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Abstract

Multiple transitions can be used to launch a wave on a wide,

parallel-plate transmission line. The problem of matching the imped-

ance of the

considered.

appropriate

multiple transitions to the parallel-plate structure is

A variational method is used to solve the problem and

design cunres are presented.
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I. Introduction

. .

Multiple transitions can be used in the manner shown in figure 1

to connect multiple sources to a wide, parallel-plate transmission line

for the purpose of launching a TEM wave on the parallel-plate structure.

A detailed discussion ‘of the concept of multiple transitions appears

in El@ Sensor and Simulation Note XXXI where both the reasons for using

multiple transitions and the problems associated with their use are

presented.

In this present note the problem of matching the characteristic

impedance of these multiple trans:L.tionsto the impedance of corresponding

sections of the parallel-plate transmission line is considered. That

is, we want to design each transition section such that at any point

along the length of a section (~jz~L) the input impedance seen

looking back toward the parallel-plate transmission line is equal to

the input impedance at z = L of the section of parallel-plate trans-

mission line to which the transition section is attached. By matching

impedances in this way, one tends to optimize the transmission of power

into the parallel-plate structure, It should be pointed out that,

although matching impedances is an excellent first-order approximation,

this approach is not rigorous in the sense that it does not attempt to

match the electromagnetic fields on a transition section to those of a

TEM wave on the parallel-plate structure. However, it is not clear

that a more rigorous approach would be possible in a reasonable amount

of time or that it would yield better results.

To make the problem more tractable we assume there are an infinite

number of transitions arranged side by side in a periodic manner; thus,

we need to consider only a single section or cell. In figure 2 the cross-.

section of a typical cell is shown at an arbitrary value of z . Assuming

this cross-section is that of a uniform transmission line which extends

to infinity along the z-axis, we can compute the impedance of the uniform

line for a TEM wave by determining the capacitance per unit length and by

relating the impedance to this capacitance. If we assume that the cross-

sectional dimensions a/W and b/W of a transition section vary slowly

with z and that a TEM wave propagates along the transition section, the
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impedance of this uniform line corresponds to the impedance ‘L
of a

transition section at an arbitrary value of z . In this note Z,

refers to the impedance of the entire cross-section of

the lower portion formed by the image below the ground

by y= O .

It turns out that ZL depends on a/tJ and b/i?

dimensions of a cross-section, and that a relationship

u

a cell, including

plane defined

, the characteristic

exists between a/W

and bill which allows us to compute a family of curves for b/W versus

a/W for constant values of f = ZL/Zo where Z.
~

is the impedance of

free-space. These curves provide a means by which the impedance of the

multiple transitions can be matched to the parallel-plate structure.

.



9P II. Formulation of the Impedance of a Transition Section

In the cross-section of a typical cell bounded by 1x1 S W and

y:o the potential $(x,y) satisfies Poisson’s

v2$(x,y) = - + O(x,y)
o

which is accompanied by the bounclary conditions

and ~(x,y) is bounded for y + w .

Green’s function for the problem is defined

V2G(x,y[x’,y’) = - 6(X- x’)6(y

equation

by

-y’)

(1)

(2)

with

aG-o at

z- X=iw

G= O at y = O

and G(x,ylx’,y’) is also bounded for y + a .

Multiplication of (1) and (2) by G(x,ylx’,y’) and $(x,y) respectively,

followed by subtraction and integration of corresponding members, yields

. . .
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$(x’,y’) =+ J G(x, ylx’,y’)p(x,y)dS

ocell

(3)

+ H G(x, y]x’,y’)~2+(x,y) - 1+(W)V2G(X,y~X’, y’) dS .

cell

A consideration of the boundary conditions for $(x,Y) and G(x,y]x’,Y’)

shows that the second integral of (3) vanishes. Taking y’ = b , we ‘nave

$(x’,b) =+ J G(x,y\x ’,b)p(x,y)dS . (4)

0 cell

The charge density for the problem is given by

()(X,Y) = ~(X)6(y - b)

which, if substituted into (4), gives

w

$(x’;b) =$ JG(x,b\x’,b)a(x)dx . (5)

0 -w

From (2) and the subsequent boundary conditions, Green’s function can be

constructed, viz.,

a -21nb

G(xjblx’,b) =~+~
~[

~1-e
1
Cos Anx Cos Anxf

n=1

(6)

where 1 = ~ .
n

Since G(x,blx’,b) is symmetric in x and X1 , (5) can be written

as
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+(x,b) = :
~
G(x,blx’,b)o(x’)dx’ .

0 -lJ

If we introduce

{

f(x) 1X1 $a
u(x) _
& >
0 0 a<lxl SW

(5) becomes

a

$(x,b) =
~
G(x,b\x’,b)f(x’)dx’ . (7)

-a

In this problem it is convenient -toset +(x,b) = 1 for - a S x S a

so that (7) gives

a

1 =
~
G(x,b\x’,b)f (x’)dx’ .

-a

<8)

Having $(x,b) = 1 and $(x,O) = O , we can show that

z
c) lC—.=— —

z
I,

2 E.

where Z~ is the transmission line impedance of a transition section including

the effect of the image below the ground plane which accounts for the factor

of 1/2 and C is a capacitance determined by

a

! u(x)dx
a

-a
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Thus ,

Zola
—=. Jf(x)dx .
‘L 2

-a

A rapidly converging series for f(x) with the correct form of

singularity near the edges at x = ?a is

f(x) =;
2n-

cn(a2 - x )
1/2

.
n=O

For convenience we change the limits of integration of (8) and (9) to get

and

where

,1

1 =
\
G(x,blx’,b)f(x)dx

-1

20 ~ 1

—=.
2 /

f(x)dx
‘L

-1

(9)

(12)

G(x,b\x’,b) =%+
[

& i : ‘ - e-z’~)cos (~~’)cos(’nax’ ) (13)
n=1

and

f(x) =: ~ (I - x2)n- 1/2n
.

n=O

(14)
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@ Equations (11) and (12) can be combined to give the variational form

11

‘Jj
f(x)G(x,blx’b)f(x’)dxdx’

‘~f =-l-l
2g

:j ]

2
(15)

1

f(x)dx

-1

where f = zL/zo .
‘g

Substitution of (13) into (15) yields

m

f ;++=—
‘g

1
n=1

-21nb

[)

1 -e.—
n

“1 - 2

1
f(x)cos(~nax)dx

0
1

.

I
f(x)dx

(16)

Lo J

By virtue of the properties of the variational method an exact expression for

f(x) is not required to evaluate (16). We use the first term of (14) as a

trial function for f(x) , viz.,

f(x) = 1

/1 - X2

and obtain for (16)

(17)

For given values of f and
g

a/W , we use (17) to compute corresponding

values of b/W . This computation can be performed by an iterative method

in which the p-th iteration is
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Ordinarily it is convenient to begin at

and to continue, of course, until the difference (b/W)p - (b/W)p-l between

successive iterations is sufficiently small.

As a check, the results obtained by using the variational technique are

compared with asymptotic expressions that are readily available for the cases

in which (1) a is small compared to W and (2) a is nearly equal to W .

In the first case the geometry of the problem is two charged parallel plates

which can be considered to be isolated from.the rest of the structure. This

problem has been considered in a previous note~ in which results are reported.

In the second case the problem consists of an infinite array of charged

parallel strips formed by periodically cutting slits in two infinite parallel

plates. This problem has been considered previously
2,3

and the following o

result has been obtained. For values of a/W slightly less than and equal to

unity
.

bf—.
Wg - + ‘n[csc[f “wll .

Figure 3 illustrates how typically a curve computed by means of the

variational method smoothly joins the asymptotic curves obtained from EMP

Sensor and Simulation Note =1 and (18). In the regions (a/W + O and

a/W + 1) where the asymptotic forms are valid, the curve computed by using

the variational method agrees with the asymptotic curve within 1 or 2 per cent.

This excellent agreement in the region of the asymptotes gives strong credence

to the rest of the curve joining the asymptotes. A statement that the overaU

accuracy is well within the limit of a 3% error is reasonable.
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III. Results

Curves which show the relationship that exists among f , a/W ,
g

and b/Vi are presented in figures 4 through 7. These curves can be used

to design the multiple transitions so that their impedance is matched to

the corresponding sections of the parallel-plate transmission line.

A transition section is formed by gradually reducing the cross-

sectional dimensions a/W and b/W from their values at z = L where the

transition section is connected to the parallel-plate structure to smallel

values, approaching zero, at z = O where the transition is connected to

a source. At Z = L-the input impedance of the section of parallel-plate

transmission line to which the transition is connected corresponds to

f
‘L H=~—= —

‘g Z. w
(19)

where H and W are depicted in figures 1 and 2. The curves in figures

4 through 7 can be used to determine a relationship between a/W and b/W

such that, as these cross-sectional dimensions are reduced in size to form

the transition, the value of f for the transition section is a constant.
.g

along the length of the transition and is equal to the value of f
g

given

by (19).

The curves presented in figures 5, 6, and 7 are especially pertinent

to the actual construction of a transition section because, if a/W is

chosen to be a linear function of z , except for a constant multiplicative

factor which will stretch or contract the abcissa coordinate, they show the

physical shape of a typical transition as viewed from the side. Whether cr

not a/W should be chosen to be a,linear function of z is not obvious

from an electromagnetic viewpoint, Certainly a linear dependence of a/W

on z would be easy to construct.

Just how a/W or b/W should vary as a function of z is not con-

sidered in this note. Clearly, if a dependence of a/W on z is defined,

the

and

or

curves contained in this note determine the dependence of b/W on z ,

vice versa. Perhaps the problem of deciding the best dependence of a./W

b/W on z should be considered in a future note.
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