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Abstract

A simple resistive termination, while adequate for low frequencies,

introduces reflections on TEM transmission lines at frequencies high enough

that the characteristic dimensions are not electrically small. A more

general termination can be defined in the form of an admittance sheet from

the solution of an electromagnetic boundary value problem. By approximating

the characteristics of this admittance sheet, reflections on the transmission

line can be reduced.
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I. Introduction

In using a cylindrical transmission line as a simulator for a free-

space plane electromagnetic wave one has the general problems of launching

and terminating the desired TEM mode without introducing reflections in

the TEM and higher order modes. One approach to solving these problems

involves the use of conical transmission lines with cross section geometries

approximating the cross section geometry of the cylindrical transmission

linel. The purpose of this note is to propose an alternative scheme for

terminating the TEM mode on such transmission lines.

Basically the concept involves designing a thin admittance sheet

at the end of the cylindrical transmission line. Its surface admittance

(or impedance if one prefers) is to be chosen such that on the side of

the transmission line there is only the desired TEM mode (without reflection)

and on the opposite side the field distribution is more general so as to

satisfy Maxwell’s equations together with boundary and radiation conditions.

Besides applying this termination approach to cylindrical transmission

lines one might apply it to conical transmission lines as well. For

example one might just use a single conical transmission line driven from

its apex as the simulator. In another case one might terminate a cylindrical

transmission line by first attaching to it a conical transmission line

to reduce the cross-section dimensions, and then terminate the conical

transmission line at some position before reaching the apex. At this

position, however, the wave lengths corresponding to the highest frequencies

of interest may still be smaller than the cross-section dimensions.

In this note we first discuss some approximate lumped element concepts

related to such terminations. This is followed by a discussion of the

admittance sheet approach, both as an electromagnetic boundary value problem

and with respect to some approximations involved in realizing such sheets.

--- --- ___ ___ _

1. Capt. Carl E. Baum, Sensor and Simulation Note ~1, The Conical Trans-

mission Line as a Wave Launcher and Terminator for a Cylindrical Transmission

Line, January 1967.



11.

than

line

Approximate Termination Characteristics

At frequencies low enough that the associated wavelengths are much larger

the characteristic cross-section dimensions one can terminate a transmission

in its characteristic admittance without introducing significant reflections,

For simplicity consider the parallel plate transmission line with infinitely wide

plates as illustrated in figure 1A. In this case the characteristic admittance

per unit width is just ~ divided by the plate spacing. One might then

try to terminate the transmission line with an admittance sheet placed perpen-

dicular to the direcCion of propagation of the incident wave (the z direction)

and extending between the plates. Then an admittance sheet with a surface

admittance, Y = ~~ , gives the characteristic admittance as a termination
s

for sufficiently low frequencies. However, for high frequencies such that the

wavelengths are much less than the plate spacing the situation is somewhat

altered. For our assumed free space medium the wave admittance is also ~

An incident high-frequency plane wave undergoes a reflection (referred to the
.

electric field) at such a planar sheet

by a simple calculation as

m-

with a reflection coefficient given

z~ 1Uu Uu
r =-—

e=~+z~
;

(1)

One can simply think of the admittance of the sheet as being in parallel with

the characteristic admittance of the space to the right of the planar surface

admittance, presenting an admittance of 2/’~ to the incident plane wave,

In order to improve on this termination sheet we would like Ys + O as

~+m where u is the radian frequency of the incident wave. Then in the

high-frequency limit the incident wave would not be reflected. Thus to minimize

reflections at both low and high frequencies we could make Ys frequency

dependent. One way to do this might be to include a series inductance, L > 0 ,

so that

Ys = (2)
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where s is the Laplace transform variable and can be taken as ju . This

simple form of Y matches the required Y at both high and low frequency
s s

limits, at least for positions away from the conducting plates.

Another approach to approximating the required form of the termination

admittance is to look more closely at some of the low frequency characteristics

of the transmission line. In particular we can attribute a capacitance to the

electric field near. the ends of the conductors. If we consider the static

problem of–a potential difference between the conductors, then we can attempt

to calculate this fringe capacitance. For the two dimensional problem in

figure 1A the fringing electric field falls off as l/r outside the plates for

distances far from the plates,

edge. Such a capacitance, per

logarithmically in this case2,

three dimensional problem, the

or.-faster at large distances,

where r is here the distance

unit width of the transmission

However, for cases such as in

static electric field can fall

from the plate

line, dfverges

figure lB, a

off as l/r3

r, from the open end of the transmission

line, leading to a definite fringe capacitance. We might then try to represent

the end of the transmission line, not as an open circuit, but as a capacitance

for low frequencies.

In the high frequency limit with no admittance sheet the incident TEM

wave is radiated out the end of the transmission line without reflection,

Thus in the high frequency limit we can represent the end of the transmission

line as presenting a conductance. Then combining this capacitance and conduct-

ance in series in the form of an equivalent surface admittance gives a surface

admittance, Y
o

, which represents the termination characteristics of the

transmission line as

H
-1

1 ru
Y. = --&+ =

&
(3)

o

Here C is the capacitance as included in the equivalent surface admittance.

Now we would like to add a terminating sheet admittance, Ys ,toY
o

---- ---- ____ _

2. Lt. Carl E. Baum, Sensor and Simulation Note XXI, Impedances and Field

Distributions for”Parallel Plate Transmission Line Simulators, June 1966.
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to approximate J’ , Ehewave admittance of free space at both high and

low frequencies. If we take a Y~ of the form in equation (2) we get a

termination admittance, Ye , normalized as a surface admittance as

‘fly-’+L’’T+F+l-l
If now we choose L such that

LC—=—
P. so

we then find that, independent of frequency,

(4)

(5)

(6)

which is the desired form. Of course our form for Y. is rather approximate

making this last result fortuitous.
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III. Admittance Sheet Approach

We now proceed to discuss a general procedure for calculating Y~ ,

Consider transmission-line geometries such as illustrated in figure 1. Let

space be divided into two regions of interest by a surface, S . Call one of

these regions the TEM region or transmission line region. In this region we

hypothesize that there is only a particular desired TEM mode, propagating in a

single direction. In figure 1A this is the z direction; in figure lB this

is the p (or radial) direction. An appropriate cylindrical or conical traris-

mission line provides appropriate perfectly conducting boundaries for the TEM

mode in this region. The second region of interest we call the radiation

region.

Dividing the two regions we have the surface, S . On this surface we

specify the tangential component of the electric field. Part of this surface

may consist of perfect conductors along which the tangential component of the

electric field is zero. The remainder of this surface consists of the admitt-

ance sheet Y . On the admittance sheet we specify the tangential component
s

of the electric field to be exactly the tangential component of the electric

field of the TEM mode in the TEM region. With the tangential component of

the electric field now specified along S we can in principle solve a boundary

value problem for the electromagnetic fields in the radiation region satisfying

the radiation condition at infinity. From this we can calculate the tangential

component of the magnetic field along the admittance sheet in the radiation

region; it will in general

field along the admittance

in this latter region.

Consider now a small

differ from the tangential component of the magnetic

sheet in the TEM region, due to the desired TEM mode

section of the admittance sheet as in figure 2A.

The characteristics of this sheet are defined by

% % % % %

Js = YsEl = YsE2 = HI - H2 (7)

where ~ indicates the Laplace transform. The tangential electric field is

continuous across the sheet but the component of the tangential magnetic field
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perpendicular to J~ is discontinuous by an amount J . With ~ as a
s

unit normal to the surface we can more generally write the characteristics

of the sheet in vector form as

+ + + +
nxE =nxE

in out

and

(8)

(9)

+ + +
where e is defined as a unit vector parallel to nxE

in “
In equation

+
(10) we include the possibility that the required J~ may not be parallel to

+
the tangential component of Ein . In such a case we then define Y~ as

related only to the component of Js
+

parallel to the tangential component
+

of E If there is a component of J~
in ●

perpendicular to the tangential
+ +

component of Ein , then this component of J5 should flow as on a perfect

conductor and allowance should be made for it. Note that because of the
+

assumed TEM mode on the transmission line then. E at any fixed position
in +

is always parallel to a fixed direction. Thus on the admittance shee.c e

is a fixed direction at each position, independent of frequency. In some
+

particular cases due to symmetry we can have Js always parallel to the

tangential component of ;in simplifying matters somewhat.

The procedure for finding Y~ is then to first find tin and Gin

from the assumed TEM mode, Use equation (9) to establish the tangential
+

component of E on s. Then solve the boundary value problem in the
out +

radiation region. This determines Hout so that we can find the required
+
Js from equation (8). Finally from equation (10) we can determine Y and

s
see whether we need to provide for a component of “is perpendicular to the

tangential electric field, The Ys thus found will in general be a function

of both S and position on the admittance sheet.
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For a given transmission line geometry and shape of the surface, S ,

we now have defined in principle a way of calculating Ys , consistent with

having only the single TEM mode propagating in one direction on the transmission

line. However the Ys thus calculated may have some undesirable features.

For example one might wish to realize it with passive lumped

and capacitors. However, the required Y might be active.
s

active Y is given in figure 2B.
s

To illustrate this point

wave propagating between the infinitely wide parallel plates

resistors, inductors,

An example of an

consider a TEM

and let its time

dependence be a step function of the form u(t - z/c) . Then at the time when

the TEM wave reaches the edges of the parallel plates part of the sheet admittance

(labelled “active region”) must launch the part of the TEM wave above the top

plate and belo~r the bottom plate. The “active regions” must then supply energy

to the fields. In the case being considered we would expect Ys in these

“active regions” to be unstable since it is required to send out energy before

the signal, which it must match, can propagate to it. This example shows that

not all choices of part of the surface, S , for Y lead to passive Ys
s

over the entire admittance sheet. Of course the above argument for the active

character of Y can be removed by moving the admittance sheet to the position
s

it occupies in figure 1A. This does not show that no part of the admittance

sheet in figure 1A is active; but it shows that there may be

gained by constructing the admittance sheet in a shape which

optimizes the characteristics of Y ,
s

the

of

the

Y
s

Once we have found a particular Ys as a function of

some advantage

in some sense

s and position on

sheet we can consider an approximation problem, namely t-heapproximation

Ys by a finite number of resistors, capacitors, and inductors, with perhaps

constraint that these elements all be passive. One might try to approximate

over a certain range of u , or for convenient pulse shape of the incident

wave try to approximate Js as a function of time. As a result of such an

approximation one would have one or more equivalent networks with the element

values as functions of position on the admittance sheet.

Next there is the problem of realizing these equivalent circuits in a

form approximating the desired continuous admittance sheet. Considering a

small curvilinear square (or rectangle) on this sheet we can replace it by a

small two terminal network approximating Ys and passing current parallel to

7
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the direction of tangential ;in . If needed, wires can be added to pass

current perpendicular to this direction of tangential :in . The entire

admittance sheet is then a spatial grid of such two-terminal networks and

wires. Or, perhaps the lumped elements can be themselves distributed some-

what so as to blend the two-terminal networks and wires together. Of course

in using an array of lumped elements the desired continuous admittance sheet

is only approximated,
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Iv. Summary

The characteristic impedance of a TEM transmission line can be used

for a terminating resistance for low frequencies. ‘However for frequencies

with wavelengths of the order of the cross section dimensions or smaller

such a resistive termination introduces reflections on the transmission

line. Such reflections may be reduced by making a more general termination

structure which approximates an admittance sheet determined by the solution

of an electromagnetic boundary value problem in which only the single desired

TEM mode is on the transmission-line structure. Hopefully specific examples

will be considered in future notes.

A procedure similar to that for calculating Ys could be used to define

the characteristics of a sheet source for launching a TEM wave on a trans-

mission line. However such a source may be rather complex. On the other

hand, in the termination case, to the extent that one uses lumped passive

elements, the practical realization of such terminations should be somewhat

simpler.
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A. Infinitely wide parallel plates

I
z

B. Symmetrical cone with ground plane

FIGURE 1: EXAMPLES OF TERMINATION-SHEET GEOMETRIES
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B. Example of-active admittance sheet

FIGURE 2: ADMITTANCE SHEET
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