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Abstract :

The buried transmission line is combined
source and a series resistance. The resulting

with a capacitive energy
pulse shapes for the

electromagnetic fields are calculated using numerical inverse Fourier
transforms. The pulse shapes are calculated over a wide range of the
various values for the capacitor, series resistor, and parameters
describing the transmission line.
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The pulse shapes fall into two convenient cases depending on wheEher
or not the finite length of the transmission line is included in the
calculations, The figures for each case are grouped together at the
end of the two sections of concern,

We would like to thank Mr. Robert Myers for most of the numerical
calculations and graphs, together with some assistance from AIC Franklin
Brewster, Mt. Ronald Thompson, and Mr. John 1?.Wood.
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1. Introduction

In a previous note we discussed a simulation technique which might be
called the buried transmission line.~ The buried transmission line consists
of a set of parallel conductors placed in the earth such that, when electri-
cally driven from the top end, a TEM wave propagates along the structure
into the ground. This TEM wave is attenuated in much the same fashion as
the nuclear electromagnetic pulse as it propagates inkb the earth. One
limitation of the buried transmission line is its finite length. Prac-
tically the bottom end of the transmission line would not be terminated
in its frequency-dependentcharacteristic impedance; typically the bo~tom
end would be left in an open-circuited configuration. The wave then
reflects from the bottom of the transmission line, somewhat “ distorting
the ideal distribution of the electromagnetic fields with depth along the
transmission line. This last type of field distortion can be reduced by
increasing the depth, g,to which the transmission line extends.

Typically a buried transmission line might consist of two parallel
‘ grids of conducting rods in good electrical contact with the earth.
Each grid might approximate a conducting plate of width, .2a, with the
two grids separated by a distance, 2b. Then if a/b is about one or larger
the field distribution between the two grids is roughly uniform at a given
depth, thereby approximating a homogeneous plane wave. For the response
of the buried transmission line we only consider frequencies low enough’
that wavelengths above the ground surface are much larger than the cross
section dimensions, 2a and 2b. The length, L, is also assumed much
larger than 2&.and 2b so~tliatcfiecdi~bortionof”the.ideal field distribu-
tions near the ends of the line can be neglected. With an appropriate
transition structure connecting the electrical energy sources to the top
of the transmission line, the field distortion at the top can be minimized.
However, it may be impractical to do anything similar at the bottom of the
transmission line.

In the previous note we considered the dependence of the transmission-
Iine impedance on frequency and the dependence of field distribution on
frequency and depth. Then the dependence of the field distribution on
time and depth was calculated for a step function driving current. Thus
the previous note considered the response functions of the buried trans-
mission line. In this note we consider the pulse shapes produced by a
capacitive energy source with a series damping resistance when driving
a buriqd transmission line. The assumptions used in the previous note
are carried over to this note. The conductivity, ~, is assumed independent
of depth and frequency, u. The permittivity, c, is neglected because the
frequencies of interest are assumed low enough that @>uE.

1. Lt Carl E. Baum, Sensor and Simulation Note XXII, A Transmission Line EMT
Simulation Technique for Buried Structures, June 1966.

b



CAPACITOR
ANO OTHER

‘\,

BANK SWITCH
LUMPtDELEMENTS . /fw!’i’::

.

!

“-1
A. SIDE VIEW

[

2b

I I
11 I -

AIR

GROUND

x ISPOINTINGOUT
OF THE PAGE.

— BURIEDSTRUCTURE
- UNDER

I I.
I!,
f

I I I_ I
GENERATOR 1ADDED

/SERIES
; BURIED
, TRANSMISSION

,RESISTANCEI LINE

TEST

B, EQUIVALENT CIRCUIT

FIGURE 1,BURIEDTRANSMISSION LINE WITH CAPACITIVE ENERGY SOURCE
AND SERIES RESISTANCE



Figure 1 illustrates the buried transmission line and its equivalent
circuit, including the generator of capacitance, CG, charged to a voltage,
VG. A switch is closed, defining the time, t=o. The capacitor is dis-
charged through an added seried resistance of value? Raj into the buried
transmission line of impedance, ZLO. In the equivalent circuit the switch
is replaced by a voltage generator of value

v= v~ u(t) (1)

where u(t) is the unit step function, rising to one at ‘t-O. Note that
no resistance or inductance in the generator and/or transition structure
is included in the analysis, except that resistance which one might
include with Ra. A capacitive generator is a common electrical energv
source; the resistor is added to give some flexibility in shaping the
pulse. There are various other energy sources and pulse shaping elements
one might consider but these are not included in this note.

The buried transmission line is only considered with the bottom in
the open-circuited configuration. The calculation of the pulse shapes
falls into two convenient cases. First,the length of the transmission
line is so long that for times and depths of interest the finite length
has little significant effect on the pulse. The length is thus assumed
to be infinite, simplifying the results somewhat. Secon4 the times of
interest are comparable to or greater than the diffusion time characteristic
of the length of the transmission line, and/or the depths of interest are
close enough to the bottom of the transmission line for the pulse to be
significantly influenced by the reflection from the bottom. The finite
length of the transmission line is then included in the calculations. In
each of these cases the Laplace transform of the pulse shape is developed
in normalized form. Converting these to Fourier transforms a com uter
program is used to numerically obtain the time domain wave forms.5 After
considering the time domain wave forms we go on to some low-frequency
considerate.ohsregarding the time integrals of the pulse shapes: for such
limited cases the variation of the soil conductivitywith depth can be
easily included in the calculations.

II. Effectively Infinite Length Transmission Line

Consider first the case that I is sufficiently large that we may
consider it infinite as far as its effect on the pulse shape for times
of interest is concerned, The current, I, into the transmission line
is related to V“as3

(2)

--)J“

.

2. Frank Sulkowski, Mathematics Note II, FORPLEX: A Program to Calculate
Inverse Fourier Transforms, November 1966.
3. All units are rationalized MKSA,
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where the tilde, V, over a quantity indicated the Laplace transform of
\ the quantity, and where ZLm‘is used for the impedance of the effectively.

infinite$length transmission line. Substituting for ZLm from reference 1.
and for V(s)_from equa~ion (1) gives —

-. ,—

““ [3/2c,;i$”i SR;,G + q-’“?(s)= v~cG s (3)

where fg is a dimensionless geometrical factor for the transmission line
which is multiplied by the wave impedance of the ground to give the
impedance of the transmission line,

For convenience, we define characteristic<times as

(4)

‘a ~ RaCG (5)

and

tz=@
4

(6)

where -Z is the depth into the ground. (Note that z is a negative number
of meters.) Then define a normalized Laplace transform variable as

Sc ~ Stc (7)

Inverting such normalized Laplace transforms into the time domain, the
results are expressed in terms of a normalized time which we define as

t

(8)

A characteristic current is also defined as
VGCG

Ic=— (9)

tc

With these various definitions the form of the results simplifies somewhat.

Dividing ;(s) by tc we then have a normalized Laplace transform of the
current--intothe transmission line from equation (3) as

‘-b

Ic(sc) =+ .
[ 1—1

IC S~3/2 + Sc ‘a + 1 “.—
c tc

(10)

It is necessary to divide by tc because for the inverse Fourier transform
the integral is performed over w which is set equal to -jsc which equals
-jstc. A similar procedure is folLowed for other normalized Laplace
transforms elsewhere in this note. Having the current at the top of the
transmission line, then multiply this by e~z to obtain the current on
the transmission line as a function of depth,
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Multiplying this current by a factor determined by the cross section ‘
dimensions of the transmission line and the position of interest on the
cross section gives the magnetic field at the position of interest.
Then define a normalized current or magnetic field as

r
[

-- 1
% s~az

J

.2~s3”s:/2 + SC?+ 1
Ic(sc) e = e (11)hc(sc)~

T

Inverting this into the time domain gives hc(F ) which one can multiply
by Ic to give the current on the transmission fine conductors at a

particular z (negative). Multiplying in turn by a factor appropriate
to the particular geometry and dimensions of the cross section (independent
of depth) of the transmission line gives the magnetic field.

The voltage, VL, At the top of the ‘transmissionIfne is given by

*L(S) =Z ~;?(s) (12)

Substituting for I(s) from equation (3) gives

iL(s) . f@V~C~[S3/2CGffi+ SRaC~ + 1]-1
(13)

Converting to normalized form we have the Laplace transform of the voltage
at the top’ of the transmission line as

[ 1
-1

:C(sc) a tJs) = 3/2 + SC++ I%% Sc
c

-7y

(14)

Divide by VG ~spozand multiply by e to define a normalized voltage or
electric field or current density as

gc(sc)s ~c(sc) i\k~~z =-@’, ‘2@~~/2 + s ‘a+ ~~-1 ‘1’)

!,
c=

v~ ..~

Inverting this into the time domain gives eC(~C) which one can multiply
by VG to give the voltage across the transmission line at a particular
z. This can in turn be related to the electric field or current density
in the ground through the particular geometry and dimensions of the
cross section of the transmission line.

Consider first the pulse shapes at the ground surface as plotted in
Figure 2. Note that for Ra=O (making ta/tc * O) both h= and ec ring,
damp-ing out in a few cycles. The magnetic field has a maximum of h ~
.726 and”a tiiiirnufiof hcmi~ N“-.I481 As’ta/tc is ”increased’from’ %nax

zero the wave forms are damped and hcmax +s decreased. At ta/tc ~ 1 the

undershoot of hc is rather small compared to the initial p=kj such a

pulse might be roughly considered as critically damped. In Figure 3 the
maximum and minimum values of hc as well as the times of the maximum (tmax)~
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minimum (~~n), and first crossover (tcr) are plotted versus ta/~c* There
is an asymptotic form for hcmax which applies for large ta/t which one can
obtain from equation (11) by setting tz=0 and neglecting s~/? compared to
S= ta/tc. This gives

1

which in the time domain is

From

This

into
both

%
hc(~c) ~~

.E&Tc_% e’-&
e ta’

tz
.. ta

=n ‘a

“(16)

(17)

this the maximum value is approximately

h
cmax

~ tc (18:)

q

asymptotic form is included in Figure 3A.

Figures 4 through 6 have the variation of the pulse shapes with depth
the ground for three values of ta/tc. Note that as tz/tc is increased
h. and e. decrease in amplitude and spread out in time. Looking at

Figure”4 for ~hich ta/tc = O,-note that increasing tz/tc also decreases the
ringing of the pulse shapes. In Figure 7 the maximum value of hc and the
time of the maximum is plotted versus tz/tc for four values of ta/tc. Note
that hcmax decreases with increasing depth (-z) and that tmax increases with
increasing depth. There are asymptotic forms for hcmax and tmax which ap~)ly
for large tz/tc which one can obtain from equation (11) by neglecting both
sc3/2 and s= ta/tc compared to one. This gives

which in the time domain is

hc(~c)
‘%e-+c =f&(+j’2e-+

cc z

(19)

(20)

To determine the peak of this function set the time derivative to zero,
giving

[()

~ tz
tz ,2 - 2z— ~

~:c--s

()

_—

,7 ~ax’ e ‘max + —tz 2 ‘max1 (21)
e

max

~t



which has the solution %%%;2 -.

Or %axs 2 ‘z—.- —
t= 3 t=

tz 3

Substituting this into equation (20) gives

[1

&A-~,
h~max~tcl 32 ~ 2 Q .231 t=

–T~+ ~

(22)

(23)

{24)

Equations (24) and (23) are included as asymptotic forms in Ftgures 7A and
7B, respectively.

Now consider the limiting case of large CG. Setting CG~ makes
the current from equation (2) become

Then define

● ✎✍

‘a = J_..
ta

and 1’azVG
~

-1

(25)

(26)

(28)

(28)

(29)

The normalized Laplace transform of the current into the transmission line
is then

(30)

rMultiply this by ‘VG z and divide by I; to obtain a norma~ized current or
magnetic field as a function of depth, giving

&“(s:)~ -’zY:(s;).e -+- [s;,.&+ 1)]-’ (31)=e
1;

.—–— .—-.– ———



For the special case of z=O this reduces to
.

h~(~:)] ‘l-e
‘a

erfc(~)

~~=o

(32)
.%.

-!-.:=

. ..–.

I

In this form nne multiplies hi by Ii to obtain the current on the transmission
line.

The voltage at the top of the transmission line from equation (12) for
CG=~ becomes

(34)

The normalized Laplace transform of the voltage at the top of the transmission
line is then

‘1

-==v”[Kdg+l’l-l

V;(s;)= tiL(s) (35)

ym zMultiply this hy e and divide by VG to obtain a normalized voltage or
electric field or current density as a function of depth as

-r--‘C3~(s:) : ~:(s~) e.spu z
= l@~+l)l“-+--

Changing to the time domain

e:(T:) .!2
= e ;+” er:~+&)

which for z=O reduces to

‘tZ
7= C)
‘a

(36)

(37)

(38)

4* See AMS 55, Handbook of Mathematical Functions, National Bureau of Stan(lar&,
1964, for the inverse Laplace transforms.
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The results of equations (32) and (37) are plotted in Figures 8A and 8B,
respectively. Nate that as tz/t~ is increased the rise of the pulse shapes
is slowed down. This limiting case of large CG may sometimes be useful in
describing the initial rise of the waveforms for times for which the
capacitor has not appreciably discharged.
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Now consider the case that reflections from the bottom of the transmission
line are significant for times and/or depths of interest and are thus included
in the calculations. The current into the transmission line is given by

v~ “

[ 1

-1

;(s) =7 ~
% + ‘a + sc.G

The impedance of the transmission line is

where, as in reference 1, we have defined

(39)

(40)

(41)

This last parameter is the resistance of the open-circuited transmission line
at zero frequency.

Define some characteristic times as

2
t&&- (42)

and

We also use ta as defined in equation (5). Define a normalized Laplace

transform variable as

(43)

(44)

Inverting such normalized Laplace transforms, the results are expressed in

terms of a normalized time defined as

~
Tk ~ (45)

tk

For the finite length transmission line the times are then based on a
characteristic diffusion time? tflyfor the transmission line. (This same

time base was used in reference 1.) Define also a characteristic current
as

10. ‘G (46)

Ro+Ra

20
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-., .’

‘ (47)

.-.’

,, .,,. , ‘., .,. ‘,. . . . . . . .. ..
,-

and a nc&alized depth as
..

..
z4-.=- Z

T

Dividing ~(s) by tl gives the normalized Laplace transfdrm of the current
into the transmission line as

[ 1{
3

T

I

-1

li(s~) = ?(s) = 10 l+Ra 2s~l+e- ‘L+sLRa+t

‘E < 1 y
Sg Q

Et
(48)

- e-
0

To obtain a normalized current or magnetic field note first that the current “
or magnetic field has a -1 reflection at the bottom of the transmission line so
that

\ $k’U
Multiplying this by ~fi(sfl)/Ifithe normalized current or magnetic field is then

L

In another form this becomes ‘a
\ -1

In the time domain multiply h~(~i) by 10 to give the current on the transmission
line. Multiply this in turn by an appropriate-factor to obtain the magnetic
field.

As in reference 1 we define a normalized current density by relating it to
the normalized magnetic field”at the top of the transmission line as

(52)

if=o

Note that the normalized current density has a +1 reflection at the bottom of the
transmission line. Combining the results of equations (40) and (50) then gives
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In anoEher form this becomes

Note that this form of the normalized voltage or electric field or current
density differs from that used in section 11 for Che infinite length trans-
mission line. To obtain the voltage on the transmission line multiply
~j (Tl) by a factor, IoRe, which also is of the form
2

[1

-1
IORO= VG ~@a (55)

~

The voltage on the transmission line can then still be obtained from tjfi(T1)

with little difficulty; multiplying the voltage by an appropriate facto;
gives the electric field or curre~t density in the ground. Note also that
the initial rise of’!Lj(rl) for z =0 is to a value

‘k

?56)

Consider first the pulse shapes at the ground surface where z’=0. Starting
with Figure 9, for which Ra is set to zero or equivalently ta/tk = O, note that
as t /tQ is increased the oscillation of the pulse shapes is reduced. At
to/t; ~ 3.the pulse shapes rnight”beroughly considered as critically damped.
Then for to/tl > 3 one does not need to add resistance to dampen the pulse
although one might-still add resistance to broaden the pulse. Figures 10 and 11
include the effect of varying ta/tL. Each graph is for a particular value
of to/tg and each curve on a graph is for a particular value of ta~tt. Note
that in the limit of to/t~ and ta/tt both small compared to one, the approximation
of an infinite length transmission line becomes more and more appropriate and
the calculations of secliionII~apply. If either to/t~ or ta/tg is large
compared to one the pulse shape broadens out; there are no oscillations and the
decay of the pulse is roughly-exponential. -
magnetic field for to and/or t much larger
in equation (51) for lsil~<l g?ving

.,,_z.,~l++~+&$l~
ik(sl) _

L 4

22

To approximate the decay of the
than tL, expand the exponential

(57)



../” -f n.

In the time domain for T8>>1 we then have
tg -];7”

h8(T~)

“[l

-:
& (1-f) ~-~1~ 1 + ~ = (1-i) e tb;ta (58)

to

The time constant for the decay is just to+ta which is also (RO+R )CG, or a
simple resistive-capacitive decay. In Figure 12 fthe maximum va ue of the
magnetic field pulse and the time of this maximum are plotted versus ta/t.i
for 4 values of to/tl. Finally Figure 13 is for the limiting case of large
CG or equivalently for to/tL>>l, in which case we use Ra/Ro as a parameter for
the curves. Note that as Ra/Ro is increased the rise time of the magnetic
field pulse is decreased; but if R. and VG are fixed then l., the pulse amplitude,
is also decreased.

Now go onto include 2>0, Figures 14 through 17 consider the magnetic field
pulse shape. Each figure is for a separate value of to/tL; each graph in a
figure is for a separate ta/ti; each curve on a graph is for a separate i.
This is repeated for the current density in Figures 18 through 21. The maximum
of the magnetic field pulse and the time of the maximum are plotted versus z’
in Figures 22 and 23 respectively. Each graph is for a particular to/tL.
Finally Figures 24 and 25 give the magnetic field and current density pulse
shapes respectively for the limiting case of to/tL>>l. Each graph is for a
particular Ra/Ro; each curve is for a particular z:
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Iv, Some Low-Frequency Considerations

While, in many cases, we do not have a convenient mathematical expression
for the pulse shapes, there are some parameters of the pulses which can be
simply expressed. In particular the complete time integral of the pulses can
be found by using the final-value theorem of the Laplace transform. Beginning
with the magnetic field pulse shape we have

r“w’

Jhl(T~) dTQ = lim

o
s~o

Note that ~1(s8)/s8 is
of hk(@. Then using

Jh;(T~)dTL = (1-’2)

o

[1Sp,ih(s~) * lim ;l(sl) (59)
SE S;(I

the normalized Lap~ace transform of the time integral
equation (5(1)for fiL(sL)gives

:[1+~]= @&+;] (60)

Using equation (54) for the normalized current density pulse shape gives

I lj~(~i)d~t =lim l; (si) = ‘o + ‘a (61)
SL+fo fJ ~ ~

‘o

Thus the time integral of the current density pulse is conserved with depth
while the time integral of the magnetic field pulse falls off with depth as
l-z’.

Up until this point we have only considered the case of uniform ground
conductivity. However, the complece time integral of the pulse shapes only
involves the case of S,l=Oor zero frequency. The variation of the time
integral of the pulses with clepthcan then be considered without much com--
plication for non-uniform ground conductivity. In particular, allow o to
be a function of z’ but not a function of x or y. Consider first the current
density. The voltage on the transmission line is uniform with depth at zero
frequency, and thus the electric field is also uniform with depth at zero
frequency. However, the current density is proportional to the conductivity.
Thus we generalize the c~plete time integral of the normalized current
density as

where

(

1

=
‘avg - b(i)df

Jo

(62)

(63)
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We also have to redefine

R. E ‘g
h avg

and

(64)

for these parameters to have meaning for Ehe case of a varying with dep~h.
Note that equation (62) reduces to equation (61) if G is independent of z’.
For u a function of z; however, the complete time integral of the normalized
current density is proportional to o(zY.

Now consider the time integral of the normalized magnetic field for o a
function of z; The current on the transmission line at a given depth and
the t’nagneticfield”at that depth are proportional to the integral of the
currenc density from the bottom of the transmission line up to that depth.
The current density is in turn proportional to the conductivity. Thus we
generalize the complete time’inte~rnl of the normalized magnetic field as

(6’6)

This reduces to equation (60) if csis independent of Z1. If a is a function
of z’, however, the complete time integral of the magnetic field has a
soncwhat more complicated dependence on depth,..
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We have calculated the pulse shapes of the electromagnetic field components
on the buried transmission line for a capacitive generator with a series resis-
tance. There “arevarious idealizing assumptions used. The ground conductivity
is assumed uniform with depth and independent of frequency. Frequencies o:E
interest are assumed low enough that the ground pennittivity and the trans:it
time over the ground surface may be neglected in:the calculations. Extra :impe-
dances associated-with the generator and the transiti~n structure to the
transmission line.are.also neglected,

There is a characteristic’diffusion time, t~, for-the buried transmission
line and the calculations consider two cases. First, times of interest in
the pulse are small compared to t-tand the length of the transmission line is
assumed infinite for the calculations. Second, times of interest are of the
order of or larger than tl and the length of the transmission line is included.
Depending on the values of_the various parameters of the generator and the
transmission line, the pulse shapes of the electromagnetic field components
may oscillate. In such a case if one desires he may increase the damping
resistance until the oscillation is removed. The damping resistance may al!so
be increased in order tobroaden the magnetic field pulse and decrease its
ris& time, but at the expense of amplitude. There are other types of impedances
which one might add at the top of the transmission line to further shape the
electromagnetic field pulses but such impedances are not considered in this
note.

A computer code was used to numerically calculate the inverse Fourier
transforms (reference 2) The indicated relative errors in the pulse shapes
are at worst about .03, and generally are much smaller than that. In convert-
ing the Laplace transforms to Fourier transforms difficulty was encountered
at u=O for cases in which the time domain pulses had infinite time integrals.
This difficulty was removed by slightly altering the Fourier transforms so that
the area of the time domain pulses remained finite. The distortion was mate
to occur at times much greater than those used for the plots and the errors
so introduced at times of interest were kept as small as those associated
with the numerical inverse transform.
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