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Abstract

The buried transmission l~e is combined with several capacitive energy
sources. By appropriate choice of the capacitances, charging voltages, and
switch closure times, the resulting waveforms for the electromagnetic fields
can be shaped with considerable flexibility. In some cases it is also advan-
tageous to switch a short across the buried transmission line at an appropriate
time. Pulse shapes are calculated for up to three capacitors plus an electrical
short chosen to give a magnetic-field waveform which is roughly”flat after the
initial rise and until the final decay.
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Foreword

The graphs of the pulse shapes are grouped at the ends of the appropriate
sections. We would like to.thank Mr. Robert Myers, Mr. Ralph Powell, Mr.
Ronald Thompson* and Mr. John N. Wood for the numerical calculations and
the resulting graphs,
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1. Introduction

‘IWOprevious notes have discussed the buried transmission line.
1,2

The first note considered the response characteristics in the frequency
domain and the response to a step-function magnetic field at the ground
surface. The second note considered the pulse shapes for the electro-
magnetic fields produced by the discharge of a capacitor through a damping
resistor into the buried transmission line. The transmission line was
considered both as effectively of infinite length and as in the open
circuited configuration. The use of a resistance in series with the
capacitive.energy source can dampen oscillations and give some flexibility
in shaping the waveforms. However, energy is dissipated in such a resistance
giving a loss in efficiency. In some cases it may be desirable to minimize
such energy losses because of the large amount of energy required for a
single pulse,

One way to shape the pulse.is to use multiple capacitive energy
sources which are switched onto the load (the buried transmission line)
at different times. As illustrated in figure 1 there are N-1 capacitors
each of a capacitance, C , charged to an initial voltage’,V . There are
N switches each of whichkcloses.at a.time, tk. There are vkrious ways of
including the switches in che circuit and two of these are illustrated
in figure 10 Since we constrain that

‘k+l> ‘k

and

‘1’= 0
(2)

then these two equivalent circuits give the same results. However, one
arrangement may be preferable to another for various reasons such as
high voltage standoff and switch resistance.

The parameters of the first capacitor, V, and C,, are chosen to
give a certain rise time and
the load, We constrain that

0 ‘Vk+l<vk

The time, t2, for the second

peak am~litude to~the cu~rent, 1, into

(3)

switch to be closed is the time when the
voltage, v, on the load drops from V1 to V2 (due to the partial discharge
of Cl). By closing the switch the net capacitance of the source is
increased. This process is repeated, the kth switch being closed when
V has dropped to Vk. When V has dropped to zero the Nth switch is closed,

1. Lt Carl E. Baum, Sensor and Simulation Note XXII, A Transmission
Line EMP Simulation Technique for Buried Structures, June 1966,
2. Capt Carl E, Baum, Sensor and Simulation Note XLIV, The Capacitor
Driven, Open Circuited, Buried-Transmission-LineSimulator, June 1967.
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placing.a.short circuit across the load...For.convenience we might consider
a V as zero volts and a.C as an infinitely.large capacitance. In some
cask it.may be desirable #o have the.last switch closure at tN ~ in which
case the final short circuit is not switched across the load. ?n this note
we choose the Vk’s and C ‘s to make the current waveform roughly flat after

kthe initial rise associa ed with the first capacitor. Eventually, of course,
in a practical case the c“urrentwaveform decays to zero, Other kinds of
waveforms can also be produced by this technique but are not considered
here,

For the present calculations we use the equivalent circuits of
figure 1 with ideal capacitors and switches.. The impedance of the buried
transmission line is taken to be the same as in references 1 and 2. The
ground conductivity, a, and permeability, P, are assumed to be frequency
and depth independent; frequencies of interest are assumed low enough that
the ground permittivity, e, is unimportant. In calculating the waveforms
only the voltages and currents, or electric and magnetic fields, at the
ground surface are considered. These can be transported down into the
ground as in references 1 and 2.

As in reference 2 we first consider the simpler case of an effectively
infinite-length transmission line followed by the case of a finite-length,
open circuited transmission line. Up to three separate capacitive sources
plus a possible switched electrical short are considered. The calculation
of the waveforms was accomplished by a numerical solution of the differential
equations in the time domain. Accuracy was determined by halving the time
step and recalculating the waveform. The indicated relative RMS errors were,
for most of the waveforms, less than about 2% with errors of about 3%
occurring in a few cases,
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H. Effectively Infinite-Length Transmission Line

Let the buried transmission line be effectively infinitely long, i.e.,
let times of interest be
mission line so that the
effect on the impedance,
line is

.—

much less than the diffusion time for the trans-
bottom end of the transmission line has negligible
Then the impedance of the buried transmission

(4)

where s is the Laplace transform variable and f
R
is a dimensionless factor

related to the geometry of a cross section of t e transmission line. For
the moment consider just the first capacitor and switch. From reference 2
we have

‘Icl
Y(s) =——-

(Stc?’z +1

where

tc

The tilde,
quantity.

T
c

-[ ]

~2f 2 ~
1/2

=
lgu

(5)

(6)

‘%, over a quantity indicates the Laplace transform of the
Then define an approp-riatenormalized time as

t=--
t
c

(7)

and a normalized Laplace transform variable as

s z St
c c

There is also a characteristic current

‘lclIcZ—
t
c

from which we define a
ground surface as

hc(Q = :
c

which has a normalized

tc(sc) =

(8)

(9)

normalized current or magnetic field at the

(lo)

Laplace transform as

13/2 + ~ ‘1
s
c (11)
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The normalized voltage or electric field at the ground surface is defined
as

which

~
ec(~c) 5 (12)

‘1

has a normalized Laplace transform as

T[
1

3/2 ~ ~ ‘1
:C(sc) = Sc Sc (13)

Now generalize the normalized voltage or electric field and current
or magnetic field to the case of several capacitors switched in at different
times. First note that the normalized Laplace transforms of these two
quantities are related as

*C(SC) = :C(sc) &c(s=)

where

%
gc(sc) = --J=-rs c

(14)

This ~c(s ) is the normalized Laplace transform of a normalized impulse
response Function. In the normalized time domain this is

gc(Tc) = --J--
r T-T

c

{16)

where T is only taken positive. In the normalized time domain che
normalised current aridvoltage are~related by

rc

The asterisk, *, denotes the convolution of the two functions as exp~ici.tly
written in the integral. The normalized impulse response function, gc(sc),
used here is simply a constant times the admittance of the transmission
line. As long as the normalization factors are kept the same the normalized
impulse response function relates h and e independent of the sources. We
then use the parameters of the firs: capac!tor in the normalization factors
and use equation (17) as one of the equations relating hc and ec.

The voltage and current can also be related through the capacitors,
For tk

‘t ‘tk+lw: ‘ave_l t

v=vk-
[Z]J

Cn 1 dti (18]

n=1
‘k
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For convenience-normalizethe initial voltage-on-the kth capacitor as

and define a normalized time for the kth switch to close as

(19)

(20)

(21)

In terms of the normalized parameters, then for T ~~ <T we have
‘k c Ck+l

ec(~c)
‘k

.k
-1

c
n 1 T

Ck

hc(T:)d#
c

(22)

For convenience define
k -1

‘k =
[~ 1

c (23)
n

n=1

Then for T .&T &T we have
Ck c Ck+l

1r c

ec(Tc) = Vk - ‘k ~
T
Ck

(24)

equation (17), can be used to solve forThis equation, together with
both e and h . Note that some values of the normalized parameters
have s$mple v~lues, including

‘1=1 ‘1=1 he(0) = O
1

‘N=o

T ocl=

SN=O cc(0) = 1

J

(25)

9



There are also the relations

T >~
ck+l ‘k

‘k+l < ‘k

s
k+l ‘Sk

(26)

In obtaining a numerical solution of equations (17) and (24) define
a set of variables for discrete times based on a positive integer, 1, as

‘A1-l)AT (27)

where AT is a positive time increment. At the normalized time, T1, there
are the normalized voltage or electric field, E1, and the normalized current
or magnetic field, H

1’ Equation (16) for the normalized impulse response
function, for I z 2, becomes

“=& (28]

This function is not defined for I = 1. The initial values from equation (25)
are

El=l

First consider
variables as

‘1=0 (29)

equation (24) and write it as a recurrence relationship in the

‘I-1 + HI

‘I ‘ ‘I-1 - ‘k 2
AT

Then define

%-1= ‘l-l -jskAT HI-I

so that

‘I = ‘I-1
- ~ SkAT HI

(30)

(32)

10
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Second consider equation (17) and write.the convolution integral as

I-2

AT
‘1= --Z1[ ‘JGI-J+l+EJ+lGI-J

1+$ FI-l+EI1
J=1

T.

‘1-1

(33)

Note that the integrals are approximated in a simple trapezoidal fashicm
except for Tc-T: near zero in gc(~ -T’) where it is approximated as in
the last term of equation (33). ‘E~ua~ion (33) reduces to

I-2

Then define

I-2

J=2

so that

‘I f= ‘I-1 + : E1

(35)

(36)

Note that these expressions for HI apply for I 2 4 but can be used for
I = 2 and I = 3 if the appropriate terms are removed from the expressions.

Equations (32) and (36)

7/~A I-l+BI-l
‘I = SkAT

f
l+y :

can be combined giving

(37)

;f”::;lb::a;$;~a;:,knom ‘hen‘I-1 and‘I-1 can be calculated and then
E can be calculated from equation (32).Having HI then ~

Starting from I = 1 in equation (29) then E. and ‘d.can be calculated for anv
1. If AT is small E1 and H1 approximate ec~~ ) an~ hc(rc). Note that k in “
equations (31), (32), (35), and (37) is chose: for each value of I depending

‘n ‘he ‘alue ‘f ‘I-1 ‘0 ‘hat ‘k 2 ‘I-1 > ‘k+l”

11
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In some cases a final short is switched across the buried transmission
line at a normalized time, T= . For long times such that Tc >> T there is

CN
little variation between gc(T~) and gc(Tc-Tc } because of the rrtathematical

XT
form of gc in equation (16). Then for Tc >>L’T we can approximate hc(Tc)
from equation (17] as CN

-1/2
This is just a constant times T= the constant being obtained from
the integral of ec in the numerical’calculations.

Figures 2 through 5 give the results of the numerical calculations.
In figure 2, with a single capacitor, note the change in hc produced by
switching in the short when e= reaches zero, The magnetic-field waveform
becomes nonoscillatory and it is significantly broadened; this is
accomplished with no change in either the peak or time to peak of the
waveform. Figures 3 and 4 consider the cases of two and three capacitors,
respectively,with a final short included in all cases. In both figures
the effect of varying the capacitance of the last capacitor is illustrated.
The Vl{’sand Sk’s are chosen with the idea of making the magnetic-field
waveform approximate a constant after the initial rise and before the
ffnal decay, We define an ‘Ioptimum”case as one in which the total
variation or ripple in the flat top is held to approximately .1 times
the initial peak and the flat top of the waveform is extended to the
largest time. For the “optimum” cases the approximate forms of the long-
time decay (from equation (38)) are included as dotted lines on the graphs.
In figure .5the “optimum” cases, plus the single-capacitor case, are
summarized with a logarithmic time scale. For convenience some of the
parameters for the single-capacitor case and “optimum” multiple-capacitor
cases are summarized in the following table.

number of
‘2 ‘3 ‘2 ‘3

‘r T T long-time
capacitors C2 C3 C4 hc

1 -- -- -- -- 1.65 -- -- ,481 &/2

2 .3 -- .038 -- 1.14 13.1 -- 1,41 T -1/2
c

3 .3 .11 .038 .002 1.14 8.24 90,6 2.52 Tc-1/2

Table I. Summary of Parameters for Effectively Infinite-Length Transmission
Line

Note that the initial peak of hc is .726 in all cases.



.

.8

.7

.6

.5

4

hc .2

.2

.1

0

-.I

-.21 I I I I ! I I ___-l
o I 2 3 4 5 6 7 8

Tc

I.2 r I I I I

1.0

.8-

.6-

“1
4 -

ec
.2- 1

:

0 - SHORTED

-,2-
7

–.41 I I 1 I I I i --l

0

FIGURE

I 2 3 4 5 6

2, PULSE SHAPES FOR INFINITE-LENGTH TRANSM
WITH ONE CAPACITOR

7 8

SSION LINE

. . .. .,



1.1 I i I I I I I

I.0

.9

.8

,7

hc ,6

7-.02 ‘“

.5

.4

.3

.2

,1
I

——

I

(for

,41Tc”’-

s,=.03e)

ooL_.. ~~—---–L_...– .....1 - . _L____
2 4 6 8 10 [2 14 16

‘“~—”-”””~— ‘–-”l———

.9

Q !

\
i,

I I— II I I I I I

“’o

FIGURE

4 6 8 12

3, PULSE SHAPES FOR INFINITE-LENGTH TRANSM
WITH TWO CAPACITORS: V2 ❑.3

14

SSION LINE

16

11+



hc

.8L

,,

.3
1

~’ -~:,-~
2.52rc -

(FOR53 ‘.002) -

1
o& I I [ I I .~ I !

10 20 30 40 50 60 70 75
7C

1.(-’

\

\

\ Sz=.ool
.002
/’

— .—

“o 10 20 30 40 50 60 ’70 75
‘c

FIGURE 4. PULSE SHAPES FOR INFINITE-LENGTH TRANSMISSION LINE WITH THREE

CAPACITORS: v@, S2=0038, V3=.11

15



hc

ec

.8 I I ! I I III I 1 I I I I II I I 1 t I I II

S3 :,002

.7

1~ yS2= 038
.6 \

.5

A !
\

l,QITc-1/2”\,\.
‘\.‘.

\
.(

\
,481TC-1/2’<%

\l.__l. 1 1-1.1 Ii:: . .

,4

.3

,2
F

Z,52Tc-1~2’~

FOR S3:,002) i

i
...J-L .1.1 .d. .

,[ I 10 100

1- \ I
.9–

.8–

.7‘-

.6–

.5–

.4–

.3–

,2

.[

L0,~

r~

FIGURE 5, PULSE SHAPES FOR INFINITE-LENGTH TRANSMISSION LINE
WITH VARYING NUMBER OF CAPACITORS

.-



III.
: +-f_

Finite-Length, Open Circuited Transmission Line
.

Now include an open-circuit termination at the bottom of the buried
transmission line. As in reference 2 there is a characteristic time

+
‘~ 5 (39)

where ! is the length of the transmission line. From this we define a
normalized time as

and a normalized Laplace transform variable as

‘Es ‘tk
Define a characteristic current as

where

and define another characteristic time as

tosRoC
1

(41)

(42)

(43)

(44)

From reference 2 there is a normalized current or magnetic field at
the ground surface for a single capacitor and switch with a normalized
Laplace transform given by

{

-4-&
-1

‘@g) =
z s3/2 l+e

!2 1+~
-46 to

1-e J

and a corresponding normalized voltage or electric field at the ground
surface with a normalized Laplace transform given by

(46)

1.7



In the

and

time domain these are related to the current and voltage as

hk(~g) =: (47)

o

(48)

Generalize these currents and voltages to the case of several
capacitors switched in at different times. Relate the normalized

Laplace transforms of the normalized current and voltage as

which can be written as
m

1
[1

}

-4nfi

;I(sg) = —1+2 (-l)n e
26 n=1

(49)

(50]

(51)

Then in the normalized time domain there is a normalized impulse response
function given by

gL(TL) =
~[,+2&n:f] (521

2-

Note that for T% C< 1

(53)

In the normalized time domain the normalized current and voltage are
related by

‘L
r

.—.— .. .
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We include a table of g (T )calculated from equation (52). Alternatively
gl(r ) can be calculate

$
& f!om equation (50) using a numerical inverse

Four er transform. Note that for TL K ,5 the first term (with no exponential)
in equation (52) gives quite accurate results. Note that gg decays quite
rapidly for Tk>>l,

TP. g!.

,5
,6
,7
,8
.9

1,0
1,5
2.0
2,5
3.0
3,5
4*O
4,5
5.0

3,987 X 10-1
3,633 X 10-1
3*349 x 10-1
3*111 x 10-1
2,904 X 10-1
20718 X 10-1
1.983 X 10-1
1.456 X 10-1
1,070 x 10-1
7,858 X 10~;
5.772 X 10
4.240 X 10-2
3.115 x 10:;
2.288 X 10

6
7
8
9

10
12
14
16
18
20
25
30
35

1,235 X ,LO-Z
6,664 X ,10-3
3.596 X :LO-3
1,941 x :LO-3
1,047 x :1,0-3
3,050 x :LO-4
8,881 x :LO-5
2.586 X :LO-5
7,531 x :LO-6
2.193 X :LO-6
1.004 x 110-7
4.593 x 10-9
2.102 x 1.O-1°

Table 11. Impulse Response Function of Finite-Length, Open Circuited
Transmission Line

The voltage and current are related through the capacitors in equation
(18). Define a normalized time for the kth switch to close as

(55)

In terms of the normalized parameters, then for Ti LTZ L TL we have
k k+l

‘!Lk

Equations (54) and (56) can be used to solve for et and hL. Some of the
new parameters have simple values, including

hL(0) = O eL(0) = 1 Tll= 0
(57)

There.is also.the relation

‘9. > hk
k+l

(58)
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For this case of the finite-length transmission line define a discrete
time to replace Tg for numerical calculations based on a positive integer, I;
as

‘:
S (1-1) AT’ (59)

where AT’ is a positive time increment. Define

The normalized impulse

The normalized voltage

(60)

response function, for I 2 2, becomes

(61)

or electric field is E: and the normalized current
or magnetic field is-H’,

I
The initial values ire

E’=1
1

H’=o
I

(62)

Similar to equation (32) we have a recurrence relation for E; as

E:
‘ ‘;-l

_ is; AT’ Hi
I

where we define

- $ s; AT! H&lE E!
‘;-l 1-1

From equation (54) H; is given by

-. T:
l.- z

[
J ,-J+l+E;+lG,-J]+*[E,-,+E,]~’~t~l

(63)

(64)

(65)

Note that the form is slightly different
factor of 1/2 in gl in equation (53) for

T: ~

from equation (33) due to the
small ~ .k

Then for H; we have

where we define

(66)

[

1-2
ATJ

]Z r

~ g’
‘i-lE -Z ‘i ‘i+Ei-I. Gi

+AT‘ E’Gf
J I-Ji-l+2 n ‘i-l (67)

J=2

20
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Again equations (65) and (67) apply for I & 4 and with slight modification --
for I = 2and I=3, Solving for Hi we have

Having Hi then% can becalculate.d from equation (63). For small AT’ then..
E+ and Hi approximate e~(~j) and hi(~k), Again k is chosen in these equations

for each I depending on E~-l so that vk~ E~-l > Vk+l,

Figures 6 through 16 give the results of the numerical calculation~],
Four values of to/tL are considered: 1, .1, .01, and .001, in that order,
For each value of to/tl the number of capacitors is varied up to a maximum
of three capacitors, except for to/tg = 1 for which the maximum number of
capacitorsincluded is two. The first figure for each value of to/t2 illustrates
the change produced in hg by switching in.a short when ek reaches zero, AS

in the previous section (for the infinite-length transmission line) additional
capacitors are added with the v ‘s and S

k
‘s chosen to make the magnetic-field

waveform approximate a constantk(after t e initial rise) with a ripple of
about 10% and with ‘theflat top of the waveform extended to the largest t:ime,
There is a significant difference between this case of a finite-length trans-
mission.line and the previous case.of an infinite-length transmission line
in that, for.characteristic times in the waveforms much larger than tl~ the
impedance of the finite-length transmission line approximates a constant
resistance. If the last capacitqr is switched in at sufficiently large

‘i’
then the associated Sk can be set to zero and the associated v can be

c osen so as to make the roughly flat top of the magnetic field wa$eform
extend to arbitrarily large times.
Ck ,

Of course, since Sk = O corresponds to
=@ such a case does not correspond to a real capacitor but to an ideal

voltage source. Also, in practice, one would have the waveform even~ually
decay to zero. For to/t~ = i one can make S2 = O and for a t /t~ of .1
and .01 one can make S3 = O and achieve an arbicrariSy long, f?at-topped
waveform. However, for to/tg = ,001, one needs.more ‘thanthree capacitcms
to be able to set the last Sk to zero and maintain the.same kind of flat-
topped magnetic-field waveform. Note that when the last Sk is set to zero
in this manner there is no final short put on the transmission line, For)
convenience some of the parameters for the single-capacitor cases and
“optimum” multiple-capacitor cases are summarized in the following
table,
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*01

,001

number of
‘2 ‘3 ‘2 ‘3 ‘~2 ‘~3 ‘E4

initial peak
capacitors of h=

1 .- -- -- -- 2.72 — — ●457

2 ●45 — o 1.40 -- --
It.-

1 -- -- -- -- .552 — -- .216

2 .3 -- .03 -- .380 7.32 — It

3 .3 .21 ,03 0 .380 1.84 --
II

1 -- -- -- -- .116 -- -- *103

2 .3 -- .03 -- .080 1.15 -- II

3 .3 .1 .03 0 .080 .74 --
II

1 -- -- -- -- .024 -- -- .0469

2 .3 -- .034 -- .018 .226 --
11

3 .3 ● 11 ● 034 .002 .018 .14 1,41 II

Table 111. Summary of Parameters for Finite-Length,Open Circuited Transmission
Line

22
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Iv, Summary

By using multiple capacitive energy sources (perhaps plus an electrical
short) which are switched onto a buried transmission line at appropriate times,
one can achieve a considerable flexibility in shaping the waveforms for the
electromagnetic fields. This can be accomplished without having to insert
series resistors which would absorb energy. The present calculations have
been pointed at achieving a roughly flat-topped waveform for the magnetic
field, after the initial rise associated with the first capacitor. For a
given.number of capacitors the capacitances and initial voltages are chosen
to give maximum length to this flat top with no more than about 10% ripple
in the flat top. This choice of waveform is somewhat arbitrary and is
used for illustration. Using the same calculational techniques one can
extend these results to include other desirable waveforms.

Another possibility is that using this kind of multiple switching
approach other kinds of lumped-element or distributed-elementgenerators
might be usedl perhaps in combination with capacitors, Perhaps similar
calculational techniques can be used for such generators by characterizing
the generator in terms of an impulse response function and using a convolution
integral, or in terms of some other mathematical operation. Note that for
sufficiently small rise times in the waveforms the impulse response function
for the simulator (buried transmission line plus materials above the ground
surface) must be modified. Also some of the early-time behavior of the
simulator might not be easily characterized by an impulse response function

due to the distributed nature of the simulator.
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