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Abstract

Tile ~ime history of the i,nput current and v~lcage of a buried transmission

line is calculated under the assumption that the line is

inductive energy source. Results are displayed for both

the buried line is infinitely long and the case where it

length and terminated by an open circuit,

excited “by an

the case where

~~ of finite
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1. Introduction

In a previous note in this seriesl a buried parallel-plate transmission

line was proposed as a device for simulating the longer time behavior of the

electromagnetic pulse from a nuclear burst. Included in that note were com-

putations of the response function of the buried line in both the frequency

and time domains. In later notes of the series the current waveforms achievable

by some realistic energy sources for this method of simulation were computed.

One of these later notes2 contains a discussion and a computation of the mag-

netic field and current density as a function of time and position which may

be expected when-the “buried line is driven by a single capacitor. It was

found that, for typical ground conductivities, a resistor is needed in series

with the line in order that the current pulse should even roughly approximate

In fact, without a series resistor the input current wasthe desired shape.

found to be oscillatory. Since such a resistor is wasteful of the available

energy, a subsequent note3 described and analyzed an excitation scheme employing

several capacitors which may be switched into a circuit at appropriate times in

order to provide flexibility in the synthesis of pulse shapes without undue

energy dissipation in the source.

Because it is desirable, in making design choices, to have available

quantitative data on more than one,excitation scheme, in this note computations

are made and data displayed concening

buried line is excited by an inductive

energy levels that may be necessary in

method could indeed be preferable to a

intended to discuss, in a future note,

the waveforms to be expected when the

energy source. For the very large

the future, an inductive energy stclrage

method employing capacitors. It is

the increase in simulation possibilities

and the reduction in switching prc~blems that occur when the energy source con-

tains both capacitive and inductive elements.

The same assumptions that have been made in previous analyses of the

buried line simulator will be made in this note. Primarily these assumptions

are:

1) Transmission-line theory provides an adequate description of events

throughout the whole length of the line, including the excitation

and “termination” regions.
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2) The electromagnetic parameters of the ground are independent of

frequency and position.

3) The times of interest, and ground conductivities of interest, are

such that in the Laplace transform domain

impedance of the ground may be adequately

the characteristic

approximated by

Here

Based on

z(s) =G

and henceforth, MKS units and notaeion are used.

these assumptions, a calculation is made in the next section

of the input current on a buried line of infinite length with an inductive

source, while in Section III similar computations are made for a finite-

lerigth“open-circuited” line. Among other comments Section IV contains a

few remarks concerning the validity of the first assumption stated above.
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II. The Infinite Buried Line

The situation to be analyseclis represented schematically in figures

1A and lB. Initially the current through the inductor flows through the

short circuit at the switch. At time zero the switch is opened, forcing

the inductor current into the buried line, The practical problems involved

in instantaneously opening the switch will not be considered in this note,

After the switch has been opened the equivalent circuit of the structure

takes the simple form shown in figure lC, where some initial value of the

current, i(0), must be assumed.

Only the current and the voltage across the line impedance in the

equivalent circuit of figure lC w!L1lbe computed. The magnetic field at

the surface of the ground will be proportional to the current calculated

here. At any depth below the surface the magnetic field may be related

to the surface field by a response function in the time domainl. Similar

remarks apply to the electric field and the voltage.

The input impedance of the :infiniteburied line is directly propor-

tional to the characteristic impedance of the ground. Denoting the propo’c-

tionality constant, which depends on the geometry of the line, by f one
g

may write

ZL(S) = fgm . (1)

Since the equation for the ‘Laplace transform of the current in the

circuit of figure lC is clearly

sLI(s) + ZL(S)I(S) = Li(0) , (2)

one

the

may use equation (1) in conjunction with this to write the current in

time domain immediately in the form

c+im
1

H

St Li(0)
i(t) = —

2ri
e

1
ds . (3)

c-im
SL + fgm

Defining a normalized time by

—,—— 3
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fz

‘L = [1
&:

and changing the variable of integration in (3), one may represent the

normalized current by

hL(TL)

This integral is a standard

(4)

Laplace transorm4 so h7(T~) may be represented
.-

in terms of tabulated functions in the following manner

‘L
hL(~L) = e erfc(~) (5)

where

cm

~

2
erfc(x) = ~ e-y dy .

/7
x

In a similar manner, normalizing the voltage across the load, v(t),

to a voltage defined by

it is straightforward to establish that

v(t) 1 eTL
eL(TL) =—= —- erfc(~) .

‘L ~

Curves of equations (5) and (6) are given in figures 2 and 3 along with

some of the following asymptotic forms:

(6)
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hL(Q + 1 as

1
+ as
—K<

1
eL(TL) + —=

&L
as

1+ —— as
2T:L$

+0
‘L

‘L+m

‘L+o

‘L+m “

It can be seen from figure 2A that, although the overall shape of the

current pulse is preferable to that from a source consisting of a single

capacitor, there is a rapid drop for small times that is definitely un-

desirable.

5



.

111. The Open-Circuited Line

In this section the buried line is assumed to be of finite length and

the reflection from the bottom of the line

transmission-line theory to apply with the

This leads at once to the equation for the

Laplace transform domain,

is accounted for by assuming

line terminating in an open circuit.

input impedance of the line in the

ZL(S) = fgm coth&E2s .

Substituting this value in equation (2) and introducing a

time variable by normalizing the accual time with respect

time of the line (defined by
‘k

= UaL2/4) one is led to

analagous to (4)

(7)

new dimensionless

to the diffusion

the equation

. (8)

In equation (8)

‘k = t/t%

and if R is the D.C. resistance of the line neglecting end effects, i.e.
o

R. = fg/LG ,

then

t = L/R. .
0

Equation (8) may be integrated in more than one way, leading to various



equivalent representations of hL(~L) . Some of these representations are

more suited to describe the small time behavior of the function while others

are better adapted to describe the large time behavior. In the following

two sub-sections examples of each type of representation are obtained.

IIIA. Small Time Representation

As a result of substituting

in equation (8) one obtains

hl(Q =:,J e“z2’4dz
~Z + coth Z

c1

where the contour of integration,
c1

, is shown

the integrand in powers of

[)kz - 1 -22
Az+le

one obtains after a little manipulation

(9)

in figure 4A. Now exparlding

h&) =+
J

e“z214dz +
l+az

c1

If the further substitutions

V=G,;%=-
~

th
are made in the n term of the series in (10), that equation assumes

in which the z integral and the first integral of the series may be

(10)

a form

eas ily
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carried out in terms of well known functions. The result of performing these

operations is

2
T%/4A ~ -4/Tk z

[

2

1

-16/~R
hL(~L) = e erfc(~/2A) -~ e —- 2aea erfc(a) -t-O(e

6
) (11)

where

of equation (11) describes the functionThe first term on the right hand side

with an error of less than one part in a thousand for all interesting values

of A as long as
‘!2

is less than .4.

In a similar manner, normalizing the input voltage to the voltage generated

by the initial current flowing through the D.C. resistance of the line, one

may obtain to the accuracy stated above

eL(Tt) =
v(t)

[

1 2A=.— _ :“4’2
i(0)Ro

~$
erfc(@/2 )

)
(12)

111 B. Large Time Representation

Returning to equation (9) and examining the symmetry of the integrand

one may quickly conclude that the contour
C2

of figure 4B is equivalent

to c1 . The closure of C2 along the quarter circle at infinity may be

assumed to exist since the integrand is exponentially small along that arc.

The integral along
C2

may be evaluated in terms of the residues at the

poles within Cz determined by the roots of the denominator of the integrand

of (9). These roots lie along the imaginary axis and have been tabulated4

as a function of k .

These considerations lead to the following representations of current

and voltage

(13)

●
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(1,4)

cc -Y:(A)Tt/4

ei(~k) = 21
e

(
n=l 1 + (1 + 1)/X2y~(A)

where Yn(~) is a root of the equation

cot yrl= Ayn

If Ti is greater than ,4 there is no need to take more than three terms

in (13) or (14) to obtain an accuracy exceeding one part in a thousand.

Curves representing hj(~l) and eL(~L) with to/tL(= 4A) as a

parameter are given in figure 5. Figure 6 is a magnified version of figure

5A, included in order to exhibit more clearly the small time behavior of

hl(@ .

It can be seen from equations (13) and (14) that for large time the

expressions for the input current and voltage on the open-circuited line

take the following asymptotic forms;

In these equations a

The following table presents

‘YTE

eJTJ + f3E

, B , and Y depend on the ratio to/tL .

the values of these asymptotic parameters for

the to/tL ratios used in figures 5 and 6. Curves of these parameters are

given in figure 7.

.4
1.0
2.0
4.0
10.0
20.0

-_-&

.510

.400
,290
.185
.088
.047

.;95
,182
.400
.667

1.00
1.43
1.67

8
.005
.020
.072
.167
.270
.387
.438
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Iv ● Comments

. . ..—_ .—.

. .

There are two general areas of the theoretical work on the buried line

simulator that merit further comment. One area involves the mathematical

technique used in computing certain functions describing the buried line while

the other area involves the first assumption in the Introduction.

A function which has been used previously and will undoubtedly be

used again in buried line calculations is what may be called the input

admittance of the line in the time domain. This function is proportional

to the input current on an open-circuited line due to an impulse of voltage
3

and may be written

[

2

gO(T) =+1 +2! (-)ne-4n ‘T
2K n=1 1

This representation may be obtained from an integral analogous to (9) by

using a method similar to that of Section 111 A. The point here is that

the method of Section 111 B may also be employed to obtain the following

equivalent representation;

(15)

(16)

Equation (16) is more useful than equation {15) if T is greater than unity.

It is also of interest to note that this function may be expressed in terms

of tabulated functions in the form

64(0,e
‘4/T,

PO{TJ =. .-.

where the usual notation for Theta

reference it may be noted that the

line has the representations

gs(T) =

24nT

functions4 has been used. For future

analogous function for the short-circuited

w 2.,
1

[
1 + 21 e-4n-’T

2G n=1 ~
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1
~++~ e

-112TT2T14=—
n=1

84(7r/2,e
-41T,

a— .
21G

Concerning the first assumption in the Introduction, that transmission-

line theory provides an adequate description of the fields along the whole

line, it is clear that this is invalid very near the source since it is

impossible to excite the buried line structure so that only the TEM mode is

present. If the ground is sufficiently conducting the assumption should ‘ce

valid at all points slightly belowrthe surface and slightly above the bottom

of the structure. In fact, other assumptions may well be more restrictive

than the present one for the ground conductivities that have been studied

up to now. However, if in the fut:ureit

of ground conductivities of the order of

should be kept in mind.

It should also be pointed out that

at the other

structure is

try to match

impedance of

becomes necessary to take account

10-4 , the present consideraticms

the assumption of an open circuit:

end of the line is physically impossible. In fact the actual.

such that, if nothing is done at the lower end of the line to

impedances, the “termination” looks almost like the characteristic

the line for the higher frequencies or

conclusion results from a closer examination of the

problem involved, since for frequencies high enough

the ground to be comparable to the plate spacing of

shorter times. This

actual boundary-value

for the skin depth in

the line the fact tha:

the guiding structure stops at a finite depth becomes irrelevant. Since in

the real structures the plate spacings and depths are of the same order of

magnitude this remark amounts to saying that if one wants to describe the

actual situation up to times
‘L

of the order of unity, then neglecting all

but the dominant term of (11) is a more valid procedure than including any

“correction” terms. It is left to a future note to determine up to what

time the infinite line approximation is better than the finite line approx-

imation.
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