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Abstract

The radiated field is calculated for the case where a gap generator

in an infinite cylindrical antenna is excited by a step function of voltage.

The gap voltage waveform required to generate a radiation field decaying

exponentially in time is also determined.
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1, Introduction

An airborne antenna is being built to simulate the electromagnetic
1

pulse due to a nuclear explosion. Such an antenna could take various

shapes. One possible shape is a long, slender, axi-symmetric structure
2

with a conical source region. The energy fed into this structure at the

apex of the “conical-portion will propagate in a TEM manner until it strikes

the transition region between the cone and the remainder of the long antenna.

From this it follows that, even in the radiation zone, for very early times

the time dependence of the fields will be simply related to the time depend-

ence of the source.

In this note we will try to develop some feeling for what happens

in the next interval of time, i.e. the interval between the instant when

the leading edge of the pulse reaches the end of the conical portion and

the instant when this leading edge reaches the end of the entire antenna

structure. In order to do this we idealize the entire source region by

assuming it to be a gap generator, i.e. we assume a longitudinal tangential

electric field distribution over a very narrow circumferential slot. This

idealization will be more reasonable the smaller the conical source region

is, compared to the entire length of the structure. We make a further

idealization by assuming the remainder of the antenna to be a circular

cylinder, perfectly conducting and infinitely long. The real antenna will

probably be somewhat tapered and resistiv~ so our results will be inaccurate

to the extent that they do not take these possibilities into account.

Nevertheless, we feel that our results will not differ in their general

nature from those for the far more difficult real problem. The assumption

of infinite length is no limitation at all in the time interval of

interest (before the reflections from the ends of the antenna have any

effect). The geometrical configuration of the ideal antenna that we will

study is shown in figure 1.

In Section II we consider the problem of calculating the waveform

of the radiated pulse when the gap in the idealized antenna described

above is excited by a voltage that is a prescribed function of time, and

treat in detail the case where the voltage is a step function of time.

3.



In Section 111 we consider the inverse problem of determining what voltage

at the gap would be needed to radiate a waveform of specified shape, and

treat in detail the case where the radiated waveform jumps instantaneously

to some finite value and then decays exponentially.

a
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11. Transient Radiation Field of An Infinite Cylindrical Antenna

In this section, we shall obtain the time variation of the radiation

field of an infinite cylindrical antenna excited by a step-function voltage

across an circumferential gap of infinitesimal width. The method of solution,

although quite simple, involves numerical integration of an integral. Our

point of departure is the time-harmonic far-zone electric field which is,

ikr

sin 8 H~’:(ka sin 6) ‘r ‘
(1)

where V has the dimension of volt per unit frequency; E8 volt per meter
(1)

per unit frequency; k = u/c ; Ho is aHankel function of the first kind of

order zero. The meaning of r,9, and a is given in figure 1, which depicts

the geometry of the problem under consideration. In terms of the Laplace-

transform variable p , where p = - iu , equation (1) becomes

r%
e

e-pr/c
‘ZIQ. ,

‘= 2 sin 8 Ko(pa sin 0/c) vv (2)
o 0

where the relation H~l)(ix) = - (2i/n)Ko(x) has been used, and V. is a

constant having the dimension of voltage. For a step-function voltage, i.e.,

v(t) = voU(t) , we have

T(p) = Volp

and, hence, the inverse Laplace transform is
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c+i~
rE6(r,0, t)

1 1

J

~(t - r/c)p

v ‘2stlle ZZ
dp

o
pKo(pa sin 9/c)

c-i~

(3)

where q=(ct - r)/a , and the path .C is shown in figure 2.

In deforming the path C the following properties of KO(G) should
4

be borne in mind (figure 2) :

(a) KO(C) has no zeros for which \arg gl < Tr/2 . “

(b) KO(C) has no zeros for which n/2 z arg L < m and - n < arg q < - n/2 .

(c) KO(C) has a branch cut along the negative real axis in the g-plane.

(d) Ko(g)-g-~’2e-C ~ for large l<] and Iarg c1 < 3n/2 .

(e) Ko(c)-- ln(I’</2) as c + O , where r = exponential of Euler’s

constant = 1.7810--” ,

(f) Ko(l&letni) ‘Ko(\&l) +~i Io(]~l) .
.

From (a) and (d) one can easily deduce that (3) gives

rE
e_.

v
o

Y if ct < r --a sin 0 .

Forct>r-asin6 , that is, for q > - sin 6 , we deform the path C

into the left half

the integrals over

to zero as R + cc

write (3) as

rE
6 1—= -

v 2 sin 0
0

<-plane as shown in figure 2. By virtue of (d) and (e)

the large half circle r and the small circle y tend

and ~+o, respectively. Thus, by invoking (b) we can

[1
<q Csc 0

1

JJ
+

e
“Zz CKO(C) ‘C ‘

fOrq>-sino

L+ L
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which, by virtue of (f), becomes

m +q Csc ‘l.(:) ;g
rE

0 1

J

e
—.

2 sin 8
forq>-sin O.

o K:(E) + ~21~(C)

(4)
v 7’
0

In figures 3-and 4, ~ ~rE Iv is plotted against T , where T=q+l,

for 8 = Tr/2 , n13 , 7r/4 and Tr/6 . The solid curves in these figures

were obtained by.numerically integrating (4).

Large time behavior of ~ orE Iv

To obtain the asymptotic form of the integral in (4) for q csc @ + m ,

we first break the integral into three parts:

03

)

e‘KXIO(X) dx M

\

‘KX
e dx—= —

K:(x) + ~21~(X) x iT2+ ln2(rx/2) x
o 0

M

~[

Io(x)-
1

+ e-~x

1

dx—

K:(x) + m21~(X) n2 + ln2(I’x/2) x
o

m e-KX

~

-Io(x) dx
+ — ?

M K:(x) + T21~(x) x

(5)

where K = q csc 0 , and M is so chosen that <‘1 << M << 2/r . Such an

M is clearly possible wh-en K + m . For very large K , the main contribution

to the integral on the left-hand side of (5) clearly comes from the first

integral on the right-hand side, which we now proceed to evaluate asymptotically. .

We write
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.

M

J

-Kx
e

IT* + ln2(~x/2)
o

M
dx

J

dx e-Kx

{ }

-1
—=— 1 + m2/ln2(l?x/2)
x

x ln2(rx/2)
o

Mr/2 - (+)U

J

e.-
2

du , asK+m ● (6)

uln u
o

Integration by parts gives

The integral on the right-hand side can be

KM

-J

e-yd

i~y- h(2K/r) “

o

evaluated as follows:

KM KM

J

e-yd 1 J{ ‘}
-1

e-Y ~- in
lny- hI(2K/r) = - h(2K/r) ln(2K/r) ‘y

o 0

-1
-- ‘ as K‘m

Collecting the results in (6), (7) and (8) we have

m

~

e-KXIO(X) dx 1
‘- In(ZK/r) ‘ as K + m “

K*(x) + n21~(X) x
00

Using this result we obtain from (4)
,

rE
e—-

V

1 ln!ri:n,l ‘ asT+m “

2 sin 6
0

(7)

(8)

(9)
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b

.

Equation (9) is plotted in figure 4 in broken lines.

Small time behavior of rE Iv.

We shall now estimate (4) when q + - sin e , i.e., when T + 1 - sin f3 .

Let v = q csc 0 + 1 . Then

- (+)Ym -Xq Csc e

J

e. Io(x) dx ‘rn e

~

Io(Y/v)
I = —. &.

~ K:(x) + H2#(X) x ~ K:(Y/v) + f12&v) y

We wish now to evaluate Iwhenv+O. Let d be so chosen that

1 >> & >> v . We then write

w
r

1“=
J

(ooo)dy+
1

(-””)dy =11+12.

o 6

In evaluating
12

we may use the asymptotic forms for Io(y/v) and

Ko(y/v) . Thus

?51.—=

‘G’

In evaluating
11

we write

6/v e- Z(V-l)l (z)

I

o
11 =

Kg(z) + T2d(Z)
o

for 6 << 1 .

M 6/v
dz—=

\
(*””)dz+

1
(*oO)dz ,

z
o k

where M < 2/~ . Now it is clear that
11

tends to a finite value as

(lo)
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V+o. Hence,

(4) when v is

rE
e—.

v
o

the expression given by (10) is the only dominant

very small, and so we have

11 1— as T+l-sin

‘~?~-l+sin6 ‘

Equation (11) is plotted in figure 3 in broken lines.

The fact that rE6/vo tends to infinity as T + 1 - sin 6

to the infinitesimal size of the gap. If the gap were assumed to

width, rE /v
00

would increase from zero as T increases from 1

can understand this square-root singularity in the early times by

the input admittance of an antenna with an excitation gap of zero

term of

e“. (11)

is attributable

have finite

- sin 0 . One

recalling that
*

width is infinite.

The curves in figures 3 and 4, except for the portions corresponding to T<l

or so, should describe quite well the time behavior of the far field radiated

by an airborne antenna of the shape described in the Introduction and excited

by a step-function voltage.

*
For more information concerning this point the interested reader may refer

to the paper by T. T. Wu, “Transient Response of A Dipole Antenna,” J. Math.

Phys., Vol. 2, p. 892, 1961.
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III . Synthesis

To study the possibility of radiating a pulse with a specified wave-

form by appropriately controlling the gap voltage, we return to equation

(2), which we rewrite here for convenience.

-pr/c y(p)
Z8(r,6,p) =

e
2r sin 0 Ko(pa sin 8/c)

This equation simply relates the Laplace transform of the radiated

electric field to the Laplace transform of the gap voltage. There is no

necessity to think of the gap ‘voltage as the specified quantity. One could,

with equal justification, specify the waveform of the electric field at some

particular angle, 0 , and determine the gap voltage necessary to generate

such a field. The angle at which we choose to specify the radiated field

is arbitrary, but 0 = IT/2 seems a convenient and typical one. We will

specialize our equations in the remainder of this section to this typical

angle, and so we may write

~(p) = 2rKo(pa/c)%e(r,m/2,p)e
pr/c

.

Now if, in the time domain, we write

E@(r,n/2,t) =
f(t - r/c)

t ~ r/c
r

(12)

it follows from the shifting theorem of Laplace transform theory that
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lZ6(r,m/2,p) = F(P) ~-pr/e
r

where

(13)

m

J
F(p)-= e‘Pxf (X) dx

o

The substitution of (13) in to (12) gives

T(p) = 2Ko(pa/c)F(p) .

We take the inverse Laplace transform of this equation by invoking the

5
convolution theorem and the inverse transform

L-liJ’4=/j’=; ●- (a/c)

Applying the convolution theorem6 to (14), and using (15), we obtain

t

J

U(t - t’ - a/c)
v(t) = 2

9 9
0 J(t

t-a/c

. 2
~
o

where v(t) has the dimension of

- t’)~ - (a/c)L

f(t’) dt’ _

f(t’)dt’

J(t - t’)2- (a~

voltage.

12
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A natural way to normalize the time variable in this equation is to

define the time of propagation across the radius of the cylinder to be

ta = a/c 9

and to set

T = tlta “ .

.

In this normalized time domain, equation (16) becomes simply

-c-l

V(T) = 2
I
o

f(T’)dT’
.

&T’)2-l

We apply (17) first to’the simple case of a radiated step function,

f(T) = VOU(T) .

The gap voltage needed to generate this field will be given by

T-1

V(T) _
2V

o J
o

.

U(T’)dT’

~(T-T’)2- 1

L

J

U(T - x)dx.

,=

(X=T-T’)

(17)

= U(T - l)cosh-l(~)

13
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The remainder of this section is devoted to the more difficul~ task

of determining the gap voltage needed to generate. a radiation field whose

f(-r) is defined by

f(T)
-f3T= voLT(T)e

Equation (17) gives, in this case,

T-~

V(T) _

J

u(T’)e‘BT’d# “

2V
o

0 ~(T-T’)2-l

.

(19)

It has not been possible to express this integral in terms of a finite number

of well-known or tabulated functions. Equation (19) has been evaluated

numerically and plotted as a function of T in figure 5 for several values

of 6 between zero and five. When $ is exactly zero equation (18) is

applicable. It should be noted that if, in the real space and time domains,

the radius of the cylinder is of the order of a foot while the decay time

of the exponential is of the order of a microsecond, then P in the above

-3
equations will be of the order of 10 . It should also be noted that, if

the real-time decay parameter is denoted by f3r, then

f3rt = BT .

,In figure 6 we have pIotted the function defined by equation (19) as a function

14



4

Of 6T (Or ~rt) for a few small values of 6 that may be of practical

interest in certain instances.

We now return to equation (19) and develop some analytical representa-

tions of the function defined by that equation. These representations may

be more useful for certain ranges of the variables, T and ~ , than the

graphical data displayed in figures 5 and 6.

Assuming that we restrict our attention to the range T > 1 , we may

write equation (19) as

T-1
V(T) _

J

e-6T’dT,

2V
.

0
, 0 ~T-T’)2- 1

We now make use of Watsonts lemma which states that,7 asymptotically for

large a

A m f(n)(o) ,

J
e‘axf(x)dx --

Z n+l
0 n=o a

where A is some finite

may write the asymptotic

constant. Applying this lemma to equation (20) we

expansion for

m

V(T) z 1 dn—.
2V

o
n+l

n=o 6 dT’n

large 6

r 71

IT I=OO

(20)

(21)

But it can be seen that, for the function in question,

d d—=- —
d-r‘ dT ‘
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so we may use this in (21) and allow Tr to go to zero within the differ-

entiation to get

The first two terms of this

~_
2V0

asymptotic series give

1 T
1/2 + 3/2

6(T2 - 1) 82(T2 - 1)

As is clear from its derivation, this expression will be valid for

~>>1

T> 1,

but empirically it is also valid as long as

We now re-examine equation (19) for the case

i3(T- 1) << 1

(22)

by setting, in the integral,

16



T’ = ‘r - 1 -x

to get

T-1
“*= e-w-l)

J

e~xdx
2V0

o d(l + X)2 - 1

.

Thus

T-1
V(T)—= e-6(T-1) m~n

H

xndx
2V0 7n. .

n=o o <1 +X)2-1

For small f3(T- 1) , the first few terms of this series suffice, and so

we may write

,

V(T) ~ e-

[

B(T-1) (1

2V0 -++1 “
- f3)cosh-%) + 6 T

which, for very small T - 1 , becomes

(23)

Equation (23) is plotted in figure 5, for comparison with the exact results.
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