. New features of the analysis include a calculation of the transient
radiated field off-boresight for a 4-wire aperture, and an accurate calculation of the normalized
potential for the lens aperture with curved plates. New features of the data analysis include a
two-antenna pattern measurement technique in which one antenna is scanned, while the other
antenna is held fixed, yielding the angular dependence of the antenna impulse response.
Measurements of these antennas will appear in a later note.
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