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Abstract

A non-uniform surface transmission line is investigated as a means

of transporting a simulated electromagneticpulse (EMP) over a lossy surface

such as the earth. Current and voltage waveforms on non-uniform lines with

various geometries are displayed and compared with those on uniform lines

with comparable dimensions. The waveforms demonstrate that a marked

improvement in the behavior of an EMP waveform at early time can be obtained

with a non–uniform line.
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I. Introduction
-—-

The effect on physical structures caused by

(EMP) emitted by a nuclear explosion is presently

an electromagneticpulse

a topic of considerable

interest. Since the geometry of the structures is typically very complex,

an investigation based solely on computationalmethods is impossible. In

addition to computation, experimentalmeasurements are needed, and these

have motivated the development of techniques for simulating EMP artificially.

Recently techniques for EMP simulation have become increasingly sophisticated

and effective in simulating EMP over large areas.

As discussed in previous notes
1,2

a surface transmission line can be

used for transporting simulated EMP over a lossy surface. The early portion

of an EMT waveform varies rapidly, and for this reason a

line must perform well at high frequency tobe effective.

In this note we seek to improve the high-frequency

surface transmission

performance of a

lossy surface transmission line by making it non-uniform. In particular we

investigate the possibility of shaping the top plate of a surface line to

improve its high-frequency performance. Closely related to this note is
3

a previous note that deals with a technique utilizing Brewster’s angle as

a means of improving high-frequency performance.

We want to shape the top plate so that as nearly as possible a current

waveform excited at one end of a transmission line propagates to the other

end with no distortion. Using conventional transmission

applies to a non-uniform line, we determine a shape that

of a current that are centered about a frequency tic to

line with relatively no distortion. Current and voltage

line theory as it

allows the components

propagate down the

waveforms in the

time domain at selected positions along the line are obtained for geometries

corresponding to various values of UC . These waveforms are displayed along

with those for the case of–a uniform line with comparable dimensions, placing

in evidence the improvement offered by a non-uniform line.

An obvious assumption made in this note is the structure being analogous

to a transmission line. Regarding this assumption, the same cormnentsas made

in Section IV of Sensor and Simulation Note 60 are pertinent. Additional

scrutiny is required in this note because the structure is non-uniform.



.

Generally speaking, the analogy is valid at.-frequenciesfor which shape of

the top plate changes gradually enough.
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II.

It turns out that a

constant slope provides a

Geometry of Non-uniform Line
—.

structure whose top plate slants downward with a

significant improvement over a uniform line with

comparable dimensions. Perhaps a transmission line with a slope that is

not constant but varies with position along the line should be considered

in a future note. A schematic representation of a line with constant slope

is shown in figure 1. An excellent three-dimensionalrepresentation of a

uniform structure, similar to the non-uniform structure being considered

in this note, is depicted in figure 1 of Sensor and Simulation Note 60.

Imagining that the top plate of the structure in Note 60 were slanted down

toward the terminationwith a constant slope provides a good mental picture

of the non-uniform structure in this note.

A step of current with magnitude 10 is excited by an ideal current

source at x = O and propagates over the 10SSY section (O~xsd) toa

termination at x = d . The bottom plate of the line in the region (O s x s d)

is the lossy surface itself which has a surface impedance Z ; the top
~

plate is a perfect conductor. The termination at x = d is the impedance

‘L
which is purely resistive throughout the note and is given by ‘L

= ydzo

where yd is the height of the line at x = d and Z. is the wave impedance

of free space. A subsequent note is planned in which a complex ZL at

x = d will be considered.

Adhering to the usual convention of transmission line theory, an
ejut

time dependence is used in this note. From conventional transmission

line theory we know that the current on a non-uniform line behaves according

to the equation

I“ -+’ -YZI=O

where the primes designate derivatives with respect to x . Assuming the

effect of the lossy medium (earth) in the region (O s x < d) can be taken

into account by a surface impedance defined by

5
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we have for a width W the impedance Z and the admittance Y , both per

unit length, given by

where y , the height of the

We want to determine a

jL!J?-Iy z
z.—

w
+ .$

jucoW
Y =—

Y

top plate, varies with x .

shape for y such that the current waveform

propagates along the line without distortion. In the frequency domain no

distortion means that, at all frequencies, the amplitude is constant with

respect to x and the phase varies linearly with respect to both x and

u . Accordingly we write

where I is a constant with respect to
o

x , and 0 , although presenEly

unspecified, hopefully varies linearly with respect to both x and w .

Substitution of (3) into (1) yields

e1! -j((3’)2 -+6’ -jYZ=O

(2a)

(2b)

(2C)

(3)

(4)

which, after separating into real and imaginary parts and eliminating 6 ,

gives
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where

L 1Im Z /20
a =.

2ko

b [1=Re Z/Z
go

.

Solving (5) we obtain

(x - co/b)2
(y-a) 2- ~ s~

n
L

a (a/b)L

or

where

=
Y Co-bx

and

c
[ 1=Y J1- ‘2a/Y .

0
x= o

(5)

(9b)
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Substitution of

equation gives

0

(8) into (4) and solution c&the resulting differential

where c1
is an arbitrary constant.

Equation (7) defines a hyperbola centered at (x=co/b,y=a)

with semitransverse axis a and semiconjugateaxis a/b . Clearly y

depends on frequency; figure 2 shows this dependence for a representative

transmission line. Since we are primarily concerned with the high-frequency

performance of the line corresponding to the early time of a pulse, we are

interested in those curves for y that result for large values of u .

At large values of u the term a + ~ and y is closely approximatedby

the straight-line asymptote of the hyperbola, a convenience from the stand-

point of fabricating a non-uniform line. That is,

(lo)

y~yo-bx

where

[1Y. =Y(x)
X=o

(11)

(12)

Furthermore, as a + O

eH- kox + Cl (13)



and hence for high frequency 6 varies linearly with x and u .

The preceding development shows that a transmission line can be

“tuned” to a particular frequency Uc by shaping the top plate in a prescribed

manner. The shape corresponding to large values of MC is a monotonic slope

defined by (11) with

b [1‘ReZ/Z
g Ow= ~ “

c

(14)

The approximation imposed by (11) can be improved by truncating the sloping

top plate at x = d where (7) and (11) do not yet differ significantly

from each other and by terminating the line with the impedance ‘L
= ydzo .

placing an appropriate, frequency-dependentimpedance at x = d might prove

to be a means of improving the performance of the structure at lower frequencies

and, as mentioned previously, will be considered in a future note.

Equation (11) becomes exact as u + ~ . In this limit b = l/~
c

where c~ is the relative dielectric constant of the lossy medium. This

result corresponds to the high-frequency Brewster’s angle discussed in

Sensor and Simulation Note 37.
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111. Current.Waveform

,Wewant to solve (1) for the case of a non-uniform line with a top

plate whose slope is described by (11); accordinglywe substitute (11)

into (l). For convenience we introduce the change of variable

-j kox

I = Iou ~-
jti

where u varies with both x and w ; hence equation (1) becomes

[ 1
jko ~

Utf- 2jko+ b/y(x) U’ +—
1Y(x) b 1-zg/zou=o .

‘.,’

The purpose of this changeof variable is to remove

solution of (15) at high frequency which is helpful

numerical computation. Two boundary conditions for

(U%)x= J=o

(U)x=o=l .

oscillationsfrom the

from the standpoint of

(15) are

(15)

(16)

(17)

Equation (15) is solved numerically for values of u(x) by starting

at x = d where we assume the boundary conditions u’ = O and u = U. ,
4

an arbitrary constant, and by using the Runge-Kutta method to compute back-

ward along x to x = O . The value of u at x = O obtained in this way

is compared with the correct value given by (17). From this comparisonwe

can determine the factor by which U(x) should be multiplied to scale its

magnitude correctly so Chat the arbitrariness of u is removed.
o
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The Fourier inversion of the solution of (1) gives the current waveform
—-

in the time domain. In order to perform this inversion numerically, a
-1

singularity at u = O of the form u must be removed. Doing this, we

obtain

m

~

j+
h(x,~) =+ B(x,u)e du + U(T)

-m

with

where

2
note

where,

(18)

B(x,u) =
U(x,ol)- 1

ju

t- Xlc
-r=

d/c

h(x,~) = i(x,~)/Io is a normalized current.

The initial-value theorem applied to expressions developed in a previous

gives the current on a uniform line at T = O , i.e.,

x-—
2Kry

h(x,~ =O)=e

as mentioned previously, Cr is the relative dielectric constant of

(19a)

(19b)

(20)

the lossy medium and y is the height of the top plate. For the case of a

non-uniform line, the solution of (1) is obtained in the limit as ~+..

by using the WBK method before applying the initial-value theorem; the result is

[1
B

h(x,~ = o) = y(x)/yo (21)
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where
—.

From these expressionswe see that by properly adjusting b the initial

value of the current on a non-uniform line can be made larger than on a

comparable uniform line. In fact, for b = 1/< we see that 6 = O and

hence the current at T = O on a non-uniform line is exactly unity for all

values of x , an attractive feature if the waveform for T > 0 behaves

properly. Unfortunately this is not the case. As b approaches the value

l/~ the initial value of the current approaches unity but the waveform

for T > 0 becomes distorted.
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IV. Voltage Waveform
—.

In the frequency domain the voltage is given

V = ZiI

where

r -I

by

.

The voltage has two singularities at u = O that must be removed before

numerical Fourier inversion can be performed, A singularity of the form
J+ is present due to Z_ , the surface impedance of the lossy section;

a

a
‘-1

singularity of the form u is present due to
‘L ‘

the purely resistive

impedance at x = d . Removing these singularities,we have a normalized

voltage e(x,~) = V(X,T)/@oyoZo) given by

m

J

jti<T ‘1
e(x,~) = + A(x,u)e du+— + K2U(T)

-m ~

where

A(x,u) = YQQ
Y. [1 t

u+j~
o

1 ‘1 ‘2—.—

With

.

(23)

(24)

(25)

(26a)

(26b)
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Atx= O a plot of the

‘2 = Ydho “
——

normalized voltage e(O,~) versus ~ is

actually a plot of the normalized input impedance zin(~) = Zin(T)/(~Zo)

because the normalized current h(o,~) is unity for T>O at the ideal

current source. The input impedance Zin(T) , although displayed in the

time domain, is conventional in the sense that it is obtained by dividing

the total voltage V(X,T) by the total current i(x,T) at x = O .

Curves of e(O,T) versus T are presented in this note for various non-

uniform transmission lines; ideallywe would.like it to be unity.

(26C)
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v. Waveforms for Various Geometries—

The curves contained in this note are parameterized in terms of

n = ye/d

Y~ - Y.
b= ~

<=x/d .

(27a)

(27b)

(27c)

We have assigned the transmission line a length of d = 50 meters and

assumed for the lossy medium a conductivity -2
0=10 mhos/meter and relative

permittivity sr = 10 .

Waveforms of normalized current and voltage versus T are presented

for several normalized heights n . For each value of ~ waveforms for

several representativevalues of b are displayed, including b = O .

For the purpose of showing how the slope b is related to Mc we

include Table 1.

Table 1. Values of b(uc)

u
c

co

109

108

5 x 107

107

5 x 106

106

b

.3162

.3149

.2347

.1687

.0693

.0481

.0212
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It is interesting to note from this table that even the gradual slopes
—.

correspond to relatively high frequency.

As mentionea previously a slope of b = 1/< , which corresponds to

(Llcm,
c

gives a normalized current of unity at ~ = O for all values of

x. The waveforms displayed in this note illustrate, however, that the

waveform for T > 0 deteriorates as b approaches the value l/~ .

Better waveforms result for values of b somewhat less than 1/< .

In fact the best waveforms seem to result for values of b corresponding

to frequencies in the vicinity of WC = 107 .

Figure 3 demonstrates the current waveform on a lossy surface trans-

mission line at early time can be improved considerablyby slanting the top

plate with a constant slope. Waveform A results on a uniform line with

normalized height H = .06 ; waveform B on a non-uniform line with n = .12

and slope b = .06 ; waveform C on a Iine with r-l= .20 and b = .08 ,

The initial rise of the current waveform on B and C is significantly

faster than on A . At ~ = .5 the current on A reaches 90% of its

final value of unity at T = 1.2 whereas B reaches this value at T = .(I4

and C at T =.01 .

This improved behavior at early time is not due entirely to the effect

of sloping the line, for increasing the height also contributes. To illustrate

how both the height and slope influence the waveform at early time, figures

4 through 11 are included. Clearly increasing the height improves the

waveform, but for a given height sloping the line provides further improvement.

At ~ = .5 the waveforms, especially the current, have a pronounced

“hump” beginning at : = 1.0 that is due to reflections from the discontinuity

at < = 1.0 . This hump causes the waveform to ~’overshootttthe desired

value of unity. Placing an appropriate impedance
‘L

at g = 1.0 might

reduce this overshoot considerably. The proper impedance might also allow

a steeper slope to be used without introducing as much distortion for T>O

as is the case for the impedance ZL = ydzo being presently considered in

this note.



Waveforms for structures with heights of 3, 4, 6, 8, 10, 12 and 16

meters are represented in figures 3 through 11. Hopefully this range of

heights -- beginning with y = 3 meters, the height of a simulator actually
o

being used, and ranging up to 16 meters, a rather tall structure -- includes

most of the structures that might be considered for actual simulators. At

least this range will serve to demonstrate the effect of a non-uniform line

with constant slope.

For each height waveforms for three slopes are depicted, In general,

these include a slope of zero, an intermediate slope, and a relatively

extreme slope for which the waveform is clearly distorted.

The waveforms are depicted at selected positions along the line. In

particular, the current is displayed at c = .5 and < = 1 . The current

at c = O is identically unity for T > 0 ; so it is not included. The

voltage is displayed at ~ = O , where it is the same as the normalized input

impedance, and at < = .5 .

An especially promising structure is the one that produces waveform

B in figure 3. It is 6 meters tall at ~ = O and slopes downward to 3

cl.meters at = A uniform line with a height of–3 meters -- a structure

actually being used in EMT?simulation -- produces waveform A in figure 3.

This uniform structure could be altered to give waveform B by simply

increasing the height at & = O to 6 meters. As pointed out, waveform B

rises much faster than waveform A . They both have approximately the same

amount of overshoot. ‘Muchof this overshoot, however, might be removed by

placing the proper termination at ~ = 1.0 for the case of the non-uniform

line.
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VI. Power Considerations

It should be pointed out that, although the initial rise of the current

is improved by increasing the height y. , the amount of power required to

establish a given current at positions on the line near the source increases

as the height is increased. The reason is that increasing the height increases

the impedance which, in turn, increases the voltage required to establish a

current; hence more power is required. HOW much more power is not obvious

and

the

e.g

requires futher computation to determine.

For the case of a losseless uniform line with

amount of additional power varies linearly with

a matched termination

an increase in height,

.s doubling the height requires doubling the power to maintain the same

current. For the same line except with a lower plate having a surface impedance

z the linear relationshipbetween height and power no longer holds because
g
the lossy effect of Z diminishes as the height is increased. This point

is illustratedby Tabl~ 2 which is based on computationsmade using (20).

In this table hl and pl are the current and the instantaneouspower in

a wave on a Iossy uniform surface line with a height yl = 3 meters ; they

are computed at a time slightly after T=o and at a position & along

the line (d = 50 meters). Similarly
‘2

and p2 are on the same kind of

line except with a height y2 = 6 meters .

Table 2. Current and Power at T = O on Two Lossy

Uniform Lines.
2

‘1
= ylzoIo

‘1 ‘2 Pllpl P2/p~
L—.——

.0 1.000 .707 1.000 1.000

.2 .590 .543 .348 .590

.4 ● 349 ,417 ,122 .349

.6 .206 .321 .042 a206

.8 .121 .246 .015 .121

1.0 .072 ● 189 .005 .072
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We have set up Table 2 so that the sources at E = O impart the same

amount of power to waves on both lines.
-—At ~

= O the taller line has a

smaller current because, since it is taller, more of its power is in the

voltage. The table shows that, as the waves propagate along the lines, the

current and the instantaneouspower diminish more slowly on the taller line.

In fact, at a distance not too far from the source both of these quantities

are larger on the taller line even though at g,,= O the current was smaller

on the taller line and the power was the same. Although the current and the

power have been considered only at T = O , we see the relationship between

height and power is not linear. Of course the waveforms in this note can

be used to compare the current and the instantaneous power for lines of

different heights at times other than T = O .

In Table 3 the current and the instantaneouspower on a lossy uniform

surface line with height yl = 3 meters are compared with those on a 10SSY

non-uniform surface line with height y. = y2 = 6 meters and slope b = .06

(d = 50 meters for both lines). The ideal current source, which excites

waveforms A and B on these lines as shown in figure 3, supplies an

instantaneous power that varies with time. To emphasize how current and

instantaneous power compare for these two lines, we have adjusted Table 3

so that the sources at : = O are not ideal current sources but instead

put out the same amount of power at both T = O and T = .5 for both lines.

Table 3. Current and Power at T = O and T = .5 on Lossy

Uniform and Non-uniform Lines. P, = Y,Z.12

‘1_!L—
.0 1,000

.5 .268

1.0 .072

‘14- .—.
.0 .846

.5 .683

= oT

‘2

.707

.382

,161

T = .5

‘2

.675

.670

PJP1

1.000

.072

.005

1.000

.640

P21P1

1.000

.220

.026

1.000

.758

1.0 .594 .695 .350 .482
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Table 3 shows that increasing the height of a uniform line at & = O
-—

to form a non-uniform line requires additional power but the increase is

not linear, i.e., doubling yo from 3 to 6 meters while keeping yd = 3 meters

does not require doubling the power. In Table 3 multiplying
‘2

and p2

by factors of fi and 2, respectively, corresponds to doubling the power,

an increase larger than is necessary to make the wave on the non-uniform line

significantlybetter than on the uniform line.

20



It is

slope, Two

VII. Optimum Non-uniform Line

-—
not clear how to specify an optimum non-uniform line with constant

factors to consider are how fast an initial rise is desired

and how much distortion for -r>o can be tolerated. Another factor is that

a steep slope requires a relatively tall structure at t = O which imposes

difficulties from the standpoint of both power and constructionpracticalities.

Examining the waveforms at g = .5 , we conclude that a gradual slope

around b = .08 corresponding to approximately MC = 107 produces the best

current waveform at early time, independent of the termination impedance
‘L

at ~= 1 . Slopes greater than b = .08 cause the current to overshoot

the ideal value of unity during the time (OSTS 1). Since reflections

from the discontinuity at & = 1 do not arrive before T = 1 , adjusting

‘L
will not reduce overshoot occurring before T = 1 . Incremental slopes

greater than b = .08 may prove effective, however, for the case of a non-

uniform line with a top plate whose slope is not constant but varies with & .

Overshoot occurring after T = 1 is certainly affected by the nature

of
‘L “

The low-frequency components of the current “see” a discontinuity

that depends on the difference between the impedances Y_z- and Z. , Since

we have taken

depends on the

dependent with

would probably

Uu L1

‘L
= ydzo in this note, the discontinuity at low frequency

difference y. - yd . Accordingly making ZL frequency

limits yoZo at low frequency and ydZo at high frequency

reduce the overshoot that occurs at later time.
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