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Abstract

distribution on a cylindrical test body whose axis is parallel

a two-plate transmission line simulator, and the fields near

i
‘. the test body, are computed. These charges and fields are compared with the

desired distributions, i.e. those that occur when the cylinder is of negligible

size compared to the plate spacing. Some interesting mathematically related

problems are also discussed.
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ABSTRACT

The charge distribution on a cylindrical test body whose axis is

parallel to the plates of a two-plate transmission line simulator, and

the fields near the test body, are computed. These charges and fields

are compared with the desired distributions, i.e. those that occur

when the cylinder is of negligible size compared to the plate spacing.

Some. interesting mathematically related problems are also discus seal.
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I. Introduction

The effect of the low frequency portion of the spectrum of the electro-

magnetic pulse from a nuclear burst on buried structures can be simulated by

1
a buried parallel plate transmission line . If this simulation technique is

used a question arises concerning the accuracy with which the simulator fields

I represent the desired fields in the vicinity of the test body. The desired

1

fields are those occurring when the interaction between the test body and the

parallel plate structure can be neglected. This interaction can be neglected

when the test body is of negligible size compared to the plate spacing, so

the question mentioned above may be stated more precisely: how large can a

test body be compared to the plate spacing, and still have the fields in its

vicinity within a certain percentage of those fields induced when the plates

creating the external field are infinitely far apart? Although one can always

be sure of the accuracy of the simulation by making the plate structure very

large, this question should be answered because the engineering problems

increase greatly with the size of the buried line. In this note an accurate

solution to a somewhat idealized version of the problem is presented. The

data presented here will be useful in determining the necessary ratio of

plate spacing to buried structure size-once the allowable error of the field

values in the neighborhood of the structure is decided upon.

The model problem chosen for solution here is that of an infinite

circular cylinder centered between two infinite parallel plates. The plates,

far from the cylinder , are assumed to be sustaining a uniform TEM wave propa-

gating parallel to the axis of the cylinder. The geometry of this model, and

the excitation method, resemble the situation of a two plate line exciting a

buried cylindrical structure with a metallic shield (see figure 1) since the

waves propagating in this realistic case are also almost TEM waves. The T.EM

nature of the waves simplifies the problem requiring mathematical solution

by reducing it to a two-dimensional electrostatic problem. The geometry of

this electrostatic problem is shown in figure 2. Between the two plates of

figure 2, and at a large distance from the cylinder, an electric field per-

pendicular to the plates and of magnitude E. is assumed to exist. We wish

to calculate the fields in the neighborhood of the cylinder. This will be
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done by first calculating the surface charge density induced on the cylinder.

This charge density is proportional to the normal electric field at the surface .

of the cylinder. Furthermore it is proportional to the tangential magnetic

field and the longitudinal surface current density in the TEM transmission

line situation. But the most important fact about this surface charge density

is that once it is known the fields anywhere between the plates can be computed

by simple summation techniques as shown in the next section.

The next section deals with the mathematical solution to the electro-

static problem described above. Since the method of solution is not too

common, and may be of interest in itself, Section 111 presents a brief discussion

of a few other geometrical configurations whose electrostatic properties can be

determined by similar mathematical techniques. In Section IV accurate numerical

data on the primary problem is presented, along with a few words of explanation.

Some of the algebraic details of the problem are relegated to the appendices.
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11. A Cylinder Between Two Plates

55-5

The real problem to be analysed is shown schematically in figure 1,

but as mentioned in the introduction, if the parallel plates of figure 1 are

assumed to be sustaining a TEM wave, the transverse electric field at any

horizontal cross-section of the simulator is well represented by the two-

dimensional electrostatic field within the two infinite plates of figure 2.

The fields of the model problem of figure 2 will be computed by a method

which is in one way an extension, and in another way a specialization, of

a method originally due to Lord Rayleigh2. Rayleigh computed the average

conductivity of a cubic lattice of perfectly conducting spheres embedded in

an imperfect conductor, taking into account only dipole interactions. In

the present problem, by replacing the plates with an infinite set of image

cylinders, it is seen that it is necessary to compute the surface charge

density on an infinite row of cylinders taking into account all multipole

interactions.

The solution of the two-dimensional problem begins by representing

the surface charge distribution on the primary cylinder of figure 2 by means

of a Fourier series in the angular variable 00 .

Oo(eo) = ~ Sncos n(30
n=O

It should be noted here that, contrary to the usual notation, the

angular variable t30 is chosen to be measured from the y-axis for reasons

of simplicity in presentation.

In order to make the discussion as concise as possible we now state

without demonstration three facts which would become evident after a more

lengthy examination of the problem:

(1) The field between the plates can be considered to be the linear

superposition of the external field and the field due to the

charges on the cylinder and all its images. The field due to

the charges on the plates is entirely accounted for by the

fictitious charges on the set of image cylinders.

(1)

I

I
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(2) The charge densities on all the even numbered image cylinders are

the same as that given by (1) while the densities on the odd numbered

cylinders are:

s

‘2n+l
(eZn+l) ‘- ~o(~- ezn+~) (2)

(3) The potential outside the cylinder due to the net charges on the

set of image cylinders, i.e. the potential due to a set of line

charges of alternating sign, may be accounted for by solving with

the aid of a conformal transformation the simple electrostatic

problem of a line charge between two plates. This procedure is

advisable because it avoids the possibility of summing in an

improper manner the conditionally convergent series resulting

from adding the individual contributions of the image line charges.

Using these facts , after some algebraic manipulations it can be shown

that the potential between the plates and outside the cylinder is

soa

[ 1cosh (ITX/D) + COS IT(y + yo)/D

$e(x,y) ‘@o(x,Y) ‘~lncosh (~x/D) - COS IT(y-y )/D

o 0

(-l)n%sna n

+: ? 2nc H
~ cos(nem)

n=l m=-~ o m

(3)

where y r
o’m

, and 8m are as shown in figure 2, and $O(x,y) is the

potential of the external field. A little more detail concerning the derivation

of equation (3) is given in Appendix A.

Within the cylinder the potential due to the charge on the primary cylinder

itself has a slightly different form. This different form is such that, within

the cylinder and on the y axis, the total potential may be written as:

soa

[ 1[1l+COS IT(y+yo)/D y- y.
2

oi(o,y) = Oo(O,Y) +~lnl-cos.(y-y )/D a
o 0

m, (-l)n+msna

+;1
H

n
a ‘cos(n8m) + j L ~

2nco ~
n=l m=-= n=l ‘nuo [1

(4)
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I

where the prime on the summation indicates the omission of the m = O term.

Of course in equation (4) r and e are simple functions of y, y
m m o’

and m ,but the representation given is more concise.

llithin the cylinder, which is assumed to be perfectly conducting, the

total potential must be i~dependant of position. This mpy be assured by

equating $i(O,O) to some number, V , and by setting all the y derivatives

of I#Ii(O,y)equal to zero at the origin. That this procedure will lead to a

potential which is constant everywhere within the cylinder follows from the

nature of Laplace’s equation. Another procedure leading to the same set of

conditions on the constants s would be to expand equation (3) in a Fourier
n

cosine series in 0 and to equate all the resulting Fourier constants to
o

zero except the first. Either of these methods leadsto the following set of

equations.

V+o(o,o)

[)
x

[) [::+: $; n i’ ‘- Y 1
= xoln —

a 19n=1 m=-co(z~)nm=-~ (2m-l+2yo/D)n

.E-l !.
O.(O,O) =Xfl-a

+!
n=O

xn(n+~-l)! -a n+l ~
—

[) [
I

(-l)n
-!

1
n!(!2-l)! ~ =-co (2m)n+g m.-~ (2m-l+2yo/D)n+~m

(5)

A>o

where

‘k = (1+ d&L/2Eo

In general these equations must be solved to determine the constants

x. The field between the plates may then be calculated from the gradient
2

of equation (3). For the remainder of this section the equations will be

specialized to the case where y is zero. This simplifies equations (5)
o

considerably by decoupling the even ordered coefficients from the odd ordered

I
I
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coefficients. Two particular cases will be studied in more detail.

Case 1:

If

$#%Y) = - Eoy

all the even coefficients are zero while the equations determining the odd

coefficients may be written as follows:

c2n-1 - 2j, [:)2(nti-l)E:-1) ’’2n+2m)c2m-l=’nyl y “0 “)

where Z(Z) is the Riemann Zeta function3 and the dimensionless constants

c2n-1
are equal to

‘2n-l’Eo ●

This choice of normalization leads to the
,

following simple solution when the effect of the plates can be neglected:

c
2n-1 = ‘n;l “

The charge density in this case of very large plate spacing is:

(sL(eo) = 2COEOCOS e
o“

,(7)

In addition to this asymptotic form the opposite case of small plate

spacing compared to cylinder diameter may be studied with the aid of the

4
solution to the elementary electrostatic problem of two coupled cylinders .

This study leads to ihe ’following approximate form:

D(l +D/d) . 1
Crs(eo) = 2EOE0 ,.8<T/2

4- cosh-l(D/d)
(8)

cos 80 + d/2A(l-cos eo)

.’.

-—
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where

A=(D-d)/2 .

.
For the largest cylinder that was studied, and for (30 equal to zero,

equation (8) is in error by less than one part in a thousand.

Another quantity of interest in the case now under study is the in-

cremental transmission line admittance of the parallel plate structure due

to the presence of the cylinder. The value of this quantity is given by

the following expression:

.’;

(9)

This simple relation may be arrived at by computing the total extra charge

on the top plate and relating this extra charge to the change in transmission

line capacity per unit length. The extra charge can be computed by integrating

with respect to x the y-derivative of”qquation (3) for y equal to D/2,

omitting that portion of the y-derivative due to the external field. Although

equation (9) is rigorously true only for plates of infinite width, it will

still be a good approximation to the change in transmission line admittance

of a two plate line of finite width due to the presence of a cylinder as long

as the plate width is greater than the plate spacing.

The charge density on the cylinder, in the case under study, is

(s(e)
— = n~lC2n ~cos(2n-l)El
2C E

00

The special forms that the derivatives of equation (3) take for the case

now under study will be omitted here since those expressions are only of interest

for efficient computer programming.

I
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Case 2:

If

$@,Y) = o

and

V+o

equations (5) reduce to

c.+]-j, [$2m“-2:-2m)‘ ‘2m)c2m=‘
(lo)

c2n - 2 j. [%12(n%)[2ny-1) (1-’1-2(n*))’(2n+2m’c2m =0 3 n ‘ 0

where

c2n a/V
= ‘2n

Asymptotic forms similar to those derived in the previous case could also

be derived here. But since the present case is not directly connected to the

primary problem, and is included only as a matter of interest, we restrict our-

selves to writing the charge density

a(0)a— . ~ C2n(l+ don)cos 2n9 ,EJ
n=O

and the transmission line admittance of this structure

. (11)
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111. Mathematically Related Problems

The method of solution used in Section II is very old. As mentioned

before, to the author’s knowledge Rayleigh was the first to use similar tech-

niques to solve a problem involving an infinite number of bodies. But the
.

essence of the method can be found already in the works of Maxwe115 who used

it to determine the capacity between two spheres of unequal size. However,

in spite of the age of the method and its rather special nature, there are

still several problems to which it could profitably be applied. Therefore it

seems worthwhile to try to pick out the essential characteristics of the

procedure used in the previous section and to point out some electromagnetic

problems amenable to similar solutions and for which no precise calculations

have yet been made.

One feature of the problem that made the solution of the previous section

feasible was the simple connections that both the internal and external potentials

have with the surface charge density on a cylinder. These connections are given

explicitly by equations (A-2) and (A-3). The reason why these relations must be

simple is that the method involves writing an explicit representation of the
nth

derivative of both the internal and external potentials with respect to

some Cartesian coordinate variable. Besi~e.s the cylinder, the sphere is the

only other geometrical shape for which such representations may be easily

written do~.m.

Another essential feature of the problem of the previous section is that

it is reducible to one involving only cylinders. This reduction is already

accomplished if there are actually only cylinders present but it is also possible

if there are infinite planes present but situated in such a way that their effect

may be accounted for by one or more image cylinders.

Most of the remainder of this section consists of two brief discussions.

The first discussion is of the problem in which a sphere replaces the cylinder

between the two plates of the last section. The second discussion is of a

problem analogous to case 2 of the last section, the cylinder being now completely

enclosed by four conducting plates to form a type of coaxial transmission line.

A few other configurations where the present techniques may be applied are

only mentioned.
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Wxample 1:
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A coordinate system and system of notation that may be used for math-

ematically determining the electrostatic capacity between a sphere and

parallel plates equidistant from it are shown in the schematic diagram

this problem, figure 3A.

Using that system of notation and following a procedure exactly

analogous to that used in Section II and Appendix A, it is possible to

the charge density on the sphere as

Cu

two

for

write

u(e) = ~ s P (Cos e) ,
n=O 2n 2n

where
p2n

is a Legendre polynomial of order
2n and ‘2n

is an unknown

coefficient, the potential at the center of the sphere must be

Soa ~
v=~

s2na
+ n~O (4n+l)so ;’ (-)ml*12n+1 ,

0 m.-co

Zlth
while setting the z-derivative of the potential equal to zero at the

center of the sphere gives

o
‘2!2 a (2!2)! m ‘2na=— ——

+ n~o (4n+l)so4!2+1& 2k = f’ (-)m ‘~n~fl)! a2n+1
oa m=-cn : lmD12*2’+1 “

It may be noted here that in

convergence problems such as those

NOVJ introducing a new set of

by the definitions

‘2E

.

this three dimensional case no delicate

arising in the second section occur.
.

unknown coefficients in the above equations

‘2La
= (4L+1)EOV
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,,
it easily follows that the capacity between the sphere and the two plates, :,1,

c , normalized to the capacity of the sphere in free space, 4ncoa , is .;

given by the first unknown X. . In other words ‘1

c
+’xo

where

and

kfnm = 6
(2n+2m)!

[1

~l_2-(2n+2m))C(2n+2Ml) a 2n+2m+1
n,m - 2 (*n)!(*m)! 5

.

Wxample 2: *

The coordinate systems used to compute the input admittance of a

transmission line consisting of a circular cylinder at the center of a rect-

angular cylinder may be chosen to be the same as that used in Section II.

The exact geometry of this line, and the extra notation now necessary, are

shown in

In

cylinder

by a two

that the

figure 3B.

the present case the effect of the walls of the enclosing rectangular

on the potential distribution within the line can be accounted for

dimensional lattice of image cylinders. For this reason it follo~~s

potential at the origin due to the zeroth Fourier component of charge

on the cylinder may be written, using the representation of the potential of

a vertical row of line charges implicit in (3), as

(12)
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Using the methods of Section II to calculate this same quantity but summing

first over a horizontal row of line charges one clearly would obtain

(13)

This equation seemingly is different from equation (12) but writing the first

term of (12) as .

and employing the relation proven in Appendix B equations (12) and (13) are

seen to be identical. This is the only difficult point in the present problem.

The procedure is now similar to that of case 2 of Section II, the input

admittance of the line-will again be determined by equation (11) and the

unknowns will be determined by equations like (10). The only difference is

that the matrix elements of the equations analogous to (10) will now involve,

in addition to the functions they previously depended upon, the (2n+2m-l)th

derivative of a function defined by

‘(y)‘ ~ (-)mcschE’-dY)’Dilm=-m

Some of the other geometrical configurations to which the present methods

could be applied are: two cylinders between the two plates of Section II,

a cylinder within the quadrant formed by two planes intersecting at right angles,

and a sphere within a rectangular parallelepipeds.



I

I

I

I

AFWL EMP 1-3 55-15

Iv. Numerical Results

The quantitative data displayed in the following tables and graphs is

limited to the two special cases of Section II. The sets of equations (6)

and (10) were solved numerically, keeping only ten equations and ten unknowns

in each case. They were then resolved, keeping twenty equations and twenty

unknowns. The difference in the charge densities computed by means of these

two solutions was so small, even for the largest cylinders studied, that the

numerical data for the twenty by twenty solution can be considered to be

accurate to five digits. Although for engineering and qualitative purposes

the graphical data given in figures 4 through 9 might be sufficient, for the

sake of completeness, and for possible future needs, some of the data is given

in a more definite and accurate form in tables I through V. The numbers in

the tables are accurately rounded to the number of digits given.

Table I gives the surface charge density at three points on a cylinder

centered between two infinite plates sustaining a uniform electric field of

value E at a large distance from the cylinder. These values of surface
o

charge are normalized to the values they would attain if the interaction

between the cylinder and the plates were negligible. The values are tabulated

as a function of cylinder size. It isof interest to note that the asymptotic

form given in equation (8) predicts, for El= O and d/D = .96 , that

u(0)/2coEo would be 12.671 while the tabulated value is 12.673.

Tables II and III contain the Fourier constants computed from equations

(6) and (10) respectively. These constants may be used to compute accurate

values of charge for positions other than those given in table I. These tables

may also be useful in connection with equations (9) and (11).

Table IV gives accurate normalized values of the electric field at the

plane midway between the plates for the problem defined in Section II as

case 1. Table V gives the same kind of information for positions along the

top plate.

Figure 4 shows the charge density on various sizes of cylinder for case

1 while figure 5 contains the same type of information for case 2.

Figure 6A shows the data of table I in graphical form while figure 6B

contains similar data for case 2.
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Figures 7 and 8 contain the same type of information as tables IV and

V but for a greater number of cylinder sizes.

Figures 9A and 9B are plots of equations (6) and (11) respectively.

—

)

.,.

,.,
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TABLE I
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u(@/2coEo

I

.

d/D
0° 30° 60°

.00 1.000 .866 .500

.04 1.001 .867 .501

.08 1.005 .871 .503

.12 1.012 .876 .506

.16 1.022 .885 .510

.20 1.035 .895 .516

.24 1.051 .909 .523

.28 1.072 .926 .532

.32 1.097 .946 .541 .

.36 1.127 .969 .552

.40 1.164 .997 .564

.44 1.209 1.029 ●577

.48 1.26J 1.066 .592

.52 1.329 1.110 .607

.56 1.411 1.161 .624

.60 1.511 1.221 .641

.64 1.637 1.292 .660

.68 1.799 1.376 .680

.72 2.011 1.477 .702

.76 2.298 1.599 .724

.80 2.705 1.751 .749

.84 3.321 1.942 .774

.88 4.354 2.192 .802

.92 6.430 2.528 .831

.96 12.673 3.005 .863
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COEFF .

\l/D

.00

.04

.08

.12

.16

,20

.24

.28

.32

.36

.40

.44

.48

.52

.56

.60

.64

.68

.72

.76

.80

TABLE II

FOURIER COEFFICIENTS OF CYLINDER SURFACE CHARGE (Case 1)

c1
1.000

1.001

1.005

1.012

1.022

1.034

1.050

1.069

1.092

1.119

1.152

1.190

1.234

1.287

1.349

1.423

1.512

1.621

1.756

1.930

2.160

C3

.001

.001

.003

.005

.008

.012

.018

.027

.038

.054

.076

.105

.145

.201

.280

.395

C5

.001

.001

.002

.004

.007

.011

.017

.027

.043

.069

.112

C7

.001

.001

.003

.005

.008

.015

.029

C9

.001

.001

.003

.007

Cll

.

.001

.001



I
55-19

AFWL EMP 1-3

I

I

COEFF .

\l/D

.00

.04

.08

.12

.16

.20

.24

.28

.32

.36

.40

.44

.48

.52

.56

.60

.64

.68

.72

.76

.80

TABLE III
.

FOURIER COEFFICIENTS OF CYLINDER SURFACE CHARGE (Case 2)

co

.000

.289

.361

.423

.482

.540

.599

.661

.725

.792

.865

.944

1.030

1.125

1.230

1.350

1.487

“ 1.646

1.837

2.070

2.366

C2

.001

.003

.005

.009

.014

.021

.031

.042

.057

.076

.099

.128

.164

.210

.267

.340

.435

.562

.738

C4

.001

.002

● 003

.004

.007

.011

.016

.024

.035

.053

.079

.119

.184

C6

.001

.001

.003

.005

.008

.014

.025

.045

C8

.001

.001

.002

.005

.011

Clo

.001

.003
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TABLE IV

NORMALIZED E-FIELD MIDWAY BETWEEN PLATES

.6

.000

.377

.599

.736

.824

.881

.920

.945

.962

.974

.982

.988

.991

.994

.996

.997
.

.4

.000

.341

.546

.677

.765

.826

.870

.902

.925

.943

.956

.966

.974

.980

.984

.988

.8

.000

.415

.653

.792

.875

.924

.953

.971

.982

.989

.993

.995

.997

.998

.998

.999

X
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

.2

.000

.315

.505

.629

.713

.773

.817

.851

.877

.897

.914

.927

.938

.947

.955

.961

._— _
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1

X
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

I

‘1
I

‘i

,1

TABLE V

NORMALIZED E-FIELD AT TOP PLATE

.2

1.102

1.070

1.028

1.009

1.003

1.001

1.000”

1.000

1.000

1.000

1.000

.4

1.455

1,.313

1.126

1.040

1.012

1.003

1.001

1.000

1.000

1.000

1.000

.6

2.281

1.871

1.343

1.108

1.032

1.009

1.003

1.001

1.000

1.000

1.000

.8

4.717

3.325

1.827

1.249

1.072

1.021

1.006

1.002

1.001

1.001

1.000
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GROUND SURFACE
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ENERGY
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\
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Appendix A

If a cylindrical distribution of surface charge depends on the angular

variable 0 shown in figure 2 as
m

0 nm(9m) = Sn,mcos nem
9

then the potential due to this charge is given, outside the cylinder, by

sa

[1

n

@e==:2nco
cos n9

m
m

while inside the cylinder it is given by

sarn

‘[)‘e = 2;s~ = Cos ‘em “

(A-1 )

(A-2)

(A-3)

Now if the constants Sn are assu~ed to be those describing the charge

on the primary cylinder of figure 2 then equations (2) and (A-2) clearly
th

indicate that the potential of the charge on the m cylinder of figure 2 is

@e= [)~ (-l)nti~ ~ncosnem
n= 1 om

(A-4)

as

of

in

by

long as this m
th

cylinder carries no net charge. Adding the potential

all the image cylinders according to equation (A-4) gives the double summation

equation (3) of Section II.

The effect of a net charge on the primary cylinder may be accounted for

a logarithmic conformal transformation of the analytic function describing

the potential of a line above a plane. This process leads to the equation

for the potential of the net charge in the form
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soa

[

mZ/D
i~yo/D

$e=y Re in e
-ie

-inyo/D
o enif/D+i~ 1

AFWL EMP I -3

(A-5)

where

z = x + i(y+D/2) .

If one

and so

A procedure similar to the above, replacing equation (A-2) by equation

expands equation (A-5) the logarithmic term of equation (3) is obtained

the derivation of (3) is complete.



I

I

I

I

AFWL EMP 1-3 55-33

Appendix B

It is to be shown that if

[)f(x) = ~ (-l)nlntanh~ .
n=1

then

f(x) =~ln
[)

++f: .

Since equation (B-2) is obviously true if x is unity, it is only

necessary to demonstrate the equality of the derivatives of the two members

of (B-2). In other words it is necessary to show that if

then

F(x)=-&-
[)

‘F: .
X2

(B-1)

(B-2)

(B-3)

(B-4)

But by the Poisson summation formula6
7

and a table of integral transforms it

may be shown that

F(x) = - &+~
~ ‘ech2 [= (2n+42X2 n=O

while, by expanding each term in the series of (B-5) as an infinite sum of

exponential and then interchanging

(B-5)

the order of summation, equation (B-5) takes

I
I
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the form of equation (B-4). Q.E.D.

Equation (B-2) and (B-4) are only two of several similar relations that

arise in the study of electrostatic problems involving two-dimensional lattices.

Another relation of the same nature is that if

G(x) =x/6 - X ~ csch2(n~x)
n=1’

then

G(x) +G(l/x) = l/IT .

(B-6)

(B-7)
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